
Journal of Intelligent & Fuzzy Systems 46 (2024) 2835–2850
DOI:10.3233/JIFS-223042
IOS Press

2835

Statistical properties and applications
of the modified beta weibull family of
distributions to engineering data
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Abstract. In this work, a new family of distribution, which generalizes the Beta Weibull-G family by the introduction of a
shape parameter to enhance better fit and flexibility, called the Modified Beta Weibull-G family of distributions is obtained.
The mixture representation of the derived family of distributions was discussed, with the results effective in studying moments,
moment generating functions, order statistics. Parameters of the family of distributions were estimated using the maximum
likelihood estimation method. By utilizing this modified class of distributions, we build a new distribution called the modified
beta Weibull Weibull and applied it to engineering datasets. Application revealed a better performance in model fit, compared
to some other distributions.
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1. Introduction

Of recent, many distributions are developed by
adding parameter(s) to the baseline distribution,
which are more flexible and give A better fit to
real-time data. These distributions have gained appli-
cation to real life situations in engineering, health,
finance, education, environmental sciences, eco-
nomics, e.t.c. Examples of families of distribution
include Beta-G ([14]), Weibull-G ([9]), Poisson-G
([1]), Exponentiated-G ([16]),Transmuted-G ([26]),
Cubic Transmuted-G ([18]), Exponentiated Chen-G
([7]) to mention a few. With these generated fami-
lies of distributions, researchers have been enabled
to develop new distributions. The generated families
have attracted many researchers due to the availabil-
ity of computational and analytical facilities in most
symbolic computation software platforms. Further-
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more, with the aid of the mixture representation of
the Exponentiated-G distributions, several properties
of the derived distribution have been extensively stud-
ied.

The Weibull-H family of distributions has been
extensively studied and applied to real life datasets
due to its flexibility. Some of the studies had con-
sidered using the family of distributions in deriving
extensions of some baseline distributions. Some of
the extended distributions include Weibull-Gamma
[5], Weibull-Burr ([6]), Weibull-sigma distribution
([20]), Weibull Exponential distribution ([30]) e.t.c.
Given a baseline cumulative distribution function
(c.d.f) G(x;σ) with p.d.f g(x;σ), the c.d.f of the
Weibull-H distribution ([9]) is

H(x; σ) = 1 − e
−α
(

G(x;σ)
S(x;σ)

)ρ

(1)

and

h(x; σ) = αρg(x; σ)
G(x; σ)ρ−1

S(x; σ)ρ+1 e
−α
(

G(x;σ)
S(x;σ)

)ρ

(2)
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where

S(x; σ) = 1 − G(x; σ)

and x>0, α,φ >0. In a bid to obtain a family of
distributions that will further extend and have the
Weibull-H family of distribution as subfamily in order
to achieve more flexibility and better fitting to the real
life data, we considered the Modified Beta-H family
of distributions.

The Beta- G family of distributions has also been
explored by researchers after it was derived by
Eugene et.al(2002) ([14]) and applied to the nor-
mal distribution. It has been used as generator to
develop new distributions in order to achieve bet-
ter fit for data and flexibility. Examples of these
include Beta-Weibull distribution ([15]), Beta Half
logistic distribution ([19]), Beta Type I generalized
half logistic distribution ([8]), Beta Exponential dis-
tribution ([23]) e.t.c. Using the Beta-G family, some
researchers were able to bring new families of dis-
tributions which include Beta Transmuted-G ([2]),
Beta Weibull G ([21]), Beta-Odd Log-Logistic G
([10]) e.t.c. Nadarajah et.al(2014) ([24]) obtained a
modified form of the beta G distribution called the
Modified beta distribution. It has the c.d.f as

F (x; σ) =
∫ θH(x;σ)

1+(θ−1)H(x;σ)

0
xζ−1(1 − x)φ−1dt (3)

which equivalently gives

F (x; σ) = I θH(x;σ)
1+(θ−1)H(x;σ)

(ζ, φ) = B(r; ζ, φ)

B(ζ, φ)
(4)

and the corresponding p.d.f as

f (x; σ) =
θζ
[
h(x; σ)(H(x; σ))ζ−1(1 − H(x; σ))φ−1

]
B(ζ, φ) [1 − (1 − θ)H(x; σ)]ζ+φ

(5)

where r = θH(x;σ)
1+(θ−1)H(x;σ) ,B(ζ, φ) = ∫ 1

0 xζ−1(1 −
x)φ∂x and B(r; ζ, φ) is an incomplete beta function.ζ,
θ, and φ are shape parameters, I θH(x;σ)

1+((θ−1)H(x;σ))
(ζ, φ) is

the incomplete beta function ratio. The additional
parameters θ, ζ, and φ govern the skewness and tail
weight of the generated distribution. An attractive
feature of this family, just like the Beta G family,
is that ζ and φ can afford greater control over
the weights in both tails and in the center of the

distribution. If ζ=φ=θ =1, we have the h(x;σ) and
H(x;σ) of the baseline distribution.

The Modified Beta G has not been extensively
used in obtaining generalized distributions. Some of
its submodels in literature are Modified Beta Gom-
pertz ([12]), Modified Beta Modified Weibull ([25])
e.t.c. Therefore, in this research, we are combining
both the modified beta-G family of distributions and
the Weibull-H family of distributions to obtain a new
family of distributions that is more flexible and has
the potentiality to fit data better than the modified
beta-G and the Weibull-G family of distributions.

The plan of the paper is as follows. The Modified
Beta Weibull G family of distributions is derived and
defined in Section 2. Section 3 discusses the mixture
representation of the p.d.f and c.d.f of the family of
distributions. In Section 4, some statistical proper-
ties of this family of distributions were studied and
discussed. Maximum Likelihood Estimation for the
parameters of the family of distributions is discussed
in Section 5. In Section 6,the family of distributions
was applied to two real data sets.Section 7 has the
concluding remarks given.

2. Derivation of the modified beta Weibull-G
family of distribution

In this section, the p.d.f and c.d.f of the Modified
Beta Weibull- G (MBWG) family of distributions are
discussed. Inserting Equations 1 and 2 in Equation 5,
we obtained the p.d.f of the MBWG as

f (x; σ) =
θζ[1 − e

−α
(

G(x;σ)
S(x;σ)

)ρ

]ζ−1[e−α
(

G(x;σ)
S(x;σ)

)ρ

]φ−1αρg(x; σ)G(x;σ)ρ−1

S(x;σ)ρ+1 e
−α
(

G(x;σ)
S(x;σ)

)ρ

B(ζ, φ)[1 − (1 − θ)(1 − e
−α
(

G(x;σ)
S(x;σ)

)ρ

)](ζ+φ)
x > 0, θ, ζ, α, ρ, φ > 0

(6)
The corresponding c.d.f of MBWG is derived by
inserting equation 1 in 3 to have

F (x; σ) =
∫ θ(1−e

−α

(
G(x;σ)
S(x;σ)

)ρ

)

1+(θ−1)(1−e
−α

(
G(x;σ)
S(x;σ)

)ρ

)

0
xζ−1(1 − x)φ−1dt

(7)
Alternatively, equation 7 can be written as

F (x; σ) = I
θ(1−e

−α

(
G(x;σ)
S(x;σ)

)ρ

)

1+(θ−1)(1−e
−α

(
G(x;σ)
S(x;σ)

)ρ

)

(ζ, φ) = B(v; ζ, φ)

B(ζ, φ)

Lx > 0, θ, ζ, α, ρ, φ > 0 (8)
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where

v = θ(1 − e
−α
(

G(x;σ)
S(x;σ)

)ρ

)

1 + (θ − 1)(1 − e
−α
(

G(x;σ)
S(x;σ)

)ρ

)
(9)

From Equation 8, the survival function of the MBWG is

1 − F (x; σ) = B(ζ, φ) − B(v; ζ, φ)

B(ζ, φ)
(10)

where v is written as in equation 9. The hazard function hz(x;σ) given as

hz(x; σ) =
θζ[1 − e

−α
(

G(x;σ)
S(x;σ)

)ρ

]ζ−1[e−α
(

G(x;σ)
S(x;σ)

)ρ

]φ−1αρg(x; σ)G(x;σ)ρ−1

S(x;σ)ρ+1 e
−α
(

G(x;σ)
S(x;σ)

)ρ

(B(ζ, φ) − B(v; ζ, φ))[1 − (1 − θ)(1 − e
−α
(

G(x;σ)
S(x;σ)

)ρ

)](ζ+φ)

and the reverse hazard function rhz(x;σ) as

rhz(x; σ) =
θζ[1 − e

−α
(

G(x;σ)
S(x;σ)

)ρ

]ζ−1[e−α
(

G(x;σ)
S(x;σ)

)ρ

]φ−1αρg(x; σ)G(x;σ)ρ−1

S(x;σ)ρ+1 e
−α
(

G(x;σ)
S(x;σ)

)ρ

B(v; ζ, φ)[1 − (1 − θ)(1 − e
−α
(

G(x;σ)
S(x;σ)

)ρ

)](ζ+φ)

2.1. Sub-Family of the MBWG family of distributions

Some of the sub-family of the MBWG family of distributions includes:
1. When θ=ζ=φ=1, we obtain the Weibull-G distribution of Bourguignon et.al(2014)
2. When ζ=φ=1, we have the Modified Weibull-G family of distribution(NEW) as

f (x; σ) =
θαρg(x; σ)G(x;σ)ρ−1

S(x;σ)ρ+1 e
−α
(

G(x;σ)
S(x;σ)

)ρ

[1 − (1 − θ)(1 − e
−α
(

G(x;σ)
S(x;σ)

)ρ

)]2

3. When θ=1, φ=1, we have the Exponentiated Weibull-G family of distributions by Cordeiro et.al(2013)
4. When φ = 1, we have the modified exponentiated Weibull G family of distributions (NEW) as

f (x; σ) =
ζθζ[1 − e

−α
(

G(x;σ)
S(x;σ)

)ρ

]ζ−1αρg(x; σ)G(x;σ)ρ−1

S(x;σ)ρ+1 e
−α
(

G(x;σ)
S(x;σ)

)ρ

[1 − (1 − θ)(1 − e
−α
(

G(x;σ)
S(x;σ)

)ρ

)]−(ζ+1)

5. When θ=ζ=φ=ρ=1, we have the Exponentiated-G family of distributions of Bareto-Souzza and Simas(2013)
6. When φ=ρ=1, we have the Modified Beta G family of distributions of Nadarajah et.al(2014)

2.2. Submodels of the MBW-G family of distributions

In this section, three(3) special models of the MBWG family of distributions are presented. These models
generalize some models in literatures. The models have baselines of Exponential(Ex), Weibull(W) and Frechet(F)
distributions.

2.3. Modified Beta Weibull Exponential (MBWEx) distribution

The pdf and cdf of exponential distribution are given as

g(x; β) = βe−βx

G(x; β) = 1 − e−βx
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Fig. 1. Plots of the Modified Beta Weibull exponential distribution.

Therefore, the pdf (fMBWEx) and hazard function (hMBWEx) of the MBWEx distribution is given as

fMBWEx =
θζ[1 − e

−α

(
(1−e−βx)

(e−βx)

)ρ

]ζ−1[e
−α

(
(1−e−βx)

(e−βx)

)ρ

]φ−1αρβe−βx (1−e−βx)ρ−1

(e−βx)ρ+1 e
−α

(
(1−e−βx)

(e−βx)

)ρ

B(ζ, φ)[1 − (1 − θ)(1 − e
−α

(
(1−e−βx)

(e−βx)

)ρ

)](ζ+φ)

and

hMBWEx =
θζ[1 − e

−α
(
eβx−1

)ρ

]ζ−1[e−α
(
eβx−1

)ρ

]φ−1αρg(x; σ) (1−e−βx)ρ−1

(e−βx)ρ+1 e
−α
(
eβx−1

)ρ

B(ζ, φ) − B(v; ζ, φ)[1 − (1 − θ)(1 − e−α(eβx−1)ρ

)]−(ζ+φ)

respectively and x>0,θ,ζ,α,ρ,φ, β > 0.
The MBWEx distribution includes the Weibull Exponential(WE) when θ=ζ=φ=1. For θ=α=ρ=1, the MBWEx

becomes Beta Exponential(BE) distribution. For θ=ζ=1, MBEx reduces to Exponentiated Weibull Exponen-
tial(EWE) distribution. Plots of the density function and the hazard function of the MBWEx with various
assigned parameter values are shown in Fig. 1.
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2.4. Modified Beta Weibull Weibull (MBWW) distribution

The pdf and cdf of Weibull distribution are given as

G(x; β, λ) = 1 − e−(βx)λ

g(x; β, λ) = λβλxλ−1e−(βx)λ

Now, the pdf fMBWW and hazard function hMBWW of the MBWW distribution is given as

fMBWW =
θζ[1 − e

−α

(
(1−e−(βx)λ )

(e−(βx)λ )

)ρ

]ζ−1[e
−α

(
(1−e−(βx)λ )

(e−(βx)λ )

)ρ

]φ−1αρλβλxλ−1e−(βx)λ (1−e−(βx)λ )ρ−1

(e−(βx)λ )ρ+1
e
−α

(
(1−e−(βx)λ )

(e−(βx)λ )

)ρ

B(ζ, φ)[1 − (1 − θ)(1 − e
−α

(
(1−e−(βx)λ )

(e−(βx)λ )

)ρ

)](ζ+φ)

and

hMBWW =
θζ[1 − e−α(e(βx)λ−1)ρ ]ζ−1[e−α(e(βx)λ−1)ρ ]φ−1αρλβλxλ−1e−(βx)λ (1−e−(βx)λ )ρ−1

(e−(βx)λ )ρ+1
e−α(e(βx)λ−1)ρ

(B(ζ, φ) − B(v; ζ, φ))[1 − (1 − θ)(1 − e−α(e(βx)λ−1)ρ )](ζ+φ)

respectively, where x>0,θ,ζ,α,ρ,φ, β,λ > 0.
For θ=α=ρ=1, the MBWW becomes Beta Weibull(BW) distribution. For θ=ζ=1, MBWW reduces to Exponen-

tiated Weibull Weibull(EWE) distribution. Plots of the density function and the hazard function of the MBWW
with various assigned parameter values are shown in Fig. 2.

2.5. Modified Beta Weibull Frechet (MBWF) distribution

The pdf and cdf of Frechet distribution are given as

G(x; β, λ) = e−(βx+λ)

g(x; β, λ) = λβx−(λ+1)e−(βx+λ)

Now, the pdf of the MBWF fMBWF distribution is given as

fMBWF =
θζ[1 − e

−α

(
(e−(βx+λ) )

(1−e−(βx+λ) )

)ρ

]ζ−1[e
−α

(
(e−(βx+λ) )

(1−e−(βx+λ) )

)ρ

]φ−1αρλβx−(λ+1)e−(βx+λ) (e−(βx+λ))ρ−1

(1−e−(βx+λ))ρ+1 e
−α

(
(e−(βx+λ) )

1−e−(βx+λ)

)ρ

B(ζ, φ)[1 − (1 − θ)(1 − e
−α

(
(e−(βx+λ) )

(1−e−(βx+λ) )

)ρ

)](ζ+φ)

with the hazard function hMBWF

hMBWF =
θζ[1 − e

−α

(
e−(βx+λ)

1−e−(βx+λ)

)ρ

]ζ−1[e
−α

(
e−(βx+λ)

1−e−(βx+λ) )

)ρ

]φ−1αρλβx−(λ+1)e−(βx+λ) (e−(βx+λ))ρ−1

(1−e−(βx+λ))ρ+1 e
−α

(
e−(βx+λ)

1−e−(βx+λ)

)ρ

(B(ζ, φ) − B(v; ζ, φ))[1 − (1 − θ)(1 − e
−α

(
e−(βx+λ)

1−e−(βx+λ)

)ρ

)](ζ+φ)

respectively where x > 0, θ, ζ, α, ρ, φ, β, λ > 0
The MBWF distribution includes the Weibull Frechet(WF) when θ=ζ=φ=1. For θ=α=ρ=1, the MBWF becomes

Beta Frechet(BF) distribution. For θ=ζ=1. Plots of the density function and the hazard function of the MBWF
with various assigned parameter values are shown in Fig. 3.

3. Linear representation

In this section, a useful mixture representation for the density function of the MBWG distribution is derived.
The derived representation is crucial for the derivation of statistical properties of the MBWG distribution such
as moments, generating functions, order statistic properties.
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Fig. 2. Plots of the Modified Beta Weibull Weibull distribution.

Using the Binomial Expression given as

(1 − z)b−1 =
∞∑

p=0

(−1)p
(

b

p

)
zp (11)

where |z| < 1 and b>0, Therefore,

[1 − (1 − θ)(1 − e
−α
(

G(x;σ)
S(x;σ)

)ρ

)]−(ζ+φ) =
∞∑

w=0

(−1)w
(−ζ − ρ

w

)
(1 − θ)w(1 − e

−α
(

G(x;σ)
S(x;σ)

)ρ

)w (12)

and

(1 − (1 − e
−α
(

G(x;σ)
S(x;σ)

)ρ

))φ−1 =
∞∑
s=0

(−1)s
(

ζ − 1

s

)
(1 − e

−α
(

G(x;σ)
S(x;σ)

)ρ

)s (13)

Inserting the expressions in Equations 12 and 13 in the p.d.f of the MBWG family as in Equation 5, we obtain

f (x; σ) = θζαρ

∞∑
s=0

∞∑
w=0

(−1)w+s

(
φ − 1

s

)(−ζ − φ

w

)
(1 − θ)w(1 − e

−α
(

G(x;σ)
S(x;σ)

)ρ

)w+s+φ−1
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Fig. 3. Plot of pdf of the Modified Beta Weibull Frechet distribution.

g(x; σ)
G(x; σ)ρ−1

S(x; σ)ρ+1 e
−α
(

G(x;σ)
S(x;σ)

)ρ

(14)

Writing expression in Equation 14 in terms of Exponentiated Weibull-G, we have the p.d.f as

f (x; σ) =
∞∑
s=0

∞∑
w=0

rij�w+s+φ (15)

where

rij = (−1)w+s
(
φ−1

s

)(−ζ−φ
w

)
(1 − θ)wθζαρ

w + s + φ

and

�w+s+φ = (w + s + φ)g(x; σ)
G(x; σ)ρ−1

S(x; σ)ρ+1 e
−α
(

G(x;σ)
S(x;σ)

)ρ

(1 − e
−α
(

G(x;σ)
S(x;σ)

)ρ

)w+s+φ−1
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�w+s+φ is the p.d.f of the Exponentiated Weibull-G family of distributions with power parameters(w+s+φ).
Further simplifying equation 14,

(1 − e
−α
(

G(x;σ)
S(x;σ)

)ρ

)w+s+φ−1 =
∞∑
l=0

(−1)l
(

w + s + φ − 1

l

)
(e−α

(
G(x;σ)
S(x;σ)

)ρ

)l (16)

Inserting Equation 16 in Equation 14 we have

f (x; σ) = θζαρg(x; σ)

∞∑
s=0

∞∑
w=0

∞∑
l=0

(−1)w+s+l(1 − θ)w
(

φ − 1

s

)(
−ζ − φ

w

)(
w + s + φ − 1

l

)
(e

−α

(
G(x;σ)
S(x;σ)

)ρ

)w+s+l+φ−1 (17)

Re-writing

(e−α
(

G(x;σ)
S(x;σ)

)ρ

)w+s+l+φ−1 =
∞∑

d=0

(−1)d
[α(w + s + l + φ − 1)]d

d!

(
G(x; σ)

S(x; σ)

)ρd

(18)

Therefore,inserting Equation 18 in 17 we have the expression for the p.d.f of the MBWG distribution as

f (x; σ) = θζαρg(x; σ)
∞∑
s=0

∞∑
w=0

∞∑
l=0

∞∑
d=0

(−1)w+s+l+d(1 − θ)w
(

φ − 1

s

)(−ζ − φ

w

)(
w + s + φ − 1

l

)

[α(w + s + l + ζ − 1)]d

d!

G(x; σ)w+s+φ+d−1

S(x; σ)w+s+φ+d+1 (19)

Note that

S(x; σ)w+s+φ+d+1 = (1 − G(x; σ))w+s+φ+d+1 (20)

Using the binomial expression in 20, we have the expression as

(1 − G(x; σ))w+s+φ+d+1 =
∞∑

k=0

(−1)k
(

w + s + φ + d

k

)
G(x; σ)k (21)

Inserting Equation 21 in 19, we have

f (x; σ) =
∞∑
s=0

∞∑
w=0

∞∑
l=0

∞∑
d=0

∞∑
k=0

θζαρg(x; σ)(−1)w+s+l+d+k(1 − θ)w
(

φ − 1

s

)(−ζ − φ

w

)(
w + s + φ − 1

l

)

(
w + s + φ + d

k

)
[α(w + s + l + ζ − 1)]d

d!
G(x; σ)w+s+φ+d+k−1 (22)

Expressing Equation 22 in terms of Exp-G distribution, we have the p.d.f as

f (x; σ) =
∞∑
s=0

∞∑
w=0

∞∑
l=0

∞∑
d=0

∞∑
k=0

rw,s,l,d�w+s+φ+d+k (23)

where

rw,s,l,d = θζαρ(−1)w+s+l+d+k(1 − θ)w
(

φ − 1

s

)(−ζ − φ

w

)(
w + s + φ − 1

l

)(
w + s + φ + d

k

)

[α(w + s + l + ζ − 1)]d

d!w + s + φ + d + k
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and

�w+s+φ+d+k = (w + s + φ + d + k)g(x; σ)G(x; σ)w+s+φ+d+k−1

�w+s+φ+d+k is the p.d.f of the Exponentiated-G family of distributions. Expressions obtained in this section
find its use when studying properties of the distribution such as moments, order statistics e.t.c.
Furthermore, integrating expression in 23, we have the linear mixture c.d.f of the MBWG family in terms of the
Exp-G distribution as

F (x; σ) =
∞∑
s=0

∞∑
w=0

∞∑
l=0

∞∑
d=0

∞∑
k=0

rw,s,l,dQw+s+φ+d+k (24)

where Qw+s+φ+d+k is the c.d.f of the Exponentiated-G family of distribution

4. Statistical properties

In this section, the statistical properties of the MBWG distribution are extensively studied. The properties
considered are moments, monet generating function, quantile function, and order statistics

4.1. Quantile function

The quantile function of the MBWG distribution is obtained by solving

I
θ(1−e

−α

(
G(x;σ)
S(x;σ)

)ρ

)

1−(1−θ)(1−e
−α

(
G(x;σ)
S(x;σ)

)ρ

)

(ζ, φ) = u (25)

where u is uniform variate on the interval [0,1]. Therefore,

θ(1 − e
−α
(

G(x;σ)
S(x;σ)

)ρ

)

1 − (1 − θ)(1 − e
−α
(

G(x;σ)
S(x;σ)

)ρ

)
= �

θ(1 − e
−α
(

G(x;σ)
S(x;σ)

)ρ

) = �(1 − (1 − θ)(1 − e
−α
(

G(x;σ)
S(x;σ)

)ρ

))

θ(1 − e
−α
(

G(x;σ)
S(x;σ)

)ρ

) + �(1 − θ)(1 − e
−α
(

G(x;σ)
S(x;σ)

)ρ

) = �

1 − e
−α
(

G(x;σ)
S(x;σ)

)ρ

(θ + �(1 − θ)) = �

1 − e
−α
(

G(x;σ)
S(x;σ)

)ρ

= �

θ + �(1 − θ)

e
−α
(

G(x;σ)
S(x;σ)

)ρ

= 1 − �

θ + �(1 − θ)

G(x; σ)

S(x; σ)
= G(x; σ)

1 − G(x; σ)
= (− 1

α
log(1 − �

θ + �(1 − θ)
))

1
ρ

G(x; σ) =
(− 1

α
log(1 − �

θ+�(1−θ) ))
1
ρ

1 + ((− 1
α
log(1 − �

θ+�(1−θ) ))
1
ρ )
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where

� = I−1
u (ζ, φ)

� is the inverse of the incomplete beta function ratio.

4.2. Moments

The rth moment μ′
r of a distribution is given as

E[Xr] =
∫ ∞

0
xrf (x; σ) (26)

Alternatively, using the mixture expression as in equation 23, the rth moment of the distribution is

E[Xr] =
∞∑
s=0

∞∑
w=0

∞∑
l=0

∞∑
d=0

∞∑
k=0

rw,s,l,dE[�r
w+s+φ+d+k]

where �w+s+φ+d+k is the Exp-G with power parameters w+s+φ+d+k.
For the nth central moment of X (Mn), the expression is obtained as

Mn = E[(X − μ′)r] =
n∑

r=0

(
n

r

)
(−1)n−r(μ′)n−rE[Xr] (27)

Inserting the mixture expression of 23 in 27, the expression for the rth moment becomes

Mn =
n∑

r=0

∞∑
s=0

∞∑
w=0

∞∑
l=0

∞∑
d=0

∞∑
k=0

(
n

r

)
(−1)n−r(μ′)n−rrw,s,l,dE[�r

w+s+φ+d+k] (28)

The cumulants, ηn, of Xn follow recursively from

ηn = μ′
n −

n−1∑
r=0

(
n − 1

r − 1

)
ηrμ

′
n−r (29)

where η1= μ′
1, η2=μ′

2 − (μ′
1)2, η3=μ′

3-3μ′
2μ

′
1+(μ′

1)3. From these expressions, the skewness and kurtosis prop-
erties of the family of distribution can be measured from the ordinary moments.

4.3. Moment generating function

The moment generating function (Mf (t))= E[etX] of X.In this section, two formula in computing the moment
generating function(m.g.f) of the family is discussed.
Firstly, we derived the m.g.f form equation 23 as

Mf (t) =
∞∑
s=0

∞∑
w=0

∞∑
l=0

∞∑
d=0

∞∑
k=0

rw,s,l,dMw+s+φ+d+k

where Mw+s+φ+d+k is the m.g.f of the Exp-G with power parameter w+s+φ+d+k.
Secondly, the m.g.f was also derived from the baseline of the quantile function as

Mf (t) =
∞∑
s=0

∞∑
w=0

∞∑
l=0

∞∑
d=0

∞∑
k=0

(w + s + φ + d + k)rw,s,l,dDw+s+φ+d+k

where Dw+s+φ+d+k=
∫ 1

0 etqf (u)uw+s+φ+d+k−1∂u and qf (u) is the quantile function corresponding to f(x;σ).
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4.4. Order statistics

Let X1, ..., Xn be a random sample from the MBWG distribution, The pdf of ith order statistic, say Xi:n, can
be written as

fi:n(xi; β) = 1

B(i, n − i + 1)
f (xi; β)

n−1∑
v=0

(−1)v
(

n − 1

v

)
F (xi; β)v+i−1 (30)

Therefore inserting the p.d.f as in equation 23 and c.d.f as in equation 24 in 30, we have the order statistics of
MBWG as

fi:n(xi; β) = 1

B(i, n − i + 1)

∞∑
l=0

∞∑
d=0

∞∑
k=0

rw,s,l,d�w+s+φ+d+k

n−1∑
v=0

(−1)v
(

n − 1

v

)

( ∞∑
l=0

∞∑
d=0

∞∑
k=0

rw,s,l,dQw+s+φ+d+k

)v+i−1

(31)

Using an equation given in page 17 of Gradshteyn and Ryzhik ([27]) for a power series raised to a positive integer
n, then equation 31 becomes

fi:n(xi; β) = 1

B(i, n − i + 1)

n−i∑
v=0

(−1)v
(

n − i

v

) ∞∑
a=0

Tr,v+i−1�r

where r= w+s+φ+d+k and �r is the pdf of the Exp-G with power parameter r

5. Parameter estimation

In this section, we derived the expressions for the estimates of the parameters of the MBWG distribution. We
employed the use of the maximum likelihood estimation (M.L.E) method. Let δ=(ζ,φ,θ,α,ρ,σ) be the parameter
vector and x = (x1, ....., xn) be the sample from the MBWG distribution, then the log-likelihood function for δ

can be written as

l(δ) = nζ ln θ − n ln B(ζ, φ) + (ζ − 1)
n∑

i=1

ln(1 − e
−α
(

G(x;σ)
S(x;σ)

)ρ

) − α(ρ − 1)
n∑

i=1

(
G(x; σ)

S(x; σ)

)ρ

−(ζ + ρ)
n∑

i=1

ln(1 − (1 − θ)(1 − e
−α
(

G(x;σ)
S(x;σ)

)ρ

)ρ) + n ln α + n ln ρ + n ln g(x; σ) + (ρ − 1)
n∑

i=1

ln G(x; σ)

−(ρ + 1)
n∑

i=1

ln S(x; σ) − α

n∑
i=1

(
G(x; σ)

S(x; σ)

)ρ

(32)

The elements of the score vector, that is, the partial derivatives of l(δ) with respect to the parameters are

∂l(δ)

∂ζ
= n ln θ − n

B′(ζ, φ)

B(ζ, φ)
+

n∑
i=1

ln(1 − e
−α
(

G(x;σ)
S(x;σ)

)ρ

) −
n∑

i=1

ln(1 − (1 − θ)(1 − e
−α
(

G(x;σ)
S(x;σ)

)ρ

) (33)

∂l(δ)

∂φ
= −n

B′(ζ, φ)

B(ζ, φ)
− α

n∑
i=1

(
G(x; σ)

S(x; σ)

)ρ

−
n∑

i=1

ln(1 − (1 − θ)(1 − e
−α
(

G(x;σ)
S(x;σ)

)ρ

) (34)
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∂l(δ)

∂θ
= nζ

θ
− (ζ + φ)

n∑
i=1

1 − e
−α
(

G(x;σ)
S(x;σ)

)ρ

1 − (1 − θ)(1 − e
−α
(

G(x;σ)
S(x;σ)

)ρ

)
(35)

∂l(δ)

∂α
= (ζ − 1)

n∑
i=1

e
−α

(
G(x;σ)
S(x;σ)

)ρ (
G(x;σ)
S(x;σ)

)ρ

1 − e
−α

(
G(x;σ)
S(x;σ)

)ρ − (φ − 1)

n∑
i=1

(
G(x; σ)

S(x; σ)

)ρ

+ (ζ + β)

n∑
i=1

(1 − θ)
(

G(x;σ)
S(x;σ)

)ρ
e
−α

(
G(x;σ)
S(x;σ)

)ρ

1 − (1 − θ)(1 − e
−α

(
G(x;σ)
S(x;σ)

)ρ

)

+n

α
−

n∑
i=1

(
G(x; σ)

S(x; σ)

)ρ

(36)

∂l(δ)

∂ρ
= (ζ − 1)

n∑
i=1

α
(

G(x;σ)
S(x;σ)

)ρ
ln
(

G(x;σ)
S(x;σ)

)
e
−α

(
G(x;σ)
S(x;σ)

)ρ

1 − e
−α

(
G(x;σ)
S(x;σ)

)ρ − (φ − 1)

n∑
i=1

α
(

G(x;σ)
S(x;σ)

)ρ
ln
(

G(x;σ)
S(x;σ)

)
e
−α

(
G(x;σ)
S(x;σ)

)ρ + n

ρ
+ ln

n∑
i=1

G(x; σ)

−(ζ + φ)
n∑

i=1

α(1 − θ
(

G(x;σ)
S(x;σ)

)ρ

ln
(

G(x;σ)
S(x;σ)

)
)e−α

(
G(x;σ)
S(x;σ)

)ρ

1 − (1 − θ)(1 − e
−α
(

G(x;σ)
S(x;σ)

)ρ

)
−

n∑
i=1

S(x; σ) − α

n∑
i=1

(
G(x; σ)

S(x; σ)

)ρ

ln

(
G(x; σ)

S(x; σ)

)
(37)

∂l(δ)

∂σ
= (ζ − 1)

n∑
i=1

αρ

(
G(x; σ)

S(x; σ)

)ρ−1
G′(x; σ)

S2(x; σ)
− (φ − 1)

n∑
i=1

αρ

(
G(x; σ)

S(x; σ)

)ρ−1
G′(x; σ)

S2(x; σ)
+

n∑
i=1

g′(x; σ)

g(x; σ)

+(ρ − 1)
n∑

i=1

G′(x; σ)

G(x; σ)
+ (ρ + 1)

n∑
i=1

G′(x; σ)

S(x; σ)
+ (ζ + φ)

n∑
i=1

(1 − θ)(1 − e
−α
(

G(x;σ)
S(x;σ)

)ρ

)αρ
(

G(x;σ)
S(x;σ)

)ρ−1
G′(x;σ)
S2(x;σ)

1 − (1 − θ)(1 − e
−α
(

G(x;σ)
S(x;σ)

)ρ

)

−ρα

n∑
i=1

(
G(x; σ)

S(x; σ)

)ρ−1
G′(x; σ)

S2(x; σ)
(38)

Setting the set of equations in 33–38, to be equals to zero and solving them simultaneously yields the MLE
δ̂= (ζ̂, φ̂,θ̂,α̂,ρ̂,σ̂) of δ=(ζ,φ,θ,α,ρ,σ). Solving these equations cannot be done analytically. This can be achieved
by the aid of statistical software using iterative methods such as Newton-Raphson type algorithms to solve
numerically.
For interval estimation of the model parameters, we require the observed information matrix for interval estimation
and test of hypothesis on the parameters (ζ, φ, θ, α, ρ, θ), we obtain a 6x6 unit information matrix

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Jζ,ζ Jζ,φ Jζ,θ Jζ,α Jζ,ρ Jζ,σ

Jζ,φ Jφ,φ Jφ,θ Jφ,α Jφ,ρ Jφ,σ

Jζ,θ Jφ,θ Jθ,θ Jθ,α Jθ,ρ Jθ,σ

Jζ,α Jα,φ Jα,θ Jα,α Jα,ρ Jα,σ

Jζ,ρ Jρ,φ Jρ,θ Jρ,α Jρ,ρ Jρ,σ

Jζ,σ Jσ,φ Jσ,θ Jσ,α Jσ,ρ Jσ,σ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The corresponding elements are derived by the second derivatives of l with respect to the parameters.
Under the conditions that are fulfilled for parameters, the asymptotic distribution of

√
n(δ̂ − δ) is N6(0, J(δ̂)−1)

distribution of δ can be used to construct approximate confidence intervals and confidence regions for the
parameters and for the hazard and survival functions. The asymptotic normality is also useful for testing the
goodness of fit of the beta type I generalized half logistic distribution and for comparing this distribution with
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some of its special sub-models using one of these
two well-known asymptotically equivalent test statis-
tics namely, the likelihood ratio statistic and Wald
statistic. An asymptotic confidence interval with sig-
nificance level τ, for each parameter δi is given by

ACI(δi, 100(1 − τ)) = δ̂ − z τ
2

√
Jδ̂,δ̂, δ + z δ

2

√
Jδ̂,δ̂

(39)
where Jδ̂,δ̂ is the ith diagonal element of Kn(δ̂)−1

for i = 1, 2, 3, 4, 5, 6 and zτ/2 is the quantile of the
standard normal distribution.

6. Application to real life data sets

In this section, application of the MBWG distribu-
tion was done on two real datasets using the Weibull
distribution as the baseline model to illustrate the
importance and fit of the MBWG distribution. The
maximum likelihood estimates (M.L.E) of the dis-
tribution and that of the competitive distributions
will be obtained. We assessed the goodness of fit of
the distributions using the log-likelihood, Akaike’s
information criterion (AIC), Bayesian information
criterion (BIC), and corrected Akaike’s informa-
tion criterion (CAIC). The R statistical software is
employed for data analysis. Estimation of model
parameter estimates was done using the optim() func-
tion in stats packages in R version 4.1.1 [32]. The fit of
the MBWW distribution is compared with other com-
petitive distributions which are Weibull exponential
(WEx) ([30]), Kumaraswamy Weibull (KW) [31]),
Beta Weibull (BW) ([28]) and Exponentiated Weibull
Weibull (ExWW) ([29]) distributions. The p.d.fs of
these distributions are as follows:

� Weibull exponential (WEx) distribution.

f (x) = αλβ(1 − e(−βx))λ−1eλβx−α(eβx−1)λ

� Kumaraswamy Weibull (KW) distribution

f (x) = ατλβλxλ−1e−(βx)λ

(1 − e−(βx)λ )τ−1(1 − (1 − e−(βx)λ )τ)α−1

� Beta Weibull (BW) distribution

f (x) = �(α + β)

�(α)�(β)

θ

λ

(
x

λ

)θ−1
[

1 − e
−
(

x
λ

)θ
]α−1

e
−β

(
x
λ

)θ

� Exponentiated Weibull Weibull (ExWW) dis-
tribution

f (x) = αθλβ(eβx − 1)λ−1e[−(α(eβx−1)λ)−βx]

[1 − e−α(eβx−1)λ ]θ−1

Data set 1: The first data set represents the break-
ing strength of 100 yarn as reported by Gomes-Silva
et al (2017). The data-set consists of 63 measurements
of the strengths of 1.5 cm glass fibres, which were ini-
tially collected by United Kingdom National Physical
Laboratory staff. The data is presented below:
0.55, 0.74, 0.77, 0.81, 0.84, 1.24, 0.93, 1.04,
1.11, 1.13, 1.30, 1.25, 1.27, 1.28,1.29, 1.48, 1.36,
1.39, 1.42, 1.48, 1.51, 1.49, 1.49, 1.50, 1.50,1.55,
1.52, 1.53, 1.54, 1.55, 1.61, 1.58,1.59, 1.60, 1.61,
1.63,1.61, 1.61, 1.62, 1.62, 1.67, 1.64, 1.66, 1.66,
1.66, 1.70, 1.68,1.68, 1.69, 1.70, 1.78, 1.73, 1.76,
1.76, 1.77, 1.89, 1.81, 1.82,1.84, 1.84, 2.00, 2.01,
2.24.
Data set 2:
The second data set represents the breaking stress
of carbon fibers of 50 mm length (GPa) which was
reported by Nicholas and Padgett (2006). This data
was used by Yousof et al. (2017). The data set is:
0.39, 0.85, 1.08, 1.25, 1.47, 1.57, 1.61, 1.61, 1.69,
1.80, 1.84, 1.87, 1.89, 2.03, 2.03, 2.05, 2.12, 2.35,
2.41, 2.43, 2.48, 2.50, 2.53, 2.55, 2.55, 2.56, 2.59,
2.67, 2.73, 2.74, 2.79, 2.81, 2.82, 2.85, 2.87, 2.88,
2.93, 2.95, 2.96, 2.97, 3.09, 3.11, 3.11, 3.15, 3.15,
3.19, 3.22, 3.22, 3.27, 3.28, 3.31, 3.31, 3.33, 3.39,
3.39, 3.56, 3.60, 3.65, 3.68, 3.70, 3.75, 4.20, 4.38,
4.42, 4.70, 4.90.

After analysis of the two datasets, Fig. 6 describes
the shape of the hazard plots of the data. It shows
that the hazard curve os non-decreasing for the two
datasets. Furthermore Fig. 4 is the histogram which
further reveals the fit of the model to both datasets.
Figure 5 shows how close the fitted pdf is to the empir-
ical distribution which further established the fact that
the model fits the data well. In Tables 1 and 2, we
have observed that the modified beta weibull weibull
distribution gives the best fit when compared to its
submodels, therefore making it the preferred model
to consider for this data on the basis of the selection
criterion considered.
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Fig. 4. Estimated pdf plots for Data I and Data II.

Fig. 5. Estimated cdf plot for the MBWW

Fig. 6. TTT plot of MBWW
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Table 1
The MLEs and Information Criteria of the models based on data set 1

Model α̂ β̂ λ̂ θ̂ ρ̂ ζ̂ φ̂ -LL AIC BIC CAIC

MBWW 1.5549 0.5758 0.7992 0.1928 2.2280 1.4243 1.5953 11.1390 36.2780 51.2799 38.9446
WEx 5.3583 1.4233 0.8726 - - - - 15.5250 37.0500 43.4794 37.45684
KW 0.5040 0.1729 6.5245 1.2858 - - - 15.0980 38.1959 46.7685 38.8856
BW 0.6243 6.4974 7.1824 2.3007 - - - 14.6656 37.3311 45.9036 38.3837
EKW 1.8536 5.5418 0.4837 5.0944 2.0662 - - 14.8422 39.6844 50.4001 40.7371

Table 2
The MLEs and Information Criteria of the models based on data set 2

Model α̂ β̂ λ̂ θ̂ ρ̂ ζ̂ φ̂ -LL AIC BIC CAIC

MBWW 0.6931 0.0250 1.4581 1.2725 0.7170 0.0823 1.5192 67.2027 148.4056 153.345 149.708
WEx 3.2187 1.4841 0.4835 - - - - 86.3347 178.6695 185.2385 179.0566
KW 0.5380 0.1338 3.6983 1.8507 - - - 86.3365 180.6732 189.4318 181.3289
BW 0.7280 4.5270 3.9104 4.9847 - - - 86.1975 180.3951 189.1537 181.0508
EKW 0.0673 0.1641 2.9947 2.8437 1.4215 - - 85.0870 180.1732 191.1214 181.1732

7. Conclusion

In applications to real life situations, there has
always been a clear need for extended forms of exist-
ing distributions which are more flexible and gives
better fit to model real data which has high degree of
kurtosis and skewness. In this work, we proposed a
new family of distribution called the Modified Beta
Weibull Family which generalizes the beta weibull G
family by the addition of a shape parameter. Some
well known family of distributions are special cases
of the Modified Beta Weibull Family. Some mathe-
matical properties of the new class including linear
expression of the distribution, ,moments,quantile,
moment generating functions and order statistics are
provided. The model parameters are estimated by
the maximum likelihood estimation method and the
observed information matrix is determined. We prove
empirically by means of an application to a real data
set that special cases of the proposed family can give
better fits than other models generated from well-
known families.
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