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Eigenproblems in addition-min algebra∗

Meng Li†, Xue-ping Wang‡,
School of Mathematical Sciences, Sichuan Normal University,

Chengdu 610066, Sichuan, People’s Republic of China

Abstract In order to guarantee the downloading quality requirements of users
and improve the stability of data transmission in a BitTorrent-like peer-to-
peer file sharing system, this article deals with eigenproblems of addition-min
algebras. First, it provides a sufficient and necessary condition for a vector
being an eigenvector of a given matrix, and then presents an algorithm for
finding all eigenvalues and eigenvectors of a given matrix. It further proposes
a sufficient and necessary condition for a vector being a constrained eigenvector
of a given matrix and supplies an algorithm for computing all the constrained
eigenvectors and eigenvalues of a given matrix. This article finally discusses the
supereigenproblem of a given matrix and presents an algorithm for obtaining
the maximum constrained supereigenvalue and depicting the feasible region
of all the constrained supereigenvectors for a given matrix. It also gives some
examples for illustrating the algorithms, respectively.

Keywords : Fuzzy relation inequality; Addition-min composition; Eigen-
value; Eigenvector; Algorithm

1 Introduction

An eigenproblem is a very classical and important research topic in linear algebra,
both in theory and in practice. The eigenproblem in linear algebra is to find the eigen-
values and the eigenvectors of a given matrix A. A scalar λ is called an eigenvalue of A,
if there exists a nonzero vector x satisfying

AxT = λxT , (1)

where the operations of equation (1) are the common plus (+) and multiplication (×) in
the real number set. In some practical applications, the eigenproblem is used to describe
the steady states of discrete event systems, for instance, the eigenproblems in fuzzy algebra
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and max-plus algebra [7, 18, 19]. Now, the eigenproblem in algebra has been studied by
many authors, such as max-plus algebra [1,3,6,8,9,13], max-min algebra [4,5,9,10,12,14,
23], max-prod algebra [2,11,16,20,21], max-Lukasiewicz and max-drastic algebra [15,22].

In particular, Cuninghame-Green [8] first studied the eigenproblem in max-plus al-
gebra, and he even gave all solutions of the eigenproblem with irreducible matrix [9].
Bapat et al. [1] further proved the spectral theorem for the reducible matrices. In [6],
Cechlrov defined the universal and possible eigenvectors and proposed an algorithm for
judging whether a given vector is a possible eigenvector and a universal eigenvector exists.
Gavalec et al. [13] investigated the eigenproblem of a given matrix with interval coeffi-
cients and supplied polynomial algorithms to identify three types of tolerance interval
eigenvectors.

In max-min algebra, an algorithm for calculating the maximum eigenvector of a
given matrix is proposed [4, 5, 9, 10]. Gavalec showed that the complete structure of the
eigenspace is a union of permutation non-decreasing eigenvector intervals [12]. In max-
drastic algebra, Gavalec et al. [15] completely described the structure of the eigenspace
of a given matrix. Rashid et al. [22] obtained a similar result for a square matrix in
max- Lukasiewicz algebra. Rashid et al. [21] also investigated the eigenspace of a given
matrix of order 3 in max-prod algebra.

The theory of fuzzy relation inequalities has been widely used in BitTorrent-like
peer-to-peer (P2P) file sharing system. Assume that the P2P file sharing system has n
terminals, which are denoted by A1, A2, · · · , An. Each terminal should share its local
file resources to any other terminal. At the same time, the file data can be downloaded
from any other terminal. Suppose that the jth terminal Aj sends the file data to another
terminal with quality level xj and the bandwidth between Ai and Aj is aij . For data
transmission, the download quality level of Ai from Aj is actually aij ∧ xj due to the
bandwidth limitation, on which the file data of terminal Ai from other terminals is ai1 ∧
x1+· · ·+aii−1∧xi−1+aii+1∧xi+1+· · ·+ain∧xn. In order to satisfy the downloading quality
requirements of users, total download quality of Ai should be no less than bi (bi > 0).
Then the P2P file sharing system is reduced to a system of fuzzy relation inequations
with addition-min composition as follows.















a11 ∧ x1 + a12 ∧ x2 + · · · + a1n ∧ xn ≥ b1,
a21 ∧ x1 + a22 ∧ x2 + · · · + a2n ∧ xn ≥ b2,
· · ·
an1 ∧ x1 + an2 ∧ x2 + · · · + ann ∧ xn ≥ bn,

(2)

where aij , xj ∈ [0, 1], bi > 0 (i = 1, 2, · · · , n; j = 1, 2, · · · , n), aij ∧ xj = min{aij , xj}, and
the operation ′+′ is the ordinary addition [17]. System (2) can be tersely described as
follows

A⊙ xT ≥ bT

where A = (aij)n×n, x = (x1, x2, · · · , xn), b = (b1, b2, · · · , bn) and (ai1, ai2, · · · , ain) ⊙
(x1, x2, · · · , xn) = ai1 ∧ x1 + ai2 ∧ x2 + · · · + ain ∧ xn.

In order to avoid network congestion and improve the stability of data transmission,
we need to enhance the relevance between the data download quality and the data sending
quality of the terminal. Following this idea, a popular method is to give the data download
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quality a proportional to the data sending quality [25]. This means that the data download
quality to the data sending quality will reach a steady state. We say that the system
reaches a steady regime. If the proportionality coefficient is denoted by λ ≥ 0, then the
corresponding steady regime of the P2P file sharing system can be written in mathematics
as follows.















a11 ∧ x1 + a12 ∧ x2 + · · · + a1n ∧ xn = λx1,
a21 ∧ x1 + a22 ∧ x2 + · · · + a2n ∧ xn = λx2,
· · ·
an1 ∧ x1 + an2 ∧ x2 + · · · + ann ∧ xn = λxn.

(3)

The matrix form of system (3) is

A⊙ xT = λxT

where λ ∈ [0,+∞). Considering the addition-min composition ⊙, λxT means that λ
multiplies by xj , j ∈ {1, 2 · · · , n}. It is clear that the steady states of the data download
quality to the data sending quality are more favorable to the terminal. In other words,
a steady value will benefit users. This article aims to obtain the steady value λ and the
steady solution x, called an eigenvalue and eigenvector of A, respectively.

The rest of this article is organized as follows. In Section 2, we present some neces-
sary notation and known results for following this article. In Section 3, we introduce an
eigenproblem of addition-min algebra, provide a sufficient and necessary condition for a
vector being an eigenvector of a given matrix A, and then present an algorithm for finding
all the eigenvalues and eigenvectors of a given matrix A for system (3). In Section 4, we
consider the so-called constrained eigenproblem, show a sufficient and necessary condition
for a vector being a constrained eigenvector of a given matrix A, and give an algorithm
for computing all the constrained eigenvectors and eigenvalues of a given matrix A. In
Section 5, we make the algorithms obtained in Sections 3 and 4 be suitable for the su-
pereigenvectors and constrained supereigenvectors of addition-min algebras, respectively.
A concluding remark is drawn in Section 6.

2 Preliminaries

This section presents some basic notation and known results.
We call the algebra ([0, 1],+,∧) an addition-min algebra and denote the real unit

interval by I = [0, 1]. For a given natural number n, we write N = {1, 2, · · · , n}. Further,
the notation In×n denotes the set of n× n matrices over I, the set of 1 × n vectors over
I is denoted by In and θ = (0, 0, · · · , 0).

For x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn) ∈ In, define x ≤ y if and only if xi ≤ yi
for arbitrary i ∈ N , and define x < y if and only if xi ≤ yi for arbitrary i ∈ N and there
is a j ∈ N such that xj < yj.

Lemma 2.1 ( [17, 24]) System (2) is solvable if and only if (1, 1, · · · , 1) is a solution of
system (2).

Lemma 2.2 ( [17, 24]) Let x = (x1, x2, · · · , xn) be a solution of system (2). Then we
have:
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(1) x > 0.

(2) For any i ∈ N , j ∈ N , xj ≥ bi −
∑

k∈N\{j}
aik ∧ xk ≥ bi −

∑

k∈N\{j}
aik.

(3) For any i ∈ N , j ∈ N , aij ≥ bi −
∑

k∈N\{j}
aik ∧ xk ≥ bi −

∑

k∈N\{j}
aik.

Let α̌ = (α̌1, α̌2, · · · , α̌n) with

α̌j = max{0, bi −
∑

k∈N\{j}
aik|i ∈ N}

and α̂ = (α̂1, α̂2, · · · , α̂n) with

α̂j = max{aij|i ∈ N}.

Then we have the following lemma.

Lemma 2.3 ( [24]) For any solution x of system (2), it holds that α̌ ≤ x.

3 Eigenproblems of addition-min algebras

In this section, we first introduce an eigenproblem of addition-min algebra, and then
investigate the conditions for a vector being an eigenvector of a given matrix A. We also
explore an algorithm for finding all the eigenvalues and eigenvectors of a given matrix A
for system (3).

In addition-min algebra, for a given matrix A ∈ In×n, the task of finding a vector
x ∈ In with x 6= θ and a scalar λ ∈ [0,+∞) satisfying system (3) is called an eigenproblem
of addition-min algebra. The scalar λ is called an eigenvalue of A, and the corresponding
vector x is called an eigenvector of A associated with λ.

The notation V (A, λ) denotes the set consisting of all eigenvectors of A corresponding
to λ, and Λ(A) denotes the set consisting of all eigenvalues of A, i.e.,

V (A, λ) = {x ∈ In|A⊙ xT = λxT and x 6= θ}

and
Λ(A) = {λ ∈ [0,+∞)|V (A, λ)}.

Let |∅| = 0 and denote the set of all eigenvectors of A by V (A), i.e.,

V (A) =
⋃

λ∈Λ(A)

V (A, λ).

In what follows, we discuss the eigenproblems of addition-min algebras.

Definition 3.1 For A = (aij)n×n ∈ In×n and j ∈ N , denote |{aij|0 < aij < 1, i ∈
N}| = tj and Qj = {q0j , q1j , q2j, · · · , qtjj, q(tj+1)j} with 0 = q0j < q1j < q2j < · · · < qtjj <
q(tj+1)j = 1, where qkj ∈ {aij|i ∈ N}, k = 1, 2, · · · , tj.
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Let K = {(k1, k2, · · · , kn)|kj ∈ Kj for any j ∈ N} with

Kj = {k|0 < qkj and qkj ∈ Qj}. (4)

Notice that from Definition 3.1, one can check that Kj 6= ∅ and |Qj | ≥ 2 for any
j ∈ N . In particular, if tj = 0 for a j ∈ N then Qj = {0, 1}.

Theorem 3.1 Let x = (x1, x2, · · · , xn) ∈ In. Then x ∈ V (A, λ) if and only if there exists
a k = (k1, k2, · · · , kn) ∈ K such that











q(kj−1)j ≤ xj ≤ qkjj for all j ∈ N,

∑

j∈N
[δij · xj + (1 − δij) · aij] = λxi for all i ∈ N

(5)

where the operation “ · ” represents the ordinary multiplication and

δij =

{

1, qkjj ≤ aij ,
0, aij ≤ q(kj−1)j .

Proof. Suppose that x = (x1, x2, · · · , xn) ∈ V (A, λ). According to Definition 3.1 and
Formula (4), it is clear that there is a kj such that q(kj−1)j ≤ xj ≤ qkjj for any j ∈ N .
Thus, there exists a k = (k1, k2, · · · , kn) ∈ K such that q(kj−1)j ≤ xj ≤ qkjj for any j ∈ N .
For any i ∈ N , we get

λxi =
∑

j∈N
aij ∧ xj

=
∑

j∈N,qkjj≤aij

aij ∧ xj +
∑

j∈N,aij≤q(kj−1)j

aij ∧ xj

=
∑

j∈N,qkjj≤aij

xj +
∑

j∈N,aij≤q(kj−1)j

aij

=
∑

j∈N,qkjj≤aij

δij · xj +
∑

j∈N,aij≤q(kj−1)j

(1 − δij) · aij

=
∑

j∈N
[δij · xj + (1 − δij) · aij ],

where the operation “ · ” represents the ordinary multiplication and

δij =

{

1, qkjj ≤ aij ,
0, aij ≤ q(kj−1)j .

Now, suppose that there exists a k = (k1, k2, · · · , kn) ∈ K such that x satisfies system
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(5). Then for any i ∈ N , we have

λxi =
∑

j∈N
[δij · xj + (1 − δij) · aij ]

=
∑

j∈N,qkjj≤aij

δij · xj +
∑

j∈N,aij≤q(kj−1)j

(1 − δij) · aij

=
∑

j∈N,qkjj≤aij

xj +
∑

j∈N,aij≤q(kj−1)j

aij

=
∑

j∈N,qkjj≤aij

aij ∧ xj +
∑

j∈N,aij≤q(kj−1)j

aij ∧ xj

=
∑

j∈N
aij ∧ xj .

Therefore, x ∈ V (A, λ).
Note that in Theorem 3.1, λ can be seen as a given constant with λ ∈ [0,+∞).

So that every solution x = (x1, x2, · · · , xn) of system (5) can be represented by λ, and
the corresponding λ can be determined by the x = (x1, x2, · · · , xn) since q(kj−1)j ≤ xj ≤
qkjj for all j ∈ N .

Furthermore, Theorem 3.1 implies the following two statements.

Theorem 3.2 If system (5) is unsolvable for any k = (k1, k2, · · · , kn) ∈ K then V (A, λ) =
∅.

Theorem 3.3 For any k = (k1, k2, · · · , kn) ∈ K, if x = (x1, x2, · · · , xn) satisfies system
(5), then x ∈ V (A, λ).

For any k = (k1, k2, · · · , kn) ∈ K, we use V (A, λ, k) denotes the solution set of system
(5) corresponding to k = (k1, k2, · · · , kn) ∈ K. Then based on Theorems 3.1 and 3.3, the
eigenproblems of addition-min algebras are equivalent to solving system (5). Therefore,
we can summarize an algorithm for finding all the eigenvectors and eigenvalues of a given
A as follows.

Algorithm 3.1 Input A = (aij)n×n. Output Λ(A) and V (A).
Step 1. Compute K = {(k1, k2, · · · , kn)|kj ∈ Kj for any j ∈ N} defined by (4).
Step 2. For any k = (k1, k2, · · · , kn) ∈ K, construct the corresponding system (5).
Step 3. Compute V (A, λ, k) by the corresponding system (5).
Step 4. Output Λ(A) =

⋃

k∈K
{λ ∈ [0,+∞)|V (A, λ, k)} and V (A) =

⋃

λ∈Λ(A)

V (A, λ).

Step 5. End.

Theorem 3.4 Algorithm 3.1 terminates after O((n + 1)n) operations.

Proof. In Step 1, it costs
∑

j∈N
(tj + 2) operations for computing K, where

∑

j∈N
(tj +

2) ≤ (n + 2)n. In Steps 2 and 3, for any k ∈ K, it takes 6n2 + 3n operations for
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solving a corresponding system (5). Therefore, it costs (6n2 + 3n)|K| operations, where
|K| =

∏

j∈N
(tj + 1) ≤ (n + 1)n. Step 4 needs 2(|K| − 1) operations for computing Λ(A)

and V (A). Therefore, the amount of computation of Algorithm 3.1 is
∑

j∈N
(tj + 2) + (6n2 +

3n)|K| + 2(|K| − 1) = (6n2 + 3n + 2)|K| +
∑

j∈N
(tj + 2) − 2. Consequently, the total

computational complexity of Algorithm 3.1 is O((n + 1)n).
The following example illustrates Algorithm 3.1.

Example 3.1 Consider the following system:

{

0.4 ∧ x1 + 0.6 ∧ x2 = λx1,
0.2 ∧ x1 + 0.5 ∧ x2 = λx2.

Step 1. Compute K1 = {1, 2, 3} and K2 = {1, 2, 3}. Then

K = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}.
Step 2. Construct and solve the corresponding system (5):

(1) For k1 = (1, 1),














x1 + x2 = λx1,
x1 + x2 = λx2,
0 ≤ x1 ≤ 0.2,
0 ≤ x2 ≤ 0.5.

We get x1 = x2 and λ = 2. Let x1 = x2 = t. Since 0 ≤ x1 ≤ 0.2 and 0 ≤ x2 ≤ 0.5,
we have t ∈ [0, 0.2]. When t = 0, x = (0, 0) /∈ V (A, λ). Therefore, V (A, λ, k1) =
{(t, t)|t ∈ (0, 0.2] and λ = 2}.

(2) For k2 = (1, 2),














x1 + x2 = λx1,
x1 + 0.5 = λx2,
0 ≤ x1 ≤ 0.2,
0.5 ≤ x2 ≤ 0.6.

We get x1 = 0.5
λ2−λ−1

, x2 = 0.5(λ−1)
λ2−λ−1

and λ2 − λ− 1 > 0. Since 0 ≤ 0.5
λ2−λ−1

≤ 0.2 and

0.5 ≤ 0.5(λ−1)
λ2−λ−1

≤ 0.6, it is impossible. Therefore, V (A, λ, k2) = ∅.

(3) For k3 = (1, 3),














x1 + 0.6 = λx1,
x1 + 0.5 = λx2,
0 ≤ x1 ≤ 0.2,
0.6 ≤ x2 ≤ 1.

We get x1 = 0.6
λ−1

, x2 = 0.5λ+0.1
λ(λ−1)

and λ − 1 > 0. Since 0 ≤ 0.6
λ−1

≤ 0.2 and 0.6 ≤
0.5λ+0.1
λ(λ−1)

≤ 1, it is impossible. Therefore, V (A, λ, k3) = ∅.
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(4) For k4 = (2, 1),














x1 + x2 = λx1,
0.2 + x2 = λx2,
0.2 ≤ x1 ≤ 0.4,
0 ≤ x2 ≤ 0.5.

We get x1 = 0.2
(λ−1)2

, x2 = 0.2
λ−1

and λ−1 > 0. Since 0.2 ≤ 0.2
(λ−1)2

≤ 0.4 and 0 ≤ 0.2
λ−1

≤
0.5, we have

√
2+2
2

≤ λ ≤ 2. Therefore, V (A, λ, k4) = {( 0.2
(λ−1)2

, 0.2
λ−1

)|
√
2+2
2

≤ λ ≤ 2}.

(5) For k5 = (2, 2),














x1 + x2 = λx1,
0.2 + 0.5 = λx2,
0.2 ≤ x1 ≤ 0.4,
0.5 ≤ x2 ≤ 0.6.

We get x1 = 0.7
λ(λ−1)

, x2 = 0.7
λ

and λ − 1 > 0. Since 0.2 ≤ 0.7
λ(λ−1)

≤ 0.4 and

0.5 ≤ 0.7
λ

≤ 0.6, it is impossible. Therefore, V (A, λ, k5) = ∅.

(6) For k6 = (2, 3),














x1 + 0.6 = λx1,
0.2 + 0.5 = λx2,
0.2 ≤ x1 ≤ 0.4,
0.6 ≤ x2 ≤ 1.

We get x1 = 0.6
λ−1

, x2 = 0.7
λ

and λ− 1 > 0. Since 0.2 ≤ 0.6
λ−1

≤ 0.4 and 0.6 ≤ 0.7
λ

≤ 1,
it is impossible. Therefore, V (A, λ, k6) = ∅.

(7) For k7 = (3, 1),














0.4 + x2 = λx1,
0.2 + x2 = λx2,
0.4 ≤ x1 ≤ 1,
0 ≤ x2 ≤ 0.5.

We get x1 = 0.4λ−0.2
λ(λ−1)

, x2 = 0.2
λ−1

and λ − 1 > 0. Since 0.4 ≤ 0.4λ−0.2
λ(λ−1)

≤ 1 and

0 ≤ 0.2
λ−1

≤ 0.5, we have 7
5
≤ λ ≤

√
2+2
2

. Therefore, V (A, λ, k7) = {(0.4λ−0.2
λ(λ−1)

, 0.2
λ−1

)|7
5
≤

λ ≤
√
2+2
2

}.

(8) For k8 = (3, 2),














0.4 + x2 = λx1,
0.2 + 0.5 = λx2,
0.4 ≤ x1 ≤ 1,
0.5 ≤ x2 ≤ 0.6.

We get x1 = 0.4λ+0.7
λ2 , x2 = 0.7

λ
and λ > 0. Since 0.4 ≤ 0.4λ+0.7

λ2 ≤ 1 and 0.5 ≤ 0.7
λ

≤
0.6, we have 7

6
≤ λ ≤ 7

5
. Therefore, V (A, λ, k8) = {(0.4λ+0.7

λ2 , 0.7
λ

)|7
6
≤ λ ≤ 7

5
)}.
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(9) For k9 = (3, 3),














0.4 + 0.6 = λx1,
0.2 + 0.5 = λx2,
0.4 ≤ x1 ≤ 1,
0.6 ≤ x2 ≤ 1.

We get x1 = 1
λ
, x2 = 0.7

λ
and λ > 0. Since 0.4 ≤ 1

λ
≤ 1 and 0.6 ≤ 0.7

λ
≤ 1, we have

1 ≤ λ ≤ 7
6
. Therefore, V (A, λ, k9) = {( 1

λ
, 0.7

λ
)|1 ≤ λ ≤ 7

6
}.

Step 3. Output

Λ(A) =
⋃

k∈K
{λ ∈ [0,+∞)|V (A, λ, k)}

= {λ ∈ [0,+∞)|V (A, λ, k1)} ∪ {λ ∈ [0,+∞)|V (A, λ, k4)} ∪ {λ ∈ [0,+∞)|V (A, λ, k7)}
∪{λ ∈ [0,+∞)|V (A, λ, k8)} ∪ {λ ∈ [0,+∞)|V (A, λ, k9)}

= {λ|λ = 2} ∪ {λ|
√

2 + 2

2
≤ λ ≤ 2} ∪ {λ|7

5
≤ λ ≤

√
2 + 2

2
} ∪ {λ|7

6
≤ λ ≤ 7

5
}

∪{λ|1 ≤ λ ≤ 7

6
}

= {λ|1 ≤ λ ≤ 2}

and

V (A) =
⋃

λ∈Λ(A)

V (A, λ)

= {(t, t)|t ∈ (0, 0.2] and λ = 2} ∪ {(
0.2

(λ− 1)2
,

0.2

λ− 1
)|
√

2 + 2

2
≤ λ ≤ 2}

∪{(
0.4λ− 0.2

λ(λ− 1)
,

0.2

λ− 1
)|7

5
≤ λ ≤

√
2 + 2

2
} ∪ {(

0.4λ + 0.7

λ2
,

0.7

λ
)|7

6
≤ λ ≤ 7

5
}

∪{(
1

λ
,

0.7

λ
)|1 ≤ λ ≤ 7

6
}.

4 Constrained eigenproblems of addition-min alge-

bras

In order to satisfy the downloading quality requirements of users and improve the
stability of data transmission in the P2P file sharing system, it is worth noting the steady
states of the data download quality to the data sending quality under system (2). Based
on such a consideration, we investigate the eigenproblem of matrix in addition-min algebra
under system (2) in this section.

For a given A ∈ In×n, the task of finding a vector x ∈ In with x 6= θ and a scalar λ
satisfying both systems (2) and (3) is called a constrained eigenproblem of addition-min
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algebra. The scalar λ is called a constrained eigenvalue of A, and the corresponding vector
x is called a constrained eigenvector of A associated with λ.

Denoted the set consisting of all constrained eigenvectors of A corresponding to λ by
V ∗(A, λ), and the set consisting of all constrained eigenvalues of A by Λ∗(A), i.e.,

V ∗(A, λ) = {x ∈ In|A⊙ xT ≥ bT , A⊙ xT = λxT and x 6= θ}

and
Λ∗(A) = {λ ∈ [0,+∞)|V ∗(A, λ)}.

We also denote by V ∗(A) the set consisting of all constrained eigenvectors of A, i.e.,

V ∗(A) =
⋃

λ∈Λ∗(A)

V ∗(A, λ).

From Lemma 2.2, we have α̌ ≤ α̂. Therefore, for any j ∈ N there exists an i ∈ N
such that α̌j ≤ aij . In this way, we can give the following definition.

Definition 4.1 For A = (aij)n×n ∈ In×n and j ∈ N , denoteDj = {d0j, d1j , d2j, · · · , dljj},
where Dj satisfies the following two conditions:

(i) α̌j = d0j < d1j < d2j < · · · < dljj = 1, where dpj ∈ {aij |i ∈ N}, p = 1, 2, · · · , lj − 1.

(ii) For any i ∈ N , if α̌j ≤ aij then there exists a unique p ∈ {0, 1, 2, · · · , lj} such that
aij = dpj.

Denote
N∗ = {j ∈ N |α̌j = 1}

and P = {(p1, p2, · · · , pn)|pj ∈ Pj for any j ∈ N} with

Pj =







{0}, j ∈ N∗,

{p|α̌j < dpj and dpj ∈ Dj}, j ∈ N \N∗.
(6)

Then we have the following theorem.

Theorem 4.1 Let x = (x1, x2, · · · , xn) ∈ In. Then x ∈ V ∗(A, λ) if and only if there
exists a p = (p1, p2, · · · , pn) ∈ P such that



















































xj = d0j = 1 for all j ∈ N∗,

d(pj−1)j ≤ xj ≤ dpjj for all j ∈ N \N∗,

∑

j∈N∗

aij +
∑

j∈N\N∗

[γij · xj + (1 − γij) · aij ] ≥ bi for all i ∈ N,

∑

j∈N∗

aij +
∑

j∈N\N∗

[γij · xj + (1 − γij) · aij ] = λxi for all i ∈ N

(7)
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where the operation “ · ” represents the ordinary multiplication and

γij =

{

1, dpjj ≤ aij,
0, aij ≤ d(pj−1)j .

Proof. Suppose that x = (x1, x2, · · · , xn) ∈ V ∗(A, λ). From Lemma 2.3, α̌j ≤ xj ≤ 1
for any j ∈ N , then α̌j = 1 or α̌j < 1. If α̌j = 1, then xj = 1 and j ∈ N∗. According to
Definition 4.1 and Formula (6), pj = 0 ∈ Pj and α̌j = xj = d0j = 1 for any j ∈ N∗. If
α̌j < 1 then j ∈ N \ N∗. Thus by Definition 4.1 and Formula (6), α̌j ≤ d(pj−1)j ≤ xj ≤
dpjj ≤ 1, i.e., there exists a pj ∈ Pj such that d(pj−1)j ≤ xj ≤ dpjj for any j ∈ N \ N∗.
Therefore, Pj 6= ∅ for any j ∈ N and

∑

j∈N
aij ∧ xj =

∑

j∈N∗

aij ∧ xj +
∑

j∈N\N∗

aij ∧ xj

=
∑

j∈N∗

aij ∧ xj +
∑

j∈N\N∗,dpjj≤aij

aij ∧ xj +
∑

j∈N\N∗,aij≤d(pj−1)j

aij ∧ xj

=
∑

j∈N∗

aij +
∑

j∈N\N∗,dpjj≤aij

xj +
∑

j∈N\N∗,aij≤d(pj−1)j

aij

=
∑

j∈N∗

aij +
∑

j∈N\N∗,dpjj≤aij

γij · xj +
∑

j∈N\N∗,aij≤d(pj−1)j

(1 − γij) · aij

=
∑

j∈N∗

aij +
∑

j∈N\N∗

[γij · xj + (1 − γij) · aij ],

where the operation “ · ” represents the ordinary multiplication and

γij =

{

1, dpjj ≤ aij,
0, aij ≤ d(pj−1)j .

Because of x = (x1, x2, · · · , xn) ∈ V ∗(A, λ), we have bi ≤
∑

j∈N
aij ∧ xj =

∑

j∈N∗

aij +

∑

j∈N\N∗

[γij ·xj +(1−γij) ·aij] and λxi =
∑

j∈N
aij∧xj =

∑

j∈N∗

aij +
∑

j∈N\N∗

[γij ·xj +(1−γij) ·aij]

for any i ∈ N , i.e.,
∑

j∈N∗

aij +
∑

j∈N\N∗

[γij · xj + (1 − γij) · aij ] ≥ bi and
∑

j∈N∗

aij +
∑

j∈N\N∗

[γij ·

xj + (1 − γij) · aij] = λxi for all i ∈ N .
Conversely, suppose that there exists a p = (p1, p2, · · · , pn) ∈ P such that x satisfies
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system (7). Then

∑

j∈N∗

aij +
∑

j∈N\N∗

[γij · xj + (1 − γij) · aij ]

=
∑

j∈N∗

aij +
∑

j∈N\N∗,dpjj≤aij

γij · xj +
∑

j∈N\N∗,aij≤d(pj−1)j

(1 − γij) · aij

=
∑

j∈N∗

aij +
∑

j∈N\N∗,dpjj≤aij

xj +
∑

j∈N\N∗,aij≤d(pj−1)j

aij

=
∑

j∈N∗

aij ∧ xj +
∑

j∈N\N∗,dpjj≤aij

aij ∧ xj +
∑

j∈N\N∗,aij≤d(pj−1)j

aij ∧ xj

=
∑

j∈N∗

aij ∧ xj +
∑

j∈N\N∗

aij ∧ xj

=
∑

j∈N
aij ∧ xj.

Since bi ≤
∑

j∈N∗

aij +
∑

j∈N\N∗

[γij · xj + (1 − γij) · aij ] =
∑

j∈N
aij ∧ xj and λxi =

∑

j∈N∗

aij +

∑

j∈N\N∗

[γij · xj + (1 − γij) · aij] =
∑

j∈N
aij ∧ xj for any i ∈ N , we have x ∈ V ∗(A, λ).

Noting that in Theorem 4.1, λ can be seen as a given constant with λ ∈ [0,+∞).
So that every solution x = (x1, x2, · · · , xn) of system (7) can be represented by λ, and
the corresponding λ can be determined by the x = (x1, x2, · · · , xn) since xj = d0j =
1 for all j ∈ N∗ and d(pj−1)j ≤ xj ≤ dpjj for all j ∈ N \N∗.

The proof of Theorem 4.1 implies the following two theorems.

Theorem 4.2 If system (7) is unsolvable for any p = (p1, p2, · · · , pn) ∈ P , then V ∗(A, λ) =
∅.

Theorem 4.3 For any p = (p1, p2, · · · , pn) ∈ P , if x = (x1, x2, · · · , xn) satisfies system
(7), then x ∈ V ∗(A, λ).

For any p = (p1, p2, · · · , pn) ∈ P , denote the solution set of system (7) corresponding
to p = (p1, p2, · · · , pn) ∈ P by V ∗(A, λ, p). Then from Theorems 4.1 and 4.3, the con-
strained eigenproblems of addition-min algebras are equivalent to solving system (7). So
that we can summarize an algorithm to find all the constrained eigenvectors and eigen-
values of A as follows.

Algorithm 4.1 Input A = (aij)n×n and b. Output Λ∗(A) and V ∗(A).
Step 1. If (1, 1, · · · , 1) isn’t a solution of system (2) then Λ∗(A) = ∅, V ∗(A) = ∅ and

stop.
Step 2. Compute P = {(p1, p2, · · · , pn)|pj ∈ Pj for any j ∈ N} defined by (6).
Step 3. For any p = (p1, p2, · · · , pn) ∈ P , construct the corresponding system (7).
Step 4. Compute V ∗(A, λ, p) by the corresponding system (7).
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Step 5. Output Λ∗(A) =
⋃

p∈P
{λ ∈ [0,+∞)|V ∗(A, λ, p)} and V ∗(A) =

⋃

λ∈Λ∗(A)

V ∗(A, λ).

Step 6. End.

Theorem 4.4 Algorithm 4.1 terminates after O((n + 1)n) operations.

Proof. Similar to the proof of Theorem 3.4, one can prove that Algorithm 4.1 terminates
after O((n + 1)n) operations since Step 3 is the key process of Algorithm 4.1 and |P | ≤
(n + 1)n.

The following example illustrates Algorithm 4.1.

Example 4.1 Consider the following system:















0.4 ∧ x1 + 0.6 ∧ x2 ≥ 0.8,
0.2 ∧ x1 + 0.5 ∧ x2 ≥ 0.5,
0.4 ∧ x1 + 0.6 ∧ x2 = λx1,
0.2 ∧ x1 + 0.5 ∧ x2 = λx2.

Step 1. (1, 1, · · · , 1) is a solution of system (2).
Step 2. By α̌1 = 0.2 and α̌2 = 0.4. we have P1 = {1, 2} and P2 = {1, 2, 3}.

P = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)}.

Step 3. Construct and solve the corresponding system (7):

(1) For p1 = (1, 1),






























x1 + x2 ≥ 0.8,
0.2 + x2 ≥ 0.5,
x1 + x2 = λx1,
0.2 + x2 = λx2,
0.2 ≤ x1 ≤ 0.4,
0.4 ≤ x2 ≤ 0.5.

We get x1 = 0.2
(λ−1)2

, x2 = 0.2
λ−1

and λ− 1 > 0. Since 0.2 ≤ 0.2
(λ−1)2

≤ 0.4, 0.4 ≤ 0.2
λ−1

≤
0.5 and 0.2

(λ−1)2
+ 0.2

λ−1
≥ 0.8, it is impossible. Therefore, V ∗(A, λ, p1) = ∅.

(2) For p2 = (1, 2),






























x1 + x2 ≥ 0.8,
0.2 + 0.5 ≥ 0.5,
x1 + x2 = λx1,
0.2 + 0.5 = λx2,
0.2 ≤ x1 ≤ 0.4,
0.5 ≤ x2 ≤ 0.6.

We get x1 = 0.7
λ(λ−1)

, x2 = 0.7
λ

and λ−1 > 0. Since 0.2 ≤ 0.7
λ(λ−1)

≤ 0.4, 0.5 ≤ 0.7
λ

≤ 0.6

and 0.7
λ(λ−1)

+ 0.7
λ

≥ 0.8, it is impossible. Therefore, V ∗(A, λ, p2) = ∅.
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(3) For p3 = (1, 3),






























x1 + 0.6 ≥ 0.8,
0.2 + 0.5 ≥ 0.5,
x1 + 0.6 = λx1,
0.2 + 0.5 = λx2,
0.2 ≤ x1 ≤ 0.4,
0.6 ≤ x2 ≤ 1.

We get x1 = 0.6
λ−1

, x2 = 0.7
λ

and λ− 1 > 0. Since 0.2 ≤ 0.6
λ−1

≤ 0.4 and 0.6 ≤ 0.7
λ

≤ 1,
it is impossible. Therefore, V ∗(A, λ, p3) = ∅.

(4) For p4 = (2, 1),






























0.4 + x2 ≥ 0.8,
0.2 + x2 ≥ 0.5,
0.4 + x2 = λx1,
0.2 + x2 = λx2,
0.4 ≤ x1 ≤ 1,
0.4 ≤ x2 ≤ 0.5.

We get x1 = 0.4λ−0.2
λ(λ−1)

, x2 = 0.2
λ−1

and λ − 1 > 0. Since 0.4 ≤ 0.4λ−0.2
λ(λ−1)

≤ 1 and

0.4 ≤ 0.2
λ−1

≤ 0.5, we have 7
5
≤ λ ≤ 3

2
. Therefore, V ∗(A, λ, p4) = {(0.4λ−0.2

λ(λ−1)
, 0.2
λ−1

)|7
5
≤

λ ≤ 3
2
}.

(5) For p5 = (2, 2),






























0.4 + x2 ≥ 0.8,
0.2 + 0.5 ≥ 0.5,
0.4 + x2 = λx1,
0.2 + 0.5 = λx2,
0.4 ≤ x1 ≤ 1,
0.5 ≤ x2 ≤ 0.6.

We get x1 = 0.4λ+0.7
λ2 , x2 = 0.7

λ
and λ > 0. Since 0.4 ≤ 0.4λ+0.7

λ2 ≤ 1 and 0.5 ≤ 0.7
λ

≤
0.6, we have 7

6
≤ λ ≤ 7

5
. Therefore, V ∗(A, λ, p5) = {(0.4λ+0.7

λ2 , 0.7
λ

)|7
6
≤ λ ≤ 7

5
)}.

(6) For p6 = (2, 3),






























0.4 + 0.6 ≥ 0.8,
0.2 + 0.5 ≥ 0.5,
0.4 + 0.6 = λx1,
0.2 + 0.5 = λx2,
0.4 ≤ x1 ≤ 1,
0.6 ≤ x2 ≤ 1.

We get x1 = 1
λ
, x2 = 0.7

λ
and λ > 0. Since 0.4 ≤ 1

λ
≤ 1 and 0.6 ≤ 0.7

λ
≤ 1, we have

1 ≤ λ ≤ 7
6
. Therefore, V ∗(A, λ, p6) = {( 1

λ
, 0.7

λ
)|1 ≤ λ ≤ 7

6
}.
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Step 4. Output

Λ∗(A) =
⋃

p∈P
{λ ∈ [0,+∞)|V ∗(A, λ, p)}

= {λ ∈ [0,+∞)|V ∗(A, λ, p4)} ∪ {λ ∈ [0,+∞)|V ∗(A, λ, p5)}
∪{λ ∈ [0,+∞)|V ∗(A, λ, p6)}

= {λ|7
5
≤ λ ≤ 3

2
} ∪ {λ|7

6
≤ λ ≤ 7

5
)} ∪ {λ|1 ≤ λ ≤ 7

6
}

= {λ|1 ≤ λ ≤ 3

2
}

and

V ∗(A) =
⋃

λ∈Λ∗(A)

V ∗(A, λ)

= {(
0.4λ− 0.2

λ(λ− 1)
,

0.2

λ− 1
)|7

5
≤ λ ≤ 3

2
} ∪ {(

0.4λ + 0.7

λ2
,
0.7

λ
)|7

6
≤ λ ≤ 7

5
)}

∪{(
1

λ
,

0.7

λ
)|1 ≤ λ ≤ 7

6
}.

5 Supereigenproblems of addition-min algebras

In order to improve the enthusiasm of the terminals, Yang et al. [25] considered the
ratio of the data-download quality to the data-sending quality, i.e., they introduced a
supereigenproblem of addition-min algebra

A⊙ xT ≥ λxT (8)

where A = (aij)n×n with aii = 0 for all i ∈ N . They obtained a finite number of
the supereigenvectors of system (8) associated with a given supereigenvalue λ ∈ (0, n −
1]. They further investigated a constrained supereigenproblem of addition-min algebra,
more specific speaking, they studied the maximum constrained supereigenvalue and the
corresponding constrained supereigenvector under system (2), i.e.,

max λ

s.t.

{

A⊙ xT ≥ bT ,
A⊙ xT ≥ λxT (9)

where A = (aij)n×n with aii = 0 for all i ∈ N . They developed a nonlinear programming
approach to find the unique maximum constrained supereigenvalue and one corresponding
constrained supereigenvector of system (9). In this section, we make Algorithm 3.1 be
suitable for characterizing the feasible region of all the supereigenvectors of system (8)
associated with a given supereigenvalue λ ∈ (0, n−1], and present an algorithm to obtain
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the maximum constrained supereigenvalue and the feasible region of all the corresponding
constrained supereigenvectors of system (9).

Just replacing A⊙xT = λxT by A⊙xT ≥ λxT , and ′ =′ in the corresponding content
of Section 3 by ′ ≥′, one can easily prove that both the corresponding Theorems 3.1
and 3.3 hold, and Algorithm 3.1 is suitable for describing the feasible region of all the
supereigenvectors of system (8) associated with a given supereigenvalue λ ∈ (0, n − 1].
We omit the detail and only use the following example to illustrated it.

Example 5.1 Consider the feasible region of all the supereigenvectors of the following
system with λ = 1:

{

0 ∧ x1 + 0.6 ∧ x2 ≥ x1,
0.4 ∧ x1 + 0 ∧ x2 ≥ x2.

Step 1. Compute K1 = {1, 2} and K2 = {1, 2}. Then

K = {(1, 1), (1, 2), (2, 1), (2, 2)}.

Step 2. Construct and solve the corresponding system (5) (replacing ′ =′ of system (5)
by ′ ≥′):

(1) For k1 = (1, 1),














x2 ≥ x1,
x1 ≥ x2,
0 ≤ x1 ≤ 0.4,
0 ≤ x2 ≤ 0.6.

We get x1 = x2. Let x1 = x2 = t. Since 0 ≤ x1 ≤ 0.4 and 0 ≤ x2 ≤ 0.6, we have
t ∈ (0, 0.4]. Therefore, the feasible region in this case is {(t, t)|t ∈ (0, 0.4]}.

(2) For k2 = (1, 2),














0.6 ≥ x1,
x1 ≥ x2,
0 ≤ x1 ≤ 0.4,
0.6 ≤ x2 ≤ 1.

Obviously, it is impossible.

(3) For k3 = (2, 1),














x2 ≥ x1,
0.4 ≥ x2,
0.4 ≤ x1 ≤ 1,
0 ≤ x2 ≤ 0.6.

We get x1 = 0.4, x2 = 0.4. Then the feasible region in this case is {(0.4, 0.4)}.
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(4) For k4 = (2, 2),














0.6 ≥ x1,
0.4 ≥ x2,
0.4 ≤ x1 ≤ 1,
0.6 ≤ x2 ≤ 1.

Obviously, it is impossible.

Step 3. The feasible region of all the supereigenvectors associated with λ = 1 is {(t, t)|t ∈
(0, 0.4]}.

In what follows, we suggest an algorithm to obtain the maximum constrained su-
pereigenvalue and the feasible region of all the corresponding constrained supereigenvec-
tors of system (9).

From the proof of Theorem 4.1, for any solution x of system (9) there exists a corre-
sponding p = (p1, p2, · · · , pn) ∈ P such that











xj = d0j = 1 for all j ∈ N∗,
d(pj−1)j ≤ xj ≤ dpjj for all j ∈ N \N∗,
∑

j∈N
aij ∧ xj =

∑

j∈N∗

aij +
∑

j∈N\N∗

[γij · xj + (1 − γij) · aij] for all i ∈ N.

Thus system (9) corresponding to p = (p1, p2, · · · , pn) ∈ P can be written as follows.

max λ

s.t.



















































xj = d0j = 1 for all j ∈ N∗,

d(pj−1)j ≤ xj ≤ dpjj for all j ∈ N \N∗,

∑

j∈N∗

aij +
∑

j∈N\N∗

[γij · xj + (1 − γij) · aij ] ≥ bi for all i ∈ N,

∑

j∈N∗

aij +
∑

j∈N\N∗

[γij · xj + (1 − γij) · aij ] ≥ λxi for all i ∈ N

(10)

where the operation “ · ” represents the ordinary multiplication and

γij =

{

1, dpjj ≤ aij,
0, aij ≤ d(pj−1)j .

For any p = (p1, p2, · · · , pn) ∈ P , denote the local optimal maximum constrained
supereigenvalue of system (10) by λ(p) and the corresponding feasible region of the con-
strained supereigenvectors by V 0(A, λ(p), p). Then the maximum constrained supereigen-
value λ = max{λ(p)|p ∈ P} and the feasible region of all the corresponding constrained
supereigenvectors V 0(A, λ) =

⋃

λ=λ(p)

V 0(A, λ(p), p) where λ(p) can be computed by using

the software LINGO or MATLAB. We can summarize an algorithm to find the maximum
constrained supereigenvalue and the feasible region of all the corresponding constrained
supereigenvectors of A as follows.

17



Algorithm 5.1 Input A = (aij)n×n and b. Output λ and V 0(A, λ).
Step 1. If (1, 1, · · · , 1) isn’t a solution of system (2) then λ doesn’t exist, V 0(A, λ) = ∅

and stop.
Step 2. Compute P = {(p1, p2, · · · , pn)|pj ∈ Pj for any j ∈ N} defined by (6).
Step 3. For any p = (p1, p2, · · · , pn) ∈ P , construct the corresponding system (10).
Step 4. Solve the corresponding system (10), and obtain λ(p) by the software LINGO

or MATLAB and V 0(A, λ(p), p).
Step 5. Output λ = max{λ(p)|p ∈ P} and V 0(A, λ) =

⋃

λ=λ(p)

V 0(A, λ(p), p).

Step 6. End.

Notice that similar to Theorem 4.4, one can see that Algorithm 5.1 terminates after
O((n + 1)n) operations.

Example 5.2 Consider the following problem:

max λ

s.t.















0 ∧ x1 + 0.6 ∧ x2 ≥ 0.2,
0.4 ∧ x1 + 0 ∧ x2 ≥ 0.3,
0 ∧ x1 + 0.6 ∧ x2 ≥ λx1,
0.4 ∧ x1 + 0 ∧ x2 ≥ λx2.

Step 1. (1, 1, · · · , 1) is a solution of system (2).
Step 2. By α̌1 = 0 and α̌2 = 0, we have P1 = {1, 2} and P2 = {1, 2}. Then

P = {(1, 1), (1, 2), (2, 1), (2, 2)}.

Step 3. Construct and solve the corresponding system (10):

(1) For p1 = (1, 1),

max λ

s.t.































x2 ≥ 0.2,
x1 ≥ 0.3,
x2 ≥ λx1,
x1 ≥ λx2,
0 ≤ x1 ≤ 0.4,
0 ≤ x2 ≤ 0.6.

By MATLAB, λ(p1) = 1. Then x1 = x2. Let x1 = x2 = t. Since 0.3 ≤ x1 ≤ 0.4
and 0.2 ≤ x2 ≤ 0.6, we have 0.3 ≤ t ≤ 0.4. Therefore, V 0(A, 1, p1) = {(t, t)|t ∈
[0.3, 0.4]}.
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(2) For p2 = (1, 2),

max λ

s.t.































0.6 ≥ 0.2,
x1 ≥ 0.3,
0.6 ≥ λx1,
x1 ≥ λx2,
0 ≤ x1 ≤ 0.4,
0.6 ≤ x2 ≤ 1.

By MATLAB, λ(p2) = 2
3
. Then 0.6 ≥ 2

3
x1 and x1 ≥ 2

3
x2. Since 0.3 ≤ x1 ≤ 0.4 and

0.6 ≤ x2 ≤ 1, we have x1 = 0.4 and x2 = 0.6. Therefore, V 0(A, 2
3
, p2) = {(0.4, 0.6)}.

(3) For p3 = (2, 1),

max λ

s.t.































x2 ≥ 0.2,
0.4 ≥ 0.3,
x2 ≥ λx1,
0.4 ≥ λx2,
0.4 ≤ x1 ≤ 1,
0 ≤ x2 ≤ 0.6.

By MATLAB, λ(p3) = 1. Then x2 ≥ x1 and 0.4 ≥ x2. Since 0.4 ≤ x1 ≤ 1 and
0 ≤ x2 ≤ 0.4, we have x1 = x2 = 0.4. Therefore, V 0(A, 1, p3) = {(0.4, 0.4)}.

(4) For p4 = (2, 2),

max λ

s.t.































0.6 ≥ 0.2,
0.4 ≥ 0.3,
0.6 ≥ λx1,
0.4 ≥ λx2,
0.4 ≤ x1 ≤ 1,
0.6 ≤ x2 ≤ 1.

By MATLAB, λ(p4) = 2
3
. Then 0.6 ≥ 2

3
x1 and 0.4 ≥ 2

3
x2. Since 0.4 ≤ x1 ≤ 1

and 0.6 ≤ x2 ≤ 1, we have 0.4 ≤ x1 ≤ 0.9 and x2 = 0.6. Let x1 = t. Then
V 0(A, 2

3
, p4) = {(t, 0.6)|t ∈ [0.4, 0.9]}.

Step 4. Output
λ = max{λ(p)|p ∈ P} = 1

and

V 0(A, 1) =
⋃

λ(p)=1

V 0(A, λ(p), p) = V 0(A, 1, p1) ∪ V 0(A, 1, p3) = {(t, t)|t ∈ [0.3, 0.4]}.
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6 Concluding remark

In this article, we first investigated the eigenproblems of addition-min algebras and
showed Algorithm 3.1 for finding all the eigenvalues and eigenvectors for a given matrix.
Then, we studied the constrained eigenproblems of addition-min algebras and proposed
Algorithm 4.1 for computing all the constrained eigenvectors and eigenvalues for a given
matrix. We finally discussed the supereigenproblems of addition-min algebras and suggest
Algorithm 5.1 for obtaining the maximum constrained supereigenvalue and depicting the
feasible region of all the constrained supereigenvectors for a given matrix. Since the
computational complexity of our algorithms is O((n + 1)n), they may involve heavy and
complicated work when n is a larger number. Therefore, finding an efficient method for
the eigenproblems (resp. the constrained eigenproblems and the supereigenproblems) of
addition-min algebras is an interesting problem in the future.
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