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Abstract

In this paper, we present a new continuous time model for nonstationary correlation structures for 

longitudinal data. This model, which provides a continuous time analogue to the antedependence 

model and is thus referred to as the continuous antedependence (CAD) model, is intended to 

provide more refined correlation models for longitudinal data and to better accommodate sparse 

(or highly unbalanced) data. A key component of this model is the ‘nonstationarity function’ 

which describes nonstationarity as a unidimensional function of time and has an interesting time 

expansion/contraction interpretation. Focusing on a Markovian version of the model, we develop a 

novel nonlinear regression model providing nonlinear least square estimators of model parameters. 

Both unstructured (for nonparametric estimation) and structured versions of the model are 

presented. We apply the proposed approach to data from the Multicenter AIDS Clinical Study 

(MACS), with a focus on inference for the nonstationarity function. In simulation studies, we 

show good properties (low finite sample bias, and high convergence rates and efficiency) of the 

proposed unstructured model estimator, which compare favorably to those of an alternative 

maximum likelihood estimator, particularly in sparse data situations.

Keywords

Antedependence; Covariance structures; Markovian; Maximum likelihood estimation; Missing 
data; Nonlinear least squares; Repeated Measures

1. Introduction

The analysis of longitudinal, or repeated measures, data often gives much attention to the 

modeling of the within-subject correlation structure. This task is important for valid and 

efficient inference for mean structure parameters, as well as for its own scientific interest. 

Knowledge about the correlation structure can provide insights into the disease/health 

process. Furthermore, information about correlations is important for future study design. 
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Numerous correlation models have been proposed, some of which, such as the first-order 

autoregression model (AR(1)), have had wide use and implementation in standard statistical 

software packages. A ‘spatial’ version of AR(1) (SAR(1)), which involves the actual 

measurement times rather than just the time index, is useful when measurements are 

unequally spaced or are at irregular times across subjects.

Many commonly used models, including AR(1) and SAR(1), have the property of 

stationarity. Stationarity, in the present context, implies that the correlations depend only the 

time gap between measurements, and not further on the measurement times. Unfortunately, 

actual biological data seldom follow simple stationary models. In light of this reality, 

nonstationary models have also been proposed for longitudinal data. One such model that 

has become increasingly popular is the antedependence model (Gabriel 1961, 1962; 

Zimmerman and Núñez-Antón, 2009). Antedependence, like autoregression, can be of 

varying dependence order with a low (first or second) order antedependence structure often 

found to be adequate for fitting repeated measures data. A more parsimonious special case 

of the antedependence model, referred to as the structured antedependence (SAD) model has 

also been proposed (Zimmerman and Núñez-Antón, 1997; Núñez-Antón and Zimmerman 

2000).

A further challenge in many longitudinal studies is the presence of sparse data, that is, data 

for which the number of measurement times is large relative to the total number of 

measurements, so that very few measurements may be available at each time point. 

Maximum likelihood estimation algorithms, while typically accommodating missing data 

(usually making a missing at random assumption (Rubin, 1976)), often have convergence 

problems with very sparse data.

This paper presents a new continuous time version of the first-order antedependence model, 

which we refer to as the continuous antedependence model (CAD). This new model is 

particularly suited to handling sparse longitudinal data, as may be expected from 

observational designs or even randomized studies with irregular measurement times. The 

proposed model features a newly defined nonstationarity function which we highlight as an 

object of interest in its own right. Further, a novel nonlinear least squares (NLLS) approach 

to parameter estimation for the CAD model is presented. We illustrate the new approach 

with an application to data from an AIDS observational study and demonstrate favorable 

properties of the proposed estimators in a simulation study. We conclude with a discussion 

of limitations and some future directions.

2. Background: Discrete Antedependence

The classical formulation of antedependence (Gabriel, 1961, 1962) states that a sequence of 

random variables, Y1, Y2, … , Ym, has an antedependence structure of order s if Yj and 

Yj+k+1 are independent given Yj+1, Yj+2, … , Yj+k, for j = 1, 2, … , m − k − 1 and for all K ≥ 

S, s = 0, 1, … , m − 1. Typically, the index j (j = 1, … , m) refers to a time order with 

corresponding fixed times, t1 < t2 < ⋯ < tm. The 0th order model is equivalent to 

independence among the m responses, while the (m−1)th order case corresponds to an 

unstructured covariance matrix. A parametric version of this model (Gabriel, 1962; Núñez-
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Antón and Zimmerman, 2000), equivalent to the above definition when Y ≡ (Y1, … , Ym)′ 
is m-variable normally distributed, can be written as, Y1 = μ1 + ε1, 

Y j = μ j + ∑k = 1
s j ρ j − k, j Y j − k − μ j − k +   ε j, j = 2, … , m, where sj = min(s, j − 1); μ ≡ (μ1, 

… , μm)′ is the mean vector of Y; the εj’s are independent unobserved error terms with zero 

means and variances σ j
2 > 0; and the ρjk’s (with ρjk representing the correlation between Yj 

and Yk) are such that the covariance matrix of Y is positive definite. The resulting 

covariance model will be referred to as AD(s). The first-order AD model, AD(1), satisfies 

the multiplicity property, ρjl = ρjk ρkl, equivalently, ρ jl =   ∏i = j
l − 1 ρi, i + 1, for all j < k < l, and 

the covariance for measurements at the jth and lth time points is σ jl =   σ j
2σl

2   ∏k = j
l − 1 ρk, k + 1. 

In this first-order case, we write for brevity, ρj ≡ ρj,j+1, j=1, … , m−1.

Inference for the AD model was discussed by Gabriel (1962) and further studied by Byrne 

and Arnold (1983), Albert (1992), Macchiavelli and Arnold (1994), Macchiavelli and Moser 

(1997), Zimmerman and Núñez-Antón (1997), Núñez-Antón (1998), Zimmerman, Núñez-

Antón, and El-Barmi (1998), Al-Ibrahim (1999), Krzanowski (1999), Núñez-Antón and 

Zimmerman (2000), and Zhang (2005). Typically, multivariate normality is assumed for Y 
and maximum likelihood methods used for inference. In the case of a common set of 

measurement times for the n subjects, and a common AD covariance matrix, Σ, an explicit 

expression can be written for the maximum likelihood estimator of Σ (see Byrne and Arnold 

1983; Albert 1992).

In the common situation in which subjects have missing data, let Σi denote the mi × mi 

covariance matrix (a submatrix of the m × m complete data covariance matrix, Σ) for 

individual i with mi measurements. In the case of missing data, explicit estimators generally 

are not available, and numerical methods must be used to maximize the likelihood (or 

restricted likelihood) function. Zimmerman, Núñez-Antón, and El-Barmi (1998) further 

discussed computational issues for maximum likelihood estimation for the AD(1) model in 

the context of missing data (an issue also addressed earlier by Patel (1991)). In particular, 

they suggested an approach to reduce computation by using simplified expressions for 

elements of the inverse of the AD(1) covariance matrix. More general algorithms are also 

available; for example the MIXED procedure in SAS implements Newton Raphson 

algorithms for fitting the general linear model with flexible covariance structures, including 

AD(1), while also allowing for general patterns of missing data, including both monotone 

(dropouts) and non-monotone (or intermittent) missingness.

A structured version of AD(1), proposed by Zimmerman and Núñez-Antón (1997) is given 

by

ρ j = ρ
f (t j + 1;  λ) − f t j;  λ

, σ j
2 = σ2g t j; ψ

(1)
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for j = 1, … , m, where 0 < ρ < 1, σ2 > 0, λ and ψ are parameter vectors (typically of low 

dimension), and f and g are known functions. A single-parameter version (given by 

Zimmerman and Núñez-Antón (1997), and applied earlier by Núñez-Antón and Woodworth 

(1994)) uses the function f (t; λ) = (tλ − 1)/λ if λ ≠ 0; otherwise, f (t; λ) = log(t), with 0 ≤ λ 
< ∞. This special case of the SAD model thus uses the Box-Cox family of power 

transformations to specify f(t; λ). In this family of models, λ > 1 (λ < 1) provide 

correlations that are increasing (decreasing) with time for a given time gap. For example, 

repeated responses may be subject to participant ‘learning’ (as was hypothesized in the 

cochlear implant study analyzed by Núñez-Antón and Woodworth (1994)) thus leading to 

higher correlations for responses equidistant in time as the study progresses. Note that the 

SAR(1) model (a stationary model), is obtained as a special case with λ=1.

Although formulated as a reduction of the AD model, and thus based on a fixed set of time 

points, the SAD model would appear to be applicable to the continuous time case. However, 

a limitation of this model for continuous time is that it does not provide a function that 

describes the nonstationarity over continuous time, as the function f does not play this role. 

Note that the correlations themselves cannot be written as a single-dimensional function of 

time, or of the time gap as in the stationary case.

3. Proposed Method: Continuous Time Antedependence

3.1. Model

This section introduces the proposed continuous version of the first-order antedependence 

model, considering the response variable to follow an underlying continuous process. 

Specifically, YC, denoting the response variable function, will represent a stochastic process; 

that is, YC = [Yt: t ϵ [0, T]], a collection of random variables on a probability space (Ω, ℱ, 

P). The stochastic process YC is assumed to have mean function μ, and variance function σ2 

(both over [0, T]); its distribution is not further specified.

The proposed model, referred to as the Markovian continuous antedependence (MCAD) 

model, then describes the correlation between values of YC at any two time points in the 

specified range, say tj, tk, 0 ≤ tj < tk ≤ T, as

ϕ t j,   tk =   ρ
∫ t j

tkW t  dt

(2)

where W(t) is a specified positive and integrable function for t ϵ [0, T]. Note that W(t) 
together with ρ can only be identified within a constant of proportionality, so that some 

further constraint on W(t) (for example, W(0) = 1) is necessary. The relatively simpler 

problem of estimation of the variance function (as given in (1)) is left aside to maintain 

focus on the correlation structure. A key goal is the estimation of the function W(t), referred 

to as the nonstationarity function.
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One implication of the MCAD model is that for any (possibly arbitrarily small) interval [t, t 
+ Δ] ⊂ [0, T], within which W(t) is constant, say W(t) = a, the correlations for any two 

measurements, say Yj and Yk, measured at times tj, tk ∈ [t, t + Δ] with tj < tk, is given by 

ρ
a tk − t j . This means that within an interval for which W(t) = a, time is essentially 

expanded (for a < 1) or contracted (for a > 1) by the factor a relative to a reference interval 

with W(t) = 1. In other words, measurements that are one unit of time apart in an interval 

with W(t) = 1 have the same correlation as measurements 1/a time units apart in an interval 

in which W(t) = a. Thus, smaller a implies a higher correlation (and ‘expanded’ time) for a 

given time interval, while larger a implies a lower correlation (and ‘contracted’ time). This 

concept is illustrated in Figure 1 with a numerical example. More generally, W(t) describes 

the change in local correlations over time. Note that in the special case where W(t) = 1 (or 

any constant) over [0, T], implying stationarity, the continuous-time analogue of the first-

order autoregressive model (essentially, SAR(1) defined over [0, T]) is obtained. A second 

implication of the MCAD model, as implied by the name, is that the response variable, Y, 

has the Markov property, whereby correlations satisfy the multiplicative property; that is, for 

ordered times 0 ≤ tj < tk < tl ≤ T, we have ϕ(tj, tl) = ϕ(tj, tk)ϕ(tk, tl). It follows that the 

correlation can more generally be written as a product of correlations corresponding to any 

partition of the interval [tj, tl].

A structured MCAD (SMCAD) model is obtained from (2) by considering W(t) as a 

parametric function, written as W(t; λ). The function, W(t; λ) = tλ−1, for example, provides 

a continuous version of the (first-order) SAD model (1). The connection between the 

SMCAD and the SAD, where the latter is considered as a continuous model with an 

arbitrary differentiable function f(t), is given more generally by the relationship, W(t) = 

df(t)/dt. If f(t) is non-differentiable at some points (for example, has discontinuities), W(t) 
may still be defined (e.g., as a step-function). A related note is that, in contrast to previous 

models, the form of model (2) essentially unifies unstructured and structured 

antedependence models.

3.2. Inference

3.2.1. Setup—Suppose a random sample is taken from a stochastic process ξ (with mean 

function equal to 0 and variance function σ2) satisfying the MCAD model (2), providing 

independent random functions Y1
C,…Yn

C, where Yi
C = μi + ξi, μi is the fixed mean function 

and ξ i is the realization of ξ (interpretable as an error function) for individual i. The (latent) 

random function Yi
C is interpreted as the underlying response function for subject i, values 

of which are observed at a finite (usually relatively small) number of times, possibly 

arbitrarily chosen, in the range [0, T]. The observed data thus consist of a response vector 

Yi = Y i1, …, Y imi
 with measurements at times ti1, …, timi

 for subject i, i =1, … , n. A 

common correlation structure for all subjects is assumed, and thus the subscript i will be 

dropped when not needed for clarity.

In addition, let rij denote the residual (given a fitted regression model) for the ith subject at 

this subject’s jth measurement time (namely, tij); specifically, ri j = Y i j −   μi j /σi j where μi j
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is a suitable estimate of the mean, μij ≡ μi(tij), and σi j is an estimate of the square root of the 

variance, σi j
2 ≡ σ2 ti j . The outcome variable, providing information about the correlation 

between the successive measurements, may be defined as Rij ≡ rij · ri,j+1, for j = 1, … , mi 

− 1. Note that if μi j and σ j are equal to the corresponding population values, then, by 

definition, E(Rij) = ϕ(tij, ti,j+1); that is, the expected value of the outcome is equal to the 

corresponding population correlation. If μi j and σ j are consistent estimates of μij and σ j
2, 

respectively, then, Rij is asymptotically unbiased for ϕ(tj, tk). An alternative construction for 

the outcome is Ri j ≡   1 − 0.5   ri, j + 1 − ri j
2

, j = 1, …, mi − 1. Here, Rij may be seen as a 

single-observation version of the sample variogram, which is widely used for exploring 

stationary correlation structures (Diggle et al., 2002).

3.2.2. Nonparametric Estimation for the MCAD—A nonparametric approach to 

inference for the MCAD, providing a step-function estimator of W(t), will next be presented. 

Let t ≡ (t1, t2,.., tq) denote the ordered vector containing the distinct measurement times over 

the whole sample, and let ρk denote the correlation between measurements (possibly latent 

for any given subject) at times tk and tk+1 for k=1, … , Q−1. Though dependent on the 

possibly random or arbitrary measurement times, these quantities will be referred to as 

‘parameters’ for convenience; the implied correlation model will be referred to as the 

unstructured MCAD (UMCAD) model.

A regression approach is motivated by considering a pair of adjacent measurements Yij and 

Yi,j+1 measured at times tij and ti,j+1 for subject i, corresponding, without loss of generality, 

to (whole sample) times tk and tk+d, for positive integers k and d such that k < Q and d ≤ Q − 

k. This pair of measurements provides information regarding ρk,k+d ≡ ϕ(tk, tk+d), which will 

be referred to a ‘gap correlation’. Due to the multiplicative property, this correlation can be 

written as the following function of the UMCAD correlation parameters:

ρk, k + d   = ∏ j = k
k + d − 1 ρ j =exp ∑ j = k

k + d − 1 log(ρ j) .

(3)

The identity (3), and the fact that it holds, at least approximately, after substituting E(Rij) for 

ρk,k+d, suggest a regression relationship that can be applied to the observed variates, Rij, i 
=1, … , n, j = 1, … , mi − 1 (defined in the preceding section). Specifically, consider the 

nonlinear regression model,

Ri = exp Ziψ + εi

(4)
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where Ri ≡ (Ri1, …, Rimi − 1)′ is the (mi – 1) × 1 vector of constructed response variables for 

subject i, Zi ≡ (Zi1, …, Zi, mi − 1)′ is the (mi – 1) × (Q – 1) design matrix with Zij ≡ (Zij1, …, 

Zij,Q−1)′, Zi jq = I ti, j ≤   tq · I ti, j + 1 ≥ tq + 1 , ψ ≡ (ψ1, … , ψQ−1)′, ψk = log(ρk), εi is an 

(mi – 1) × 1 vector of error terms, and let exp(A) denote the matrix with (i,j) element equal 

to exp(Aij), where Aij is the (i,j) element of A. It is assumed that E(εi) = 0, and that the εi are 

independent, for i = 1, … , n. It is further assumed that the ρk’s are positive, and since they 

are bounded by 1, the ψk’s are constrained to be negative.

The ψk’s in model (4) may be estimated by minimizing the nonlinear least squares (NLLS) 

criterion

S ψ   = ∑i = 1
n ∑ j = 1

mi Ri j − exp Zi jψ
2

(5)

under the constraints, ψk < 0, k=1, … , Q−1. The particular numerical approach to this 

estimation used in this paper is the Levenberg-Marquardt algorithm provided in the SAS 

subroutine NLPLM and in the SAS NLP Procedure. The resulting regression (log-

transformed correlation) parameter estimates are exponentiated to obtain estimates of the 

UMCAD correlation parameters. Standard errors of the regression parameter estimates are 

obtained by using the SAS NLPFDD subroutine or SAS PROC NLP; the delta method is 

then employed to obtain approximate standard errors of the estimated correlations. PROC 

NLP also provides Wald confidence intervals.

For W(t) considered as a step function, let ak denote the constant value for W(t) in the time 

interval [tk, tk+1), k = 1, … , Q−1 (setting a1 = 1 for identifiability). From the MCAD model 

(2) it follows that ρ1 =   ρ
t1  −  t0  and ρ = ρ1

1/ t1 −  t0 . Then, it is easy to show that ak = {(t2 

– t1)/(tk+1 – tk)}{ln(ρk)/ln(ρ1)}, for k = 2, … , Q−1. By plugging in the NLLS estimates of 

the ρk’s into the latter expression, estimates of the ak’s, and thus of W(t), are obtained. The 

resulting estimated function is denoted as W t .

It is possible with rounded measurement times that there may be replicates (multiple 

measurements for an individual) at a given putative time. This situation can be handled in 

the above approach by allowing replicates to provide multiple Rij’s at some pairs of adjacent 

times. For example, if a subject has three distinct measurement times with two replicates at 

his second time point, and one each at his first and third time point, then four (rather than 

two) Rij’s will be created, as each replicate provides an Rij with each of its neighboring 

measurements.

Finally, note that the ‘unweighted’ estimation approach described above assumes that the 

Rij’s are independent within individuals. In reality, given the manner of construction of the 
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Rij’s (using adjacent residuals), this assumption is unlikely to hold exactly (even in the 

absence of replicates as discussed above). A generalized least squares approach based on 

derived expressions for the correlations among the Rij (defined as products) is possible. 

However, the focus of this paper is on the unweighted estimator, an approach that will be 

justified through the results of a simulation study presented below.

3.2.3. Confidence Bands for W(t)—To do inference regarding W(t) in the MCAD 

model, a method of obtaining confidence bands for W(t) will be of interest. Our goals for 

such confidence bands, are: 1) the bounds are nonparametric, and 2) the true W(t) would be 

entirely contained in (1-α)% of the confidence bands (obtained under repeated sampling) for 

selected type I error level α. These characteristics would allow the bounds to be used to test 

for nonstationarity; specifically, it may be concluded that there is some nonstationarity if the 

constant function W(t) = 1 (representing the null hypothesis of stationarity when W(0) is 

fixed at 1) is not fully contained within the bounds.

A bootstrap sampling approach is proposed in which W t , the nonparametric estimate of 

W(t), is recomputed for each of N (a pre-selected large number of) bootstrap samples. Each 

bootstrap sample (of the same size as the original data set) is obtained by drawing 

individuals with replacement. The values of W t  for all the samples are then ranked at each 

point in t. Let W p t j  denote the rank-p value of W t  from the bootstrap samples at time tj, 

and let W p t  represent the step function connecting the values for W p t j  over all the tj (in 

order) in t. Then the ranks p=pmin and p=pmax are found such that no more than (α/2)N of 

the bootstrap estimates of W t  are lower (higher) than W pmin t  (W pmax t ) at any tj ∈ [0,T] 

for ‘symmetric’ 100(1-α)% level confidence bands. This procedure assures that the 

confidence bands contain at least at least 100(1-α)% of the W t ′s. from the N bootstrap 

samples. If even the extreme ranks (p=1 and p=N) do not satisfy the above criteria for a 

given α, then one may need to settle for a larger α level; alternatively, asymmetric 

confidence bands may be considered. Although this approach satisfies the present objectives, 

it is possible that a modified approach (e.g, using values of the bootstrap W t ′s from varying 

ranks over the time points) would be more efficient (that is, provide overall narrower 

confidence regions).

3.2.4. Structured MCAD (SMCAD) Model Estimation—To do estimation for a 

SMCAD model, the same setup as described above for the MCAD model can be used. For 

the SMCAD, we suppose the specification of some structured nonstationarity function W(t; 

λ), with λ denoting a (usually low-dimensional) parameter vector. The nonlinear least 

squares criterion (5) can then be modified as,

S λ   = ∑i = 1
n ∑ j = 1

mi Ri j − ϕ t j,   tk;   λ 2

(6)
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where ϕ represents a parametric correlation function (with parameters given by λ); namely, 

it is a structured version of the MCAD written in terms of the structured nonstationarity 

function as ϕ t j,     tk; λ   ≡ ρ
∫ t j

tkW t;  λ  dt
. Similarly to the approach for the MCAD, an 

appropriate optimization algorithm (e.g., Levenberg-Marquardt) can be used to estimate λ, 

and the delta method may be used to obtain approximate standard errors and confidence 

intervals. The estimate of W(t; λ) is then obtained by plugging in the estimate for λ..

4. Data Example

In this section, the proposed method is applied to data obtained from the Multicenter AIDS 

Cohort Study (MACS) public data set (US Department of Commerce, release P16, October 

29, 2007). MACS (Kaslow et al., 1987) is an ongoing prospective study of natural and 

treated histories of HIV-1 infection in homosexual and bisexual men conducted at multiple 

sites in the U.S. The original cohort, which began in 1984, consisted of 4,954 subjects, while 

an additional cohort was recruited between 1987 and 1991. The combined cohort was 

assessed at semiannual follow-up visits for HIV infection status, behavioral outcomes 

(obtained from questionnaires), and serum levels of a panel of biomarkers.

An important biomarker, considered to be highly predictive of the progression from 

seroconversion to AIDS, is the CD4+ T-cell count (or CD4 count, for short). A research 

question of longstanding interest is regarding the pattern of change in CD4 counts over time 

from seroconversion. Numerous methodological papers have been concerned with the 

change in mean CD4 over time (Boscardin, Taylor, and Law, 1998; Jacqmin-Gadda et al., 

2002; Struthers and McLeish, 2011). However, the change in within-person correlations in 

CD4 over time, which has received less attention, is also of interest (Diggle and Verbyla, 

1998; Taylor and Law, 1998). Knowledge of such correlation patterns, particularly 

considering possible nonstationarity, could shed light on dynamics of AIDS, and help in the 

design of future studies by indicating times at which measurements would be most 

informative.

The present analysis used data from 1984 through 1999, including 433 seroconverters. The 

median follow-up time for this group was five years with a minimum of six months and a 

maximum of 19 years. For practicality, while retaining relevance to the scientific question of 

interest, attention was restricted to a follow-up of 16 years, and the data slightly coarsened 

by taking the time for each measurement to be the closest six-month time point to the 

recorded date. The median number of CD4 count measurements for the included subjects 

was 12, with a minimum of one measurement and a maximum of 34 measurements. The 

number of distinct times over the whole sample for the coarsened data was 33. Note that 

some subject had ‘replicates’, that is, more than one measurement at the same nominal time 

point (as is obviously the case for the subject who had 34 measurements). Figure 2 provides 

box plots of the CD4 counts at each time, revealing sparseness of the resulting longitudinal 

data.

The within-person correlation structure of the CD4 count over time, with a focus on the 

pattern of nonstationarity, was studied by fitting UMCAD and SMCAD models to the data. 
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Residuals were obtained by correcting for the sample mean and standard deviation for 

measurements at each time point; the Rij outcomes were then computed using the 

‘variogram’ definition mentioned above. As there are 33 distinct time points over the 

sample, the UMCAD model involves 32 correlations. The NLLS method was used to 

estimate the UMCAD correlations and the step-function for W(t). The estimated correlation 

for the first interval (0 to 6 months), which was used as the reference, was 0.63. Figure 3 

provides the plot of the estimated W(t) versus time from HIV seroconversion, along with 

nonparametric 95% confidence bounds (obtained as described in section 3.2.3). As shown in 

the figure, there was a slight decrease in the estimated W(t) over time, indicating increasing 

time expansion (and higher correlations for equally spaced intervals) over the observation 

period. Although, the (upper) 95% confidence interval bound crosses the line W(t) = 1, it 

barely does so, suggesting marginal evidence for nonstationarity.

In addition, two SMCAD models were fit to the data. The first model, derived from the 

Zimmerman and Núñez-Antón (ZN) correlation function (given in Section 2), can be 

represented by the nonstationarity function W(t; λ) = (t + 1)λ−1. The slight modification to 

the ZN function is the translation from t to t + 1, the purpose of which was to obtain the 

constraint W(0) = 1 as used in the UMCAD. An alternative model, suggested by the plot of 

the estimated W(t) for the UMCAD, is W(t; λ) = 1/(1 + λ1). This nonstationarity function 

corresponds to the correlation function, ϕ t j,     tk; λ   ≡ ρ
[log 1 + λtk − log 1 + λt j ]/λ

. This 

alternative function is more specialized in that it only accommodates time expansion 

(increasing correlations over time) but not time contraction. Consequently, this model is not 

useful for testing for nonstationarity. The two estimated functions are also plotted in Figure 

3. For these data, the ZN function appears to more closely fit the step-function estimate of 

W(t) as well as providing a better fit according to the NLLS criterion (6). The estimated λ’s 

(and 95% confidence intervals) are 0.78 (0.66, 0.90) for the ZN model and 0.054 (0.016, 

0.091) for the alternative model, respectively. The positive estimates for λ in both structured 

models suggest time expansion with increasing time from seroconversion. Also, as the CI for 

λ for the SMCAD model with the ZN function excludes 0, there is evidence for 

nonstationarity of the correlation structure based on this model.

5. Simulation Study

5.1. Study Design

Simulation studies were conducted to compare the proposed NLLS and a maximum 

likelihood approach to estimation of UMCAD model parameters under different scenarios, 

including varying sample sizes and extent of data sparseness. Data were simulated to 

resemble the calf data analyzed previously by Kenward (1987), as this example provided a 

convenient reference with a modest number of measurement times. Specifically, (11 × 1) 

residuals vectors for each subject were generated independently from a multivariate normal 

distribution with first-order antedependence covariance structure, and using a zero mean 

vector and variances equal to the (time-by-time) sample estimates from the calf data. (These 

values are in code provided by request.) The specified UMCAD model correlation values 
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were taken as similar to those estimated from the calf data, namely, (ρ1, … , ρ10) = 

(0.82,0.91,0.93,0.94,0.94,0.93,0.93,0.97,0.96,0.98).

Four sample sizes were used: 30, 100, 300, and 500. In addition, sparse data scenarios were 

created by random deletion of observations (independently for each observation with a fixed 

probability, denoted as p). Four deletion probabilities were used: 0 (complete data case), 0.6, 

0.75, and 0.90. For each of these 16 (4 × 4) scenarios, 300 replicate data sets were generated. 

An alternative missing data mechanism was also considered in which missingness was 

produced by constrained randomization, so that the exact targeted proportion of missing 

observations (0. 0.6, 0.75, and 0.9 as before) was obtained at each time point. The same 

initial sample sizes and estimation methods were used as in the unconstrained randomization 

approach. For each dataset, the UMCAD model correlations were estimated using both the 

MLE and the proposed NLLS methods. Both approaches (correctly) assumed a null mean 

structure and unstructured variances over time. The MLE approach simultaneously estimated 

the mean (including only time as a categorical variable) and covariance parameters, while 

the NLLS approach used the residuals based on sample estimates of the mean and standard 

deviation at each time point, with outcomes constructed as products of adjacent residuals.

Because the simulated data involved a relatively small number of distinct times points 

(namely 11), and thus a similarly small number of UMCAD correlations (10 = 11 – 1), the 

properties of the MLE and NLLS estimators were examined for each of these correlation 

parameters. Denoting ρk as the mean simulation estimate (of the corresponding correlation, 

ρk, k=1, … , 10) over the 300 replicate samples, the following statistics were computed for 

each estimator: bias (B = ρk −   ρk), percent bias (100 · B / ρk), and mean squared error 

(MSE). In addition, measures of overall bias, relative bias and overall efficiency were 

obtained by averaging the absolute values of the biases, relative biases and MSEs, 

respectively, over the 10 correlations. In another set of simulations we compared estimated 

versus true (simulated) standard errors as well as coverage of confidence intervals. 

Computed statistics (for each correlation and overall) included the average estimated 

standard error, the simulation (‘true’) standard estimate (obtain as the empirical standard 

deviation over the simulations), and coverage (percent of 95% confidence intervals covering 

the true value). Data were generated and analyzed using SAS Version 9.2 (SAS Institute 

Inc., Cary, NC). The MLE method was implemented using PROC MIXED and the NLLS 

method was implemented using SAS/IML and PROC NLP.

5.2. Simulation Study Results

Simulation study results for n=30 and for p=0 and 0.6 are provided in Tables 1 and 2. 

Results for other scenarios are summarized below and can be provided upon request. As 

seen in Table 1, both methods showed low relative bias (less than 1 percent in absolute 

value) for all correlation parameters and all sample size scenarios in the complete data (p=0) 

case. For the small sample case (n=30), the average (absolute value of the) bias is lower for 

the NLLS than the MLE method for all deletion probabilities where results are obtained, 

with the relative advantage of the NLLS method over MLE increasing with increasing p. For 

example, for the MLE and NLLS methods, respectively, the average (absolute value of) 

relative biases are 0.24 and 0.11 percent for p = 0, and 0.56 and 0.15 percent for p = 0.6. In 
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the case of n = 30, with p equal to 0.75 or 0.9, the MLE failed to converge in nearly all of the 

300 simulated data sets for each scenario, while the NLLS converged in all of them. Even in 

these high sparseness cases, the NLLS showed less than 1% (absolute value of) relative bias 

for all but two correlations (which still had less than 1.2% relative bias). Table 2 indicates 

that standard errors for both the NLLS and MLE methods are generally under-estimated, and 

consequently there is often under-coverage of confidence intervals. MLE appears to perform 

better in the complete data case, while the NLLS method shows closer to nominal coverage 

in the case of irregular data (60% missing).

For the larger sample size of 100, similar trends were found, with lower average (absolute 

value of) relative biases for NLLS relative to MLE for all values of p, and the advantage of 

NLLS increasing for increasing p. For n=100, both methods converged in all 300 

simulations up to p=0.75, while the NLLS converged for all 300 and the MLE did not 

converge for any when p = 0.9. For sample sizes of 300 and 500 both methods showed low 

relative bias for all correlations for all values of p, though the MLE still failed to converge in 

a higher proportion of simulations at p=0.9. Still, the results in all scenarios (using the 

simulations where the MLE converged) showed a smaller average relative bias for the NLLS 

than the MLE method. For estimation of standard errors and coverage of confidence 

intervals, similar patterns as noted above were found for larger sample sizes and higher 

proportions of missing.

6. Conclusion

This paper presents a new continuous-time nonstationary (antedependence) covariance 

model for repeated measures data. This model introduces a useful nonstationarity function 

which describes changes in local correlations as a function of time. Both unstructured and 

structured versions of the model were presented. A novel approach to estimation was 

presented that uses a nonlinear regression model formulation leading to nonlinear least 

squares estimators of model parameters and nonparametric and parametric confidence 

intervals. Sample SAS code, implementing the proposed method for the MACS data, is 

available upon request.

Simulation studies show advantages of the new NLLS method over the standard MLE 

approach in reducing bias of correlation parameter estimates, with the advantage increasing 

with increasing data sparseness. Furthermore, in a number of scenarios, a standard algorithm 

for ML estimation failed to converge, while the NLLS method converged in all cases. A 

limitation of the above conclusions is that the MLE approach studied involved a particular 

(albeit popular) algorithm, as implemented in the SAS Mixed Procedure. The convergence 

problems that we observed are not connected to non-identifiability, but are due to numerical 

problems that tend to occur in the case of sparse and unbalanced data. It is possible that an 

alternative algorithm could improve on the convergence rates obtained here.

Sparseness in practice may involve different patterns and mechanisms. For example, a higher 

proportion of missingness may be expected at later follow-up times. The unconstrained and 

uniform probability mechanism used for generating missingness provided a simple first 

approach for the simulation study. As described above, additional simulations were 
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conducted under an alternative mechanism involving constrained random deletions that 

produced a fixed proportion of missing values at each time. Not surprisingly, given the 

greater regularly of data patterns produced, this situation somewhat decreases the advantage 

of the NLLS over the MLE approach, though the former is still superior in terms of bias and 

convergence for very sparse scenarios. On the other hand, only multivariate normally 

distributed responses were considered in the present simulation studies. A comparison of the 

methods using non-normally distributed data may be expected to show an even greater 

advantage of the NLLS over the MLE method, as the former does not make any 

distributional assumption. Finally, an assumption of the proposed estimators is that 

missingness is completely at random. It would be of interest to study and possibly extend the 

proposed methodology for contexts where missingness may be informative.

Simulation results indicated that standard errors for both the NLLS and MLE methods were 

under-estimated and consequently that confidence intervals for UMCAD correlation 

parameters showed pronounced under-coverage, though the performance of the NLLS 

method improved somewhat in irregular data scenarios. For the NLLS method under-

estimation of standard errors may be due to inadequately accounting for estimation of mean 

parameters. Further research is needed to refine the NLLS standard error estimators; 

alternatively, a bootstrap resampling approach for standard errors and confidence intervals 

may be considered.

Both the data example and simulation studies focused on an unweighted estimator, though a 

weighted approach is possible. The unweighted estimator is appealing given its good finite 

sample properties (including low bias) and greater simplicity. Nevertheless, possible 

improved efficiency of the weighted estimator under various scenarios could use further 

study. Another limitation was the restriction to a Markovian model, which also assumes an 

absence of measurement error. An extension to a more general non-Markovian continuous 

antedependence model is possible and is left for future research.

The proposed continuous antedependence model and estimation approach may be useful 

even where the mean structure is of primary interest (as in some previous studies using 

antedependence covariance models, e.g., Hou et al. (2006)). Although the present paper gave 

little attention to inference for the mean structure, a joint consideration of the mean and 

covariance structures in the continuous time and sparse data context will be of interest.

The present exposition of the nonstationarity function in terms of an expansion or 

contraction of time provides the function with an elegant and scientifically interesting 

interpretation. The nonstationarity function may also be viewed as describing 

informativeness of additional measurements over time. Thus, the CAD analysis, and 

resulting estimate of the nonstationarity function, may be useful for designing – in 

particular, choosing measurement times for - repeated measures studies. Optimal design 

based on the nonstationarity function is a topic for future research.
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Figure 1: 
Time expansion/contraction in the CAD model.
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Figure 2. 
Box plots of CD4 counts over time for MACS data
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Figure 3. 
Estimates of the nonstationarity function (W (t)) versus time for MACS data.

Solid line: UMCAD (step function); dotted lines: lower and upper 95% confidence bounds; 

dashed line: SMCAD-alternative function; line with alternating dashes and dots: SMCAD-

Zimmerman and Núñez-Antón function.
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Table 1.

Bias, MSE for maximum likelihood (MLE) and nonlinear least squares (NLLS) estimators from simulations 

for each correlation parameter in UMCAD model for complete data and 60% missing scenarios. Sample size = 

30

Complete Data 60% Missing

MLE NLLS MLE NLLS

Par Bias % Bias MSE Bias % Bias MSE Bias % Bias MSE Bias % Bias MSE

ρ1 −0.0042 −0.51 0.0043 0.0024 0.3 0.0021 −0.012 −1.42 0.0156 0.0024 0.29 0.0051

ρ2 −0.0051 −0.56 0.0013 −0.0001 −0.008 0.0005 −0.0039 −0.42 0.0046 0.0019 0.21 0.0014

ρ3 −0.0027 −0.29 0.0009 0.0008 0.089 0.0004 −0.0087 −0.94 0.0029 −0.0033 −0.36 0.0009

ρ4 −0.0035 −0.37 0.0005 −0.002 −0.21 0.0002 −0.0068 −0.72 0.0038 −0.0002 −0.025 0.0006

ρ5 −0.0025 −0.27 0.0005 −0.0013 −0.14 0.0003 −0.0063 −0.67 0.002 0.0014 0.15 0.0006

ρ6 −0.0015 −0.16 0.0007 −0.0003 −0.03 0.0003 −0.0032 −0.35 0.0021 0.0023 0.24 0.0008

ρ7 0.0002 0.026 0.0007 0.0015 0.16 0.0003 −0.0046 −0.5 0.0019 0.001 0.1 0.0008

ρ8 0.0001 0.015 0.0001 0.0009 0.093 0.0001 −0.0015 −0.16 0.0004 0.0005 0.049 0.0001

ρ9 −0.0014 −0.15 0.0003 0.0002 0.019 0.0001 −0.0027 −0.28 0.0009 0.0011 0.11 0.0003

ρ10 −0.0001 −0.013 0.0001 0.0005 0.051 <0.0001 −0.0011 −0.11 0.0002 0.0001 0.0056 0.0001

Ave 0.0021 0.24 0.0009 0.001 0.11 0.0004 0.005 0.56 0.0034 0.0014 0.15 0.0011

Note: MLE and NLLS converged in all 300 simulation runs for complete data; MLE converged in 279 and NLLS converged in all 300 simulations 
for 60% missing data simulations
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Table 2.

Standard error, coverage (percent) for maximum likelihood (MLE) and nonlinear least squares (NLLS) 

estimators from simulations for each correlation parameter in UMCAD model for complete data and 60% 

missing scenarios. Sample size = 30

Complete Data 60% Missing

MLE NLLS MLE NLLS

Par S.E. Simulated 
S.E.

Cover
(%) S.E. Simulated 

S.E.
Cover
(%) S.E. Simulated 

S.E.
Cover
(%) S.E. Simulated 

S.E.
Cover
(%)

ρ1 0.0607 0.0660 90.67 0.0448 0.0660 82.67 0.1021 0.2087 71.43 0.1274 0.1503 86.67

ρ2 0.0322 0.0354 89.33 0.0227 0.0354 79.33 0.0533 0.1293 69.31 0.0889 0.0993 90.00

ρ3 0.0257 0.0267 93.00 0.0180 0.0267 81.00 0.0429 0.0770 69.31 0.0730 0.0757 86.00

ρ4 0.0217 0.0210 92.00 0.0151 0.0210 82.67 0.0373 0.0915 76.19 0.0678 0.0739 83.67

ρ5 0.0223 0.0237 92.67 0.0155 0.0237 81.33 0.0324 0.1004 66.14 0.0658 0.0721 85.67

ρ6 0.0258 0.0276 91.00 0.0180 0.0276 82.67 0.0383 0.0841 70.37 0.0646 0.0718 86.00

ρ7 0.0266 0.0337 91.67 0.0185 0.0337 78.33 0.0369 0.0675 77.25 0.0639 0.0681 90.67

ρ8 0.0115 0.0148 90.33 0.0079 0.0148 75.67 0.0192 0.0851 65.08 0.0540 0.0672 78.00

ρ9 0.0149 0.0161 92.67 0.0102 0.0161 81.00 0.0218 0.0862 71.96 0.0578 0.0717 81.33

ρ10 0.0076 0.0098 90.33 0.0053 0.0098 78.00 0.0146 0.0898 65.08 0.0508 0.0773 68.33

Ave 0.0249 0.0533 91.37 0.0176 0.0533 80.27 0.0399 0.1170 70.21 0.0714 0.0954 83.63

Note: MLE and NLLS converged in all 300 simulation runs for complete data; MLE converged in 189 and NLLS converged in all 300 simulations 
for 60% missing data simulations
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