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Abstract In this paper, a variable impedance control method is proposed for uncertain robotic
systems based on a nonlinear force contact-based flexible environmental model. First, a nonlinear
force contact model between the rigid manipulator and flexible environment is established to
approximate more realistic interaction responses and to avoid excessive overshoot of the force
that usually exists in the traditional spring-damping environmental model. Then, according to the
force contact-based environmental model, a fuzzy-based adaptive variable impedance controller
is designed to achieve position and force tracking of the manipulator, where the impedance
parameters are adjusted online through the force and position feedback of the robotic system,
and the fuzzy logic system (FLS) is used to compensate the uncertainties. The stability of
adaptive variable impedance control is proved by Routh stability criterion and the boundness of
all signals in the robotic system is proved by Lyapunov stability analysis. Finally, the effectiveness
of the proposed method is verified by the simulation of a two-link manipulator.

Keywords Variable impedance control · Flexible environment · Fuzzy logic system · Force
contact model · Robotic system

1 Introduction

Industrial robots have been widely applied to assembling, testing, polishing, welding, and other
operations, which require direct interaction between the manipulator and the environment. The
control of the interaction force of the manipulator is crucial in the process of performing tasks
[1–3]. The application scenarios of robots are not limited to rigid environments, such as picking
robots, cleaning robots, folding robots, and so on. Although the existing methods of manipulator
force control research have been fruitful, including the interaction with rigid environment, the
interaction force control between robot and flexible environment is still a challenging research
direction due to the rapid development of the industrial level and the increasing demand for
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intelligence. So the compliance of the manipulator is strongly required to ensure the safety and
stability of the robotic system in the process of performing tasks [4–6].

However, in most investigations, the contact environments of the robot are mainly rigid. In
practical production and life, the majority of physical objects contacted with the manipulator are
non-rigid [7]. It is worth noting that there are many modeling methods involving contact force
with a flexible environment, where the contact force is usually modeled as a linear structure, such
as a spring model or spring-damping mechanical system. Since many materials have nonlinear
stiffness, the traditional linear structure has the limitations of only describing the linear contact
force of objects and insufficient physical accuracy. Nonrigid environment usually has nonlinear
characteristics, and the nonlinear model of the contact surface must be considered et.al. [8]. Luo
et.al. [9] derived the nonlinear force model of a deformed object based on the Duffing equation,
and proposed a unique method to simulate the force and deformation between rigid and elastic
objects in complex contact. Omar et.al. [10] used a tapered spring method to simulate any
linear and nonlinear behavior of soft tissue. Felix-Rendon et.al. [10] realized a non-rigid body
deformation control scheme using finite element methods to simulate deformation dynamics.
Selecting a sufficiently simple and powerful flexible environment model is the premise to solve
the problem of compliant control in flexible environment.

At present, there are two mainstream compliance control methods: impedance control [11]
and hybrid position/force control [12]. The impedance control takes motion and force into con-
sideration, which selects different impedance parameters to adjust the relationship between the
contact force and position [13] and has been widely used in contact force tracking [14–17]. Albu-
Schaffer et.al. [18] improved the compliance of impedance controller in Cartesian space by local
stiffness control. By adding integral terms to the traditional impedance model, Chen et.al. [19]
eliminated tracking errors and improved the performance of the impedance controller. However,
due to the friction, external disturbances, unknown joint velocities, and other uncertainties, the
traditional impedance control is difficult to meet the requirements of control precision in the
actual operation [20]. Since fuzzy logic and neural networks can deal with nonlinear and uncer-
tain systems, and at the same time adapt to the human decision-making process and can learn,
the method of combining them with traditional impedance control methods has been widely
studied. To improve control precision of the uncertain manipulators, many researchers combine
intelligent control with traditional impedance control [21–25]. He et.al. [26] designed a neural
network-based adaptive impedance controller, which not only considered the system uncertainty
in tracking control but also solved the input saturation. Subsequently, He et.al. [27] proposed an
adaptive fuzzy neural network learning algorithm and adopted an impedance learning strategy
to improve the interaction between the manipulator and the environment. In addition, Sun et.al.
[28] proposed a composite learning impedance controller for robots with parameter uncertainties.

To realize contact force tracking of manipulators in flexible environment, the above compliance
control method is also applied in flexible environment. Baptista et.al. [29] studied the application
of a neural network impedance control scheme combining trajectory prediction algorithm with
force error compensation. To enhance the robustness of the manipulator when interacting in a
flexible environment, Jafari et.al. [30] and Wu et.al. [31] introduced an adaptive hybrid control
method. The above methods have achieved good performance for flexible environment models.
However, when the environments are uncertain or complicated, a controller with strong adaptive
performance is required to meet the control accuracy of force.

Considering the poor adaptability of constant impedance control to the uncertainty of envi-
ronmental stiffness, many researchers have studied variable impedance control [32–36]. Jung et.al.
[32] proposed a new variable impedance control strategy, which minimized force error through the
adaptive method. Variable impedance control can make up for the poor adaptability of constant
impedance control, but the standard stability analysis is not appropriate for variable impedance
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control. It is crucial to ensure the stable execution of variable impedance task. To prove the
stability of the system, Kronander et.al. [37] proposed a state-independent stability constraint
that related stiffness and its time derivative to damping. Duan et.al. [38] first proposed a control
method based on tracking error to adjust impedance parameters online, and this method can
compensate for environmental uncertainty. Roveda et.al. [39] proposed a sensorless model-based
force control method, which improved the performance of force tracking by adjusting stiffness and
damping parameters. Since the adaptive variable impedance control has strong adaptability to
the unknown environment compared with the traditional control method, which has significance
to study the force control of the robot in flexible environment.

In this paper, an adaptive variable impedance controller is applied to contact force control of
the manipulator based on a nonlinear force contact model. The main contributions are as follows:

(1) Compared with the traditional spring-damping model, the nonlinear force contact model
between rigid and elastic body is derived from Duffing equation, which can reflect the nonlinear
characteristics of flexible objects and greatly reduce the overshoot of contact force in the initial
contact stage. Based on the nonlinear force contact environmental model, the position-based
adaptive variable impedance trajectory generator (PBAV ITG) is designed to obtain the ref-
erence trajectory. The stability of PBAV ITG is proved by Routh stability criterion, and the
steady-state error of force tracking is also proved to be zero.

(2) Considering disturbance and uncertainty that exist in the practical robotic system and
based on the environmental model, fuzzy-based adaptive variable impedance control (FBAV IC)
is proposed to track the trajectory and interaction force, in which the impedance parameters are
adjusted online by force feedback error, and FLS is used to compensate for the uncertainties.
The boundedness of the signals are proved by Lyapunov theorem to ensure the stability of the
controller.

2 Problem statement and Preliminaries

In this paper, ℜ is defined as the real number set, ℜn is defined as the n-dimensional real vector
space, and ℜn×n is defined as the n× n real matrix space. In×n is the n× n identity matrix.

2.1 Description of FLS

FLS can approximate any real continuous function over a compact set to arbitrary accuracy.
According to the fuzzy control rules, the fuzzy inference engine performs fuzzy reasoning on the
fuzzy input x = (x1, x2, ..., xm)T to solve the fuzzy relational equation and get the fuzzy output
y ∈ ℜ. The jth fuzzy rule is written as,
Rj : If x1 is Al1

1 and ...xm is Alm
m , Then y is Bj

where li = 1, 2, ..., qi(i = 1, 2, ...,m), qi is the number of fuzzy set of the ith input xi, A
li
i and

Bj(j =
∏m

i=1 li) are the fuzzy sets of input and output. The center of the fuzzy sets Bj(j =
1, 2...p) is defined as yj . By using product inference machine, single value fuzzier and center
average fuzzier, the output of FLS is :

y(x) =

∑p
j=1 ȳ

j
(

∏m
i=1 µA

li
i

(xi)
)

∑qi
li=1

(

∏m
i=1 µA

li
i

(xi)
) (1)

where µ
A

li
i

(xi) is the membership function of xi.
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The fuzzy system basis function vector ξ(x) = (ξ1(x), ξ2(x), ..., ξp(x))
T can be introduced,

Eq (1) can be rewritten as,

y(x) = Θ̂Tξ(x) (2)

where Θ̂ = [y1, y2, ..., yp]T is the parameter vector, and ξj(x) =

∏m
i=1

µ
A

li
i

(xi)

∑qi
li=1

(

∏

m
i=1

µ
A

li
i

(xi)

) .

In this paper, we use FLS to approximate the uncertain nonlinear function, yeild.

Ψ(x) = Θ∗Tξ(x) + ε(x) (3)

where Θ∗ is ideal adptive adjustment parameter and ε(x) is the minimum reconstruction error.
Assuming exist a compact set Ω∗

Θ = {Θ∗ ∈ ℜp :‖ Θ∗ ‖≤ EΘ} in which ideal parameters exist.
The ideal parameter is expressed as,

Θ∗ = arg min
Θ∗∈Ω∗

Θ

{

sup
∣

∣

∣
Ψ(x)− Θ̂Tξ(x)

∣

∣

∣

}

(4)

2.2 Modeling of flexible environment

In this subsection, flexible objects made of isotropic elastic materials are studied. Duffing equation
is one of the standard models for nonlinear systems under external forces, which essentially defines
a nonlinear spring damp-restorer model [9]. A single-point contact with normal compression is
showed in Fig. 1, where xe indicates the original point of contact, which means the position
before deformation, and x indicates the maximum deformation point. The normal contact force
between rigid manipulator and flexible environment is defined as follows,

Fe = m(ω2
0D +

3β2
0ǫ

4
D3) (5)

where m is the mass of the rigid manipulator. ω0 denotes the linear restoring force and β2
0ǫ is the

parameters of nonlinear restoring term. D = |x−xe| is the deformation displacement. This model
is sufficient to simulate complex behavior, and the contact forces of different flexible objects can
be simulated by using different relevant parameters. Moreover, since a nonlinear recovery term
is added to this model, which is used to represent the nonlinear recovery of the contact point
of the flexible object, the model may reduce overshoot and oscillation when the manipulator is
transforming from free space to contact space.

e
F

e
x

D

x

Fig. 1: Model of vertical contact force with flexible environment
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It should be noted that the nonlinear force contact model has been presented in [9], however,
no work has been reported to apply the model to the interaction compliance control for robots
with flexible environment. Since this model has a nonlinear characteristic and is closer to the
realistic interaction behavior in comparison to the traditional spring-damping model, the control
process may be unstable, the traditional control methods may thus not show a good tracking
performance. Therefore, it is necessary to design an improved compliance control method for the
nonlinear force contact model.

2.3 Dynamic modeling and properties of robotic manipulator

The dynamic equation of n-link rigid robot obtained from Lagrange equation is expressed as
follows,

M(q)q̈ + C(q, q̇)q̇ +G(q) + τd = τ − τe (6)

where q, q̇, and q̈ ∈ ℜn are the joint position, velocity and acceleration vectors of the manip-
ulator, respectively. M(q) and C(q, q̇) ∈ ℜn×n are the inertia matrix and the centrifugal and
Coriolis forces, respectively. G(q), τd, τ and τe ∈ ℜn denote the gravity vector, bounded un-
known disturbances, torque input vector and interaction torque vector between manipulator and
environment, respectively.

Considering the measurement error, environment, and payload factors, it is difficult to obtain
the accurate physical parameters of the manipulator and the parameter matrix M(q), C(q, q̇)
and G(q) in the dynamic model. Therefore, we express the actual value M(q), C(q, q̇) and G(q)
as the nominal parts M0(q), C0(q, q̇) and G0(q) and the uncertain parts ∆M(q), ∆C(q, q̇) and
∆G((q), where M(q) = M0(q) +∆M(q), C(q, q̇) = C0(q, q̇)+∆C(q, q̇), G(q) = G0(q) +∆G(q).
Then, the dynamic equation of the robot can be rewritten as follows,

M0(q)q̈ + C0(q, q̇)q̇ +G0(q) + Y (q, q̇, τ) + τd = τ − τe (7)

where Y (q, q̇, τ) = ∆M(q)q̈ +∆C(q, q̇)q̇ +∆G(q) = ∆M(q)[M−1(q)(τ − C(q, q̇)q̇ −G(q)− τd −
τe)] +∆C(q, q̇)q̇ +∆G(q).

The following properties and assumption are required for the subsequent development.

Property 1 The inertia matrix M(q) is positive definite, symmetric, and satisfies,

0 ≤ MmIn×n ≤ M0(q) ≤ MMIn×n, ∀q ∈ R
n (8)

where Mm and MM are positive constants.

Property 2 Matrix Ṁ(q)− 2C(q, q̇) is a skew symmetric matrix, i.e.

ζT(Ṁ0(q)− 2C0(q, q̇))ζ = 0, ∀ζ ∈ R
n (9)

Property 3 The norm C(q, q̇) is bounded and satisfies,

‖C0(q, q̇)‖ ≤ Cm‖q̇‖ (10)

where Cm is a positive constant.

Assumption 1 The disturbance term is bounded, i.e

‖τd‖ ≤ τD (11)

where τD is a positive constant.
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The position and velocity vectors of the robot end-effector in Cartesian coordinate system
are denoted by X ∈ ℜm and Ẋ, respectively, and the relationship between Cartesian and joint
coordinate system can be obtained as follows,

X = L(q), Ẋ = J(q)q̇ (12)

where L(q) is the kinematic function of robot. J(q) ∈ ℜm×n is the Jacobian matrix from joint
coordinate system to Cartesian coordinate system.

The dynamic equation Eq (6) is converted to the Cartesian coordinate system and expressed
as,

M0xẌ + C0xẊ +G0x + Yx + Fτd = F − Fe (13)

where X, Ẋ and Ẍ denote the position, velocity and acceleration vectors of the end-effector in
Cartesian space, respectively, and Ẍ = Jq̈ + Jq̇, M0x = J−TM0(q)J

−1, C0x = J−TC0(q, q̇)J
−1,

G0x = J−TG0(q), Yx = J−TY (q, q̇, τ), Fτd = J−Tτd, F = J−Tτ , Fe = J−Tτe, and J is the
shorthand of J(q).

The objective of this paper is to design a trajectory generator and an adaptive variable
impedance controller of end-effector in flexible environment, in which the trajectory generator
can obtain a smooth reference trajectory to avoid excessive force overshoot when the manipulator
transforms from free space to nonrigid contact space, and the controller can accurately track the
reference trajectory and desired force of the manipulator with uncertainty.

3 Fuzzy-based variable impedance controller and stability analysis

In this section, the motion space of the robot is divided into flexible contact space and free space,
and the contact force with the flexible environment is obtained by Duffing equation. According
to the force contact model, the proposed PBAV ITG is used to obtain the reference trajectory
by adjusting the impedance parameters adaptively, and the FBAV IC is designed to realize the
trajectory and desired force tracking of the end-effector. The FLS is used to approximate the
uncertainty.

3.1 Position-based adaptive variable impedance trajectory generator

PBAV ITG consists of an internal position control loop and an external force control loop,
which can transform force feedback into position trajectory correction error and modify the
reference trajectory input of the manipulator by adjusting impedance three parameters (inertia
Md, damping Bd and stiffness Kd) of the impedance controller. Then, the target impedance
equation of robotic system is given as follows,

MdË +BdĖ +KdE = ∆F (14)

where E = Xd −X is the error of position trajectory tracking, Xd, X respectively represent the
expected position trajectory and actual position trajectory. Ė and Ë represent velocity trajectory
and acceleration trajectory tracking error, respectively, and ∆F = Fe − Fd.

According to the contact force model Eq. (5) with the flexible object, it becomes,







fe = a1(x− xe) + a2(x− xe)
3

ḟe = a1ẋ+ 3a2(x− xe)
2ẋ

f̈e = a1ẍ+ 3a2(x− xe)
2ẍ+ 6a2(x− xe)ẋ

2

(15)
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where a1 = 102mω2
0 , a2 = 106m

3β2

0
ǫ

4 .
In free space, the end-effector does not exert force on the flexible environment, the constant

impedance controller is designed to track the desired position. In contact space, the variable
impedance controller is used to track the force of the manipulator in the force direction. For
convenience, this paper takes one-dimensional force in the vertical direction for example, the
impedance relation can be written as,
{

mdë+ bdė+ kde = 0 (in free space)
(md +∆md(t))ë(t) + (bd +∆bd(t))ė(t) + (kd +∆kd(t))e(t) = ∆f(t) (in contact space)

(16)

where e = xd − x, ∆f = fe − fd, ∆md(t), ∆md(t) and ∆kd(t) are time-varying to minimize the
force tracking error ∆f . The adaptation are defined as,



























∆md(t) =
∆f(t)
ë(t) + md

g(x,t)ë(t) [−6a2(x(t)− xe)ẋ
2(t) + 2ġ(x, t)ẋd(t) + g̈(x, t)xd(t)]

∆bd(t) = bd
ġ(x,t)xd(t)
g(x,t)ė(t)

∆kd(t) = kd[
x(t)

g(x,t)e(t) −
fd(t)

g(x,t)e(t) −
∆f(t)

g(x,t)e(t) +
Φ(t)

g(x,t)e(t) ]

Φ(t) = Φ(t− λ)− α∆f(t− λ)
g(x, t) = a1 + 3a2[x(t)− xe]

2

(17)

where λ represents the sampling time of the controller, α denotes a positive constant. The
reference trajectory is expressed as follows,










Ẍr(t) = Ẍd(t)−
1

Md(t)
[∆F (t)−Bd(t)(Ẋr(t− 1)− Ẋd(t))− kd(t)(Xr(t− 1)−Xd(t))]

Ẋr(t) = Ẋr(t− 1) + Ẍr(t)λ

Xr(t) = Xr(t− 1) + Ẋr(t)λ

(18)

where Xr represents the reference trajectory.
According to Eq. (15), substituting Eq. (17) into Eq. (16), yields,

∆f(t) = [md +∆md(t)]ë(t) + [bd +∆bd(t)]ė(t) + [kd +∆kd(t)]e(t)

= md[ẍd(t)−
f̈e(t)

g(x, t)
+

2ġ(x, t)ẋd(t) + g̈(x, t)xd(t)

g(x, t)
] +∆f(t) + bd[ẋd(t)−

ḟe(t)

g(x, t)

+
ġ(x, t)xd(t)

g(x, t)ė(t)
] + kd[xd(t)−

fd(t)

g(x, t)
] + kd

Φ(t− λ)

g(x, t)
− kdα

∆f(t− λ)

g(x, t)
− kd

∆f(t)

g(x, t)

(19)

Simplifying and multiplying both sides of Eq (19) by g(x,t), we obtain,

md[g(x, t)ẍd(t) + 2ġ(x, t)xd(t) + g̈(x, t)xd(t)− f̈d(t)]

+ bd[g(x, t)ẋd(t)− ḟd(t) + ġ(x, t)xd(t)] + kd[g(x, t)xd(t)− fd(t)]

= md∆f̈(t) + bd∆ḟ(t) + kd∆f(t) + kdα∆f(t− λ)− kdΦ(t− λ)

(20)

Defining c(t) = ∆f and r(t) = g(x, t)xd − fd, Eq. (20) can be rewritten as,

mdr̈ + bdṙ + kdr = mdc̈+ bdċ+ kdc− kdΦ(t− λ) + αkdc(t− λ) (21)

Basing on the principle of dispersion, n elements of Φ series can be expanded as,

kdΦ(t− λ) =kd(Φ(t− (n+ 1)λ)− αc(t− (n+ 1)λ)− · · · − αc(t− 2λ)) (22)

The initial value of Φ(t− (n+ 1)λ) is generally set to 0, Eq. (21) can be rewritten as,

mdr̈ + bdṙ + kdr = mdc̈+ bdċ+ kdc+ kd(αc(t− (n+ 1)λ) + · · ·+ αc(t− 2λ) + αc(t− λ)) (23)
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According to the Laplace transform, the transfer function is:

c(s)

r(s)
=

mds
2 + bds

T (s)
(24)

where T (s) = mds
2 + bds+ kd + kd(α(e

−(n+1)λs + · · ·+ e−λs).
The characteristic equation of the system is follows,

mds
2 + bds+ kd ++kdα(e

−(n+1)λs + · · ·+ e−λs) = 0 (25)

Assuming that n is a large enough number, we have
∑

∞

n=1 e
−λns = e−λs

1−e−λs .
Then, the characteristic equation can be expanded by Taylor series when the sampling rate

is sufficient,

λmds
3 + λbds

2 + λkd(1− α)s+ kdα = 0 (26)

The stability conditions of the system can be obtained according to Routh stability criterion
yield,

0 < α <
λbd

λbd +md
(27)

So when the input is a step function and can be denoted as r(s) = 1/s, the steady-state error
in the frequency domain is as follows,

ess = lim
s→0

sE(s) = lim
s→0

s(c(s)− r(s)) = −1 (28)

Considering the Eq. (28), the following conclusion can be obtained,

lim
s→0

sc(s) = 0, lim
t→0

c(t) = 0 (29)

Therefore, when t → ∞, we have ∆f → 0. The error between actual contact force and
expected contact force converges to zero.

Different from most adaptive variable impedance trajectory generators, this paper proposes
a PBAV ITG based on Eq. (5). The impedance parameters can be updated adaptively to reduce
the force tracking error by the force and position feedback on the premise of ensuring the stability
of PBAV ITG.

3.2 Adaptive fuzzy-based controller design

Defining the position and velocity tracking errors of the manipulator,

Es = Xr − x1, Ės = Ẋr − x2 (30)

where x1 = X and x2 = Ẋ.
Defining a composite error as follows,

s = Ės + ∧e∗ (31)

where ∧ = ∧T represents a diagonal positive definite matrix, and e∗ is expressed as follows,

e∗ =

{

Es (in free space)
∆F (in contact space)

(32)
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Differentiating Eq. (31) and multiplying M0(x1) on both sides, we can obtain,

M0xṡ = M0x(Ës + ∧ė∗)

= M0x(Ẍr + ∧ė∗)−M0xẋ2

= M0x(Ẍr + ∧ė∗)− (F − Fe − Fτd − Yx − C0xx2 −G0x)

= Fe + Fτd − F − C0xs+ Ψ(x1, x2, e
∗)

(33)

where Ψ(x1, x2, e
∗) is an unknown nonlinear function and defined as follows,

Ψ(x1, x2, e
∗) = M0x(Ẍr + ∧ė∗) +G0x + C0x(ẋr + ∧e∗) + Yx (34)

In this section, we use FLS to approximate the uncertain nonlinear function, i.e.

Ψ(x1, x2, e
∗) = Θ∗Tξ(x1, x2, e

∗) + ε(x1, x2, e
∗) (35)

where the definitions of Θ∗T, ξ(x1, x2, e
∗) and ε(x1, x2, e

∗) are shown in the Eq. (3). According
to the above derivation, variable impedance control law based on FLS can be designed as,

τ = JT[kss+ Fe + Θ̂Tξ(x1, x2, e
∗) + u] (36)

where ks > 0 is the controller gain, u is a robust term, which can be used to compensate the
external disturbance and approximation error of FLS.

Substituting Eq. (36) into (33), the system error can be expressed as follows,

M0xṡ = Fτd − C0xs− (kss+ Θ̂Tξ(x1, x2, e
∗) + u) + Ψ(x1, x2, e

∗) (37)

Since Ψ(x1, x2, e
∗) − Θ̂T(x1, x2, e

∗) = Θ∗Tξ(x1, x2, e
∗) + ε(x1, x2, e

∗) − Θ̂Tξ(x1, x2, e
∗) =

Θ̃Tξ(x1, x2, e
∗) + ε(x1, x2, e

∗), and Θ̃ = Θ∗ − Θ̂ represents the weight estimated error.

Assumption 2 The reconstruction error of FLS is bounded and satisfy,

‖ε(x1, x2, e
∗)‖ ≤ ρε (38)

where ρε is the positive constants.

Then, according to Assumptions 1 and 2, the minimum reconstruction error of FLS and the
external disturbance are bounded as,

‖ε(x1, x2, e
∗) + τd‖ ≤ ρε + τD , ̟0 (39)

where ̟0 is a positive constant.

3.3 Stability analysis

Theorem 1 Basing on the robot dynamics Eq. (13), and supposing that Assumptions 1 and 2
are satisfied, the fuzzy-based adaptive impedance control law can be designed as Eq. (36), where
the robust compensation term can be expressed as,

u = ̟0sgn(s) (40)
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The FLS adaptive law is:
˙̂
Θ = Γ [ξ(x1, x2, e

∗)s− ηΘ̂] (41)

where Γ and η are positive constants. Then, the adaptive fuzzy-based controller proposed as
Eq. (36) is stable, the composite error s and the weight estimation error Θ̃ are uniformly ul-
timately bounded. It means that the position trajectory tracking error e in free space and the
force tracking error ∆f in contact space are bounded and can be made as small as possible.

Proof
Choosing a Lyapunov function candidate as,

V =
1

2
sTM0xs+

1

2
tr
{

Θ̃TΓ−1Θ̃
}

(42)

Differentiating the above Lyapunov function and substituting Eq. (42). According to Property
2, we have,

V̇ = sTM0xṡ+
1

2
sTṀ0xs+ tr

{

Θ̃TΓ−1 ˙̃Θ
}

= sT[Fτd − kss− C0xs− u+ Θ̃Tξ(x1, x2, e
∗) + ε(x1, x2, e

∗)] +
1

2
sTṀ0xs+ tr

{

Θ̃TΓ−1 ˙̃Θ
}

= sT[Fτd − kss− u+ Θ̃Tξ(x1, x2, e
∗) + ε(x1, x2, e

∗)] + tr
{

Θ̃TΓ−1 ˙̃Θ
}

(43)
Considering Eq. (40), we can obtain,

sT[Fτd − u+ ε(x1, x2, e
∗)] ≤ 0 (44)

According to the updating law Eq. (41), we can obtain,

sTΘ̃Tξ(x1, x2, e
∗) + tr

{

Θ̃TΓ−1 ˙̃Θ
}

= ηtr
{

Θ̃TΘ̂
}

(45)

Therefore, Eq. (43) is bounded as,

V̇ ≤ −sTkss+ ηtr
{

Θ̃TΘ̂
}

≤ −sTkss−
η

2
tr
{

Θ̃TΘ̃
}

+
η

2
tr
{

Θ∗TΘ∗
}

(46)

The above Eq. (46) can be rewritten as,

V̇ ≤ −ǫV + γ (47)

where ǫ = min(λmin(ks),η/2)
max(λmax(M0x),λmax(Γ−1)) and η

2 tr
{

Θ∗TΘ∗
}

≤ γ, γ is a positive constant.

Based on Lyapunov stability theorem, the closed-loop system is stable. And solving the
inequality Eq. (47) yields,

0 ≤ V (t) ≤ [V (t0)−
γ

ǫ
]e−ǫt +

γ

ǫ
(48)

where t0 is the initial time. Eq. (48) means that the error signals s and Θ̃ are uniformly ultimately
bounded. Moreover, for arbitrary s(t0) , as long as t > t0 , we have,

‖ s ‖≤

√

V (t0)− γ/ǫ

min(λmin(M0x), λmin(Γ ))
‖ s(t0) ‖2 e−ǫt +

2γ

min(λmin(M0x), λmin(Γ )ǫ
(49)

Since the first term within the square root in Eq. (49) will converges to zero, it means that
the composite error ‖ s ‖≤

√

2γ/min(λmin(M0x), λmin(Γ ))ǫ as t → +∞. Therefore, when the
parameters are properly selected, the composite error can be minimized, and the position tracking
error e in the free space and the force tracking error ∆f in the contact space are bounded.

According to the above analysis, the control structure of the system can be shown in Fig. 2.
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Fig. 2: The fuzzy-based variable impedance control schematic

4 Simulation studies

To verify the above method, simulations are conducted on a two-link manipulator, which is
described as,

M(q) =

[

m1l
2
1 +m2(l

2
2 + l22 + 2m2 + l1l2c2) m2l

2
2 +m2l1l2c2

m2l
2
2 +m2l1l2c2 m2l

2
2

]

(50)

C(q) =

[

−2m2l1l2q̇2s2 m2l1l2q̇2s2
m2l1l2q̇2s2 0

]

(51)

G(q) =

[

(m1 +m2)l1gc1 +m2l2gc12
m2l2gc12

]

(52)

where the mass of link 1 and link 2 are denoted as m1 and m2, respectively; The length of link
1 and link 2 are denoted as l1 and l2, respectively; sin(qi), cos(qi), and cij can be shortened to
si, ci and cij , respectively, for i = 1, 2 and j = 1, 2, g is the acceleration of gravity.

4.1 Design procedure

To verify the proposed method in Section. 3, the step-by-step procedures of the FBAV IC are
outlined as follows:

Step 1 Construct PBAV ITG: Select the appropriate impedance parameters, md = 1, bd = 50,
kd = 500 in free space. md = 1, bd = 1, kd = 1, α = 0.0009 in contact space.

Step 2 Construct the FLS: Set the inputs are x = [xT
1 , x

T
2 ,∧e

∗T]T, choose 5 Gaussian relation-
ship functions as,

µl
Ai
(xi) = exp

{

−
xi + π/6− (l − 1)π/12

π/24

}2

where i = 1, 2, 3, l = 1, 2, 3, 4, 5, and select the learning parameter as Γ= 100 in Eq. (41).

Step 3 Construct the FBAV IC: Choose controller gain Ks = 500I2×2 and set ̟0 = 2I2×2 in
Eq. (40). ∧ = 2I2×2 in free space and ∧ = 0.1I2×2 in contact space in Eq. (31). The adaptive
variable impedance controller based on FLS can be obtained from Theorem 1.
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Fig. 3: Force tracking and errors of PBAVITG and AVITG
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Fig. 4: Actual position and errors of PBAVITG and AVITG in the x axis

4.2 Simulation results

In the subsection, two examples are conducted on a two-link manipulator. The nominal param-
eters of robot are chosen as m1 = 0.8 kg, m2 = 0.9 kg, l1 = 1.1 m, l2 = 0.9 m and g = 9.8 m/s2,
while the actual parameters of robot are m1 = m2 = 1 kg and l1 = l2 = 1 m to introduce the
parameters uncertainties. Choosing the contact force Eq. (5) in the x direction, where ω0 = 0.2
and β2

0ǫ = 0.4, the parameters were selected according to the literature [9]. And the desired po-
sition trajectory is Xd(t) = [1.6 sin(0.4t+π/6), 1.6 sin(0.4t+π/3)]T m. To testing the robustness
of this proposed method, choosing external disturbance as τd = [−2 cos(2t), 2 sin(2t)]T N/m.

4.2.1 Example 1

Assuming that the desired force Fd = [5, 0]T N is exerted on the manipulator as x ≥ xe ≥ 1 m in
x direction. To test the superiority of the force contact environmental model and the proposed
PBAV ITG, the adaptive variable impedance trajectory generator (AV ITG) [38] is compared
with the proposed method. In the AV ITG, only the damping coefficient adaptively changed by
the force feedback error, and the traditional spring environmental model is used. Fig.3(a) and (b)
show the force tracking results and errors for invariable force. Figs.4(b) and 5(b) show the desired
position tracking errors between desired and actual positions of end-effector in the direction x
and y of Cartesian space, respectively.
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Fig. 5: Actual position and errors of PBAVITG and AVITG in the y axis
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Fig. 6: Force tracking and errors of FBAVIC and FBIC
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Fig. 7: Actual position and errors of PBAVITG and AVITG in the x axis

From Fig.3, it can be found that the proposed PBAV ITG has less error and less overshoot
in the initial stage of force tracking compared with AV ITG. Moreover, The oscillation time in
AV ITG is longer. And from Fig.4(a), it can be seen that the proposed PBAV ITG has a more
smooth trajectory in the direction x of Cartesian space, the generated trajectory of AV ITG in
the force direction is unable to track the desired force. The reason is that the model adopted
in PBAV ITG is derived from a nonlinear spring damp-restorer model, and added a nonlinear
recovery term compared with the spring model adopted in AV ITG. So when the manipulator
is transforming from the free space to contact space, the overshoot of PBAV ITG is smaller
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Fig. 8: Actual position and errors of PBAVITG and AVITG in the y axis
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Fig. 9: Adaptive impedance parameter variation diagram
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than that of AV ITG, and the oscillation time of PBAV ITG is shorter than that of AV ITG in
the initial stage of force tracking. From Fig.5, it can be seen that the two methods have good
track tracking performance in the direction y of Cartesian space. Although AV ITG can obtain
a smooth trajectory and have a good control performance in the case of direct contact with the
environmental model, it is not applicable in the case of spatial transformation in this experiment.
The reason is that the transformation of space and the nonlinear contact force put forward higher
requirements for the adaptability of the control method. Moreover, the behavior of the contact
environment is only expressed by the stiffness coefficient, which is not only not enough, but
also too stiff in the conversion process, which is prone to produce larger overshot and long-term
oscillation at the instant of contact. Therefore, the above results indicate that the performance
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of PBAV ITG is better than that of AV ITG, the superiority of the novel force contact-based
environmental model and the adaptability of the variable impedance control method are proved.

4.2.2 Example 2

The desired force Fd = [50, 0]T N is exerted on the end-effector to verify the performance of
the proposed FBAV IC. The two groups of methods adopt the nonlinear environmental model
mentioned in this paper, but the control methods are different. The proposed FBAV IC and
fuzzy-based impedance control (FBIC) are compared for specific flexible environmental models
considering the uncertainty and disturbance of manipulator. In this experiment, Fig.6(a) and (b)
show the force tracking results and errors of FBAV IC and FBIC. Figs.7(a) and 8(a) show the
results of tracking the desired trajectory by two methods in the direction x and y of Cartesian
space, respectively. Figs.7(b) and 8(b) show the position tracking errors between the desired
and actual trajectories in the direction x and y of Cartesian space, respectively. Fig.9 shows the
variation of adaptive impedance parameters in contact space. Fig.10 shows the update rate of
adaptive adjustment parameters of FLS.

From Fig.6, it can be found that the overshoot and the force tracking error of the proposed
FBAV IC are greatly reduced in comparison to FBIC. The reason is that the impedance pa-
rameters in the FBAV IC are updating adaptively. Compared with the FBIC, the adaptability
of the proposed FBAV IC is stronger than that of FBIC due to the real-time feedback of force
error in the process of force tracking, so the force tracking performance of the proposed FBAV IC
is better than that of FBIC. From Figs.7-8, it can be seen that the position tracking perfor-
mance of the proposed FBAV IC is similar to that of FBIC. From Fig.9, it can be concluded
that the adaptive impedance parameters change irregularly, which is determined by the adaptive
law. Fig.10 shows that the adaptive adjustment parameters of FLS are bounded and can be
converged to the optimal values in finite time.

According to the above analysis, it can be concluded that the proposed FBAV IC not only
reduce the force overshot and oscillation during contact, but also make the force tracking error
smaller than FBIC, which meets the design requirements and improves the adaptability and
robustness of the system.

5 Conclusion

In this paper, a fuzzy-based adaptive variable impedance control is proposed for the robotic
system in flexible environment. In this control scheme, according to the nonlinear force contact-
based environmental model, an adaptive fuzzy variable impedance controller is designed to track
the desired contact force trajectory of the manipulator. And the impedance parameters of the
variable impedance control are adjusted adaptively according to force feedback. The boundness
of force/position tracking errors and the stability of the controller are proved by Routh stability
criterion and Lyapunov stability theory, and the FLS is used to compensate for the uncertainties
of the system dynamics parameters. Finally, the feasibility and effectiveness of the control strategy
are verified by simulation on a two-link manipulator.
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