
Multiagent Plan Repair
by Combined Prefix and Suffix Reuse

Antonı́n Komenda (komenda@agents.fel.cvut.cz)
Department of Computer Science, Faculty of Electrical Engineering, Czech Technical
University in Prague, Czech Republic

Peter Novák (P.Novak@tudelft.nl)
Department of Software and Computer Technology, Faculty of Electrical Engineering,
Mathematics and Computer Science, Delft University of Technology, The Netherlands
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Abstract

Deterministic domain-independent multiagent planning is an approach to co-
ordination of cooperative agents with joint goals. Provided that the agents act in an
uncertain and dynamic environment, such plans can fail. The straightforward ap-
proach to recover from such situations is to compute a new plan from scratch, that
is to replan. Even though, in a worst case, plan repair or plan re-use does not yield
an advantage over replanning from scratch, there is a sound evidence from prac-
tical use that approaches trying to repair the failed original plan can outperform
replanning in selected problems. One of the possible plan repairing techniques is
based on preservation of fragments of the older plans.

This work theoretically analyses complexity of plan repairing approaches based
on preservation of fragments of the original plan and experimentally studies three
practical aspects affecting its efficiency in various multiagent settings. We focus
both on the computational, as well as the communication efficiency of plan repair
in comparison to replanning from scratch and we report on the influence of the
following properties on the efficiency of plan repair: (1) the number of involved
agents in the plan repairing process, (2) inter-dependencies among the repaired
actions, and finally (3) particular modes of re-use of the older plans.
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1 Introduction
Consider a team of heterogeneous robots working together so as to execute a mission
in an environment. Since the robots feature heterogeneous capabilities, it might well
be that none of them is able to complete the mission on its own, however by a careful
coordination and teamwork, they should be able to reach the joint objective. The team
of physical robots is embodied in a dynamic environment in which various events and
plan execution interruptions occur and most importantly, in which actions of the agents
can fail. To execute their mission, the robots represented by deliberative agents must be
able to cope with such a dynamics on both, the individual, as well as the coordination
level. Here we focus on the problem of multiagent plan repair which tackles such issue.

Recently, an approach of multiagent (MA) plan repair (MA-REPAIR) was proposed
in [8], based on multiagent planning (MA-STRIPS) as introduced in [2] and the clas-
sical MODDELINS principle from [12]. MA-STRIPS is an approach to planning for
teamwork and coordination extending the classical STRIPS-based planning techniques.
According to the MA-REPAIR approach, the multiagent team computes a team plan us-
ing a fully decentralized MA-STRIPS planning algorithm, and subsequently executes
the plan, while at the same time monitoring of possible failures of plan execution. Upon
an occurrence of such a failure, the team stops execution and invokes a plan repair al-
gorithm and fixes the failed joint plan in order to reach a joint goal state from the state
in which the failure occurred.

It can be argued that plan re-use based on MODDELINS does not yield much
advantage with respect to the computational complexity in the worst case [12], since
attempts to fix a failed plan sometimes lead to replanning from scratch anyway. In mul-
tiagent and multi-robot settings, where communication is unreliable and costly, how-
ever, it is often the communication which is of higher priority than the computational
complexity.

In [10], the authors have proposed prefix and suffix-based approaches to multiagent
plan repair. These repairing approaches save communication in contrast to replanning
from scratch in tightly coupled problems with action failures, however a research ques-
tion which plan repairing techniques are more appropriate for which planning domains
and problems remained unanswered. In this work, we extend our recent experimen-
tal study [9], where we have generalized the prefix and suffix-based approaches and
present a coherent analysis of computational complexity and practical properties of
how particular multiagent plan repair techniques and particular parameterizations per-
form in different planning domains.

2 Multiagent Planning & Repair
We use MA-STRIPS [2] as a model for the multiagent planning problems.

Definition 1. Let a quadruple Π = 〈P,A, I, G〉 be a multiagent planning problem over

• a finite set of propositions P denoting facts about the environment the agents
operate in,
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Figure 1: A multiagent plan in matrix form with a visual representation of the inter-
mediate states S1, . . . , Sm−1 and joint actions ai = (ai1, . . . , ain). The gray nodes
represent planned states of evolution of the environment, I is the initial state and G is
the set of goal conditions defining a set of possible goal states. The arcs represent the
planned joint actions.

• a set of n agents A = {A1, . . . , An}, each characterized by a finite set of ac-
tions with STRIPS syntax and semantics the agent can perform, formally Ai ={
〈pre(a), add(a), del(a)〉 | pre(a), add(a), del(a) ⊆ P

}
, where pre(a),add(a),

and del(a) represent sets of preconditions, add effects, and delete effects respec-
tively; the transition function describing change of the environment in state S af-
ter execution of action a into new state S′ is defined as S′ = (S∪add(a))\del(a)
provided that pre(a) ⊆ S, i.e., the action a is applicable in the state S,
• an initial state I ⊆ P the environment begin in, and
• a goal state conditionsG ⊆ P characterizing agents’ joint objective(s) s.t. a state
S ⊆ P is a goal state iff G ⊆ S.

Additionally, we define a set of propositions of an action a as prop(a) = pre(a) ∪
add(a) ∪ del(a) and a set of propositions an agent Ai affects or is affected by as Pi =⋃
a∈Ai

prop(a). Each action set also contains a empty action ε = 〈∅, ∅, ∅〉. According
to MA-STRIPS, a distinguished subsets of agents’ public actions known to all other
agents is defined as Apub

i = {a|a ∈ Ai s.t.∃j 6= i : prop(a) ∩ Pj 6= ∅} and the
complement denoted as private actions is defined Apriv

i = Ai \ Apub
i . A joint action

of all agents is defined as a n-tuple a = (a1, . . . , an) where for each ai holds ai ∈ Ai.
Execution of a joint action a is defined as S′ = (S ∪

⋃
a∈a add(a)) \

⋃
a∈a del(a)

provided that
⋃
a∈a pre(a) ⊆ S and

⋃
a∈a add(a) ∩

⋃
a∈a del(a) = ∅.

Definition 2. A sequence of joint actions π = (a1, . . . ,am) is a multiagent plan
solving a multiagent planning problem Π = 〈P,A, S0, G〉 iff

⋃
a∈ai

pre(a) ⊆ Si−1

and
⋃
a∈ai

add(a) ∩
⋃
a∈ai

del(a) = ∅ where for the intermediate states hold Si =
(Si−1 ∪

⋃
a∈ai

add(a)) \
⋃
a∈ai

del(a) for i ∈ 1, . . . ,m and G ⊆ Sm.

We will denote the length of a sequence of joint actions π = (a1, . . . ,am) as
|π| = m. A concatenation of two multiagent plans will be denoted as (a1

1, . . . ,a
1
k) ·

(a2
1, . . . ,a

2
l ) = (a1

1, . . . ,a
1
m,a

2
1, . . . ,a

2
l ). To index a k-th joint action in π, we will

write π[k] and π[k, . . . , l] where 1 ≤ k ≤ l ≤ mwill denote a fragment of the sequence
(ak, . . . ,al). A public projection of plan π will be denoted as πpub and replaces all
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actions which are not in any a ∈ Apub
i by the empty action ε. A visual representation

of a multiagent plan is depicted in Figure 1.
With formally defined multiagent planning problems and multiagent plans solving

them, we can formally present a problem of multiagent plan repair MA-REPAIR as
defined in [10]:

Definition 3. Let a quadruple Σ = 〈Π, π, F, k〉 be a multiagent plan repair problem
over

• a multiagent planning problem Π = 〈P,A, I, G〉,
• an original multiagent plan π solving the problem Π which execution failed s.t.

after execution of some ak the resulting state differs from the intermediate state
Sk,

• a state F ⊆ P which the system happens to be in, unexpectedly after the plan
execution failure, and

• the step k ∈ 1, . . . , |π|, after which the failure occurred.

A solution to a multiagent plan repair problem Σ = 〈Π, π, F, k〉 is a multiagent plan
π′ solving a modified planning problem Π′ = 〈P,A, F,G〉.

Two auxiliary definitions are needed for formal description of the proposed plan
repair algorithm.

Definition 4. Let forward proposition propagation operator ⊕ be a mapping ⊕ : 2P ×
(A1 ×A2 × · · · ×Am)→ 2P , where each A = ×ni=1Ai and m ≥ 1, defined as

S⊕π 7→

{
(S ∪

⋃
a∈π[1] s.t. pre(a)⊆S add(a)) \

⋃
a∈π[1] s.t. pre(a)⊆S del(a) for |π| = 1,

(S ⊕ (π[1]))⊕ π[2, . . . , |π|] otherwise.

(1)

Similarly to the transformation operator ⊕, a reverse-transformation operator is
defined as follows:

Definition 5. Let proposition back-propagation operator 	 be a mapping 	 : 2P ×
(A1 ×A2 × · · · ×Am)→ 2P , where each A = ×ni=1Ai and m ≥ 1, defined as

S 	 π 7→

{
(S ∪

⋃
a∈π[1] del(a)) \

⋃
a∈π[1] add(a) for |π| = 1,

(S 	 (π[|π|]))	 π[1, . . . , |π| − 1] otherwise.
(2)

For further use, we define a metrics on actions in a multiagent plan describing
importance of the action with respect to the number of actions, which would be no
longer applicable if the action is not present in the plan, formally:

Definition 6. LetAdep
k ⊆ ak in a multiagent plan π at step k. Let a set of actionsAdep

k+1

contain all actions of ak+1 which are dependent on actions ofAdep
k based on the effect–

precondition relation, formally Adep
k+1 = {a|a ∈ ak+1 s.t.

⋃
a′∈Adep

k
eff(a′)∩ pre(a) 6=

∅}.
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Figure 2: A visual representation of back-on-track (left) and lazy repair (right). The
nodes and arcs has the same meaning as in Figure 1. The dashed arcs represent planned
but not yet executed actions, the solid ones were already executed. Only the joint ac-
tion a1 was executed without a failure. The execution of a2 failed and the environ-
ment ended in the state F . The orange nodes represent planned states of repair plan
(ar1, . . . ,ark). The pale orange states with their respective actions represent various
possibilities of back-on-track repair plans. The cyan nodes represent a solution by re-
planning. In lazy repair, the application of a2 and further actions ignores preconditions,
which might not be longer satisfied in F .

The dependency metrics dep of an action a ∈ ak ∈ π is then defined as

depπ(a) ≡ |
|π|⋃
i=k

Adep
i s.t. Adep

k = {a}|. (3)

Besides straightforward multiagent replanning from scratch, which invokes a mul-
tiagent planner at the point of a failure and then executes the computed plan right away,
two main approaches to multiagent plan repair were presented in [10]: back-on-track
(BoT) and lazy repair (LR).

Both algorithms first formulate a modified multiagent planning problem and rely on
the underlying multiagent planner to compute a plan fragment used for re-composition
into a solution plan repairing the original failed one. We will refer to the underlying
planner as an inner planner as it will be used as a component of the plan repair algo-
rithm. The back-on-track strategy (see Figure 2left) tries to fix the prefix of the failed
plan by computing a plan from the state in which the system happens to be right after
the detection of a plan execution failure to some state along an ideal failure-free ex-
ecution of the original plan. The resulting multiagent plan re-uses some suffix of the
original plan, if possible, and extends the plan at its beginning. The idea underlying
the lazy repair is complementary (see Figure 2right). Lazy repair takes the remainder
of the original plan, re-uses all its actions which still can be executed according to their
preconditions regardless of the outcome and completes the plan to some goal state of
the planning problem. This way, the resulting plan is composed of re-used prefix parts
of the original plan with an appended suffix of some new repaired plan. Experiments
in [10] showed that these approaches lead to significant savings of communication,
as well as computational resources in comparison to replanning from scratch on used
planning domains and problems.
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Based on the experimental analysis of the two plan repair algorithms and the formal
definitions, we can state the core hypotheses of our work here.

Following the theoretical results of Brafman and Domshlak’s complexity analysis
of MA-STRIPS planning in [2], our motivation is not to substantially increase the com-
putational complexity of the repair algorithms in respect to the inner planner. Although
the communication complexity of the MA-STRIPS planning was not theoretically stud-
ied in the literature yet, we cover it in the hypothesis as well, as we hypothesize that
the communication complexity is a function of the computational one.

Hypothesis 1. Suffix, prefix or combined multiagent plan repair does not introduce
any additional exponential dependency on number of involved agents in respect
to the inner planner both in computational and communication complexity.

Albeit the theoretical results showing that MA-STRIPS planning is not exponentially
dependent on the number of involved agent, we hypothesize that practically the over-
head of planning or plan repair with higher number of agents grows, especially if the
inner planner assumes only public goal condition propositions, which is a common
assumption in literature (e.g., in [13]).

Hypothesis 2. Repairing algorithms minimizing the number of agents involved in the
plan repairing process tend to generate lower computational and communication
overheads than other strategies.

Immediate repairing of actions, which substantial number of other actions dependent
on (see Definition 6), is intuitively more efficient than repair of such actions later with
possibly smaller reusable parts of the original plan and higher number of actions to
repair in general. Next hypothesis describes this intuition.

Hypothesis 3. Repairing algorithms reusing the original plan as a suffix generate
lower computational and communication overheads than the repairing algo-
rithms reusing the original plan as a prefix in domains with actions with high
values of the dependency metrics.

If we parameterize the lengths of reused prefix u and suffix v of the plan repairing
process, an interesting question is, how do different combinations of these parameters
influence the efficiency of the plan repairing process. Let m be the length of the re-
usable part of the original plan π, then m = |π| − k, where k is the step after the failed
action. Obviously, for u+ v < m, there will be a gap, which has to be filled by a result
of the inner planner, in other words the original plan was underused. Reversely, for
u + v > m, there will be an overlap, which has to be reverted, i.e., the original plan
was overused. Intuitively, these cases are in a sense pathological. The last hypothesis
states that repair strategies not underusing nor overusing the original plan should be the
most efficient:

Hypothesis 4. Repairing algorithms overusing or underusing the original plan tend
to generate higher computational overheads than other algorithms.
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Figure 3: A visual representation of generalized repair. The nodes and arcs have the
same meaning as in Figure 2. The repair plan (ar1, ...,ark) is used to connect the prefix
and suffix of the original plan. The parameters u and v prescribe how many actions are
reused as the prefix and the suffix respectively.

3 Generalized Repair
As outlined in the previous section, the algorithm used in the further analyses is a
combination of the lazy and back-on-track approaches, presented in [10], which are
orthogonal to each other in how they reuse the original plans. These two approaches
can be combined into one algorithm using the original plan both as a prefix and a
suffix together. Such an approach generalizes the first two approaches and combines
the original plan by both fashions as shown in Figure 3.

Definition 7. (generalized repair) Let Σ = 〈Π, π, F, k〉 be a multiagent plan repair
problem and let Π′ = 〈P,A, F,G〉 be the corresponding modified multiagent replan-
ning problem.

A multiagent plan π′ solving Π′ is a generalized repair of π for vectors of indexes
U and V iff there is a decomposition of π′, such that π′ = π̄F [k, . . . , k + u] · πfix ·
π[|π|−v, . . . , |π|], where π̄F [k, . . . , k+u] is a fragment of plan π omitting inapplicable
actions beginning with the state F for some u ∈ U , πfix is a new plan connecting the
reused fragments, and π[|π| − v, . . . , |π|] is a fragment of the original plan for some
v ∈ V . The vectors contain only valid indexes to the reused part of the multiagent plan
π, that is ∀u ∈ U : 0 ≤ u ≤ |π| − k and ∀v ∈ V : 0 ≤ v ≤ |π| − k, to meet the
requirements of the decomposition parts π̄F [k, . . . , k + u] and π[|π| − v, . . . , |π|]. It
holds that |U | = |V | and for ∀i s.t. 1 ≤ i ≤ |π| there is no j : 1 ≤ j ≤ |π|, j 6= i s.t.
(ui, vi) = (uj , vj). Also 0 ∈ U , 0 ∈ V .

To illustrate the generalized notion of this repair, it can be shown that for U =
(|π| − k), V = (0) the approach becomes the lazy repair and for U = (0), V =
(|π|−k, . . . , 0) the back-on-track approach. In the first case, the original plan is reused
as a plan fragment ignoring preconditions of length |π| − k equally to the definition of
lazy repair in [10]. In the other case, the definition of the index vector V implies trying
to reuse a plan fragment starting with length |π| − k and ending with length 0, equally
to the back-on-track repair definition in [10]. Finally, U = (0), V = (0) describes
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replanning.
It could be argued that generalization reusing the original plan only as prefix and

suffix parts is in fact not the only possible repair scheme, e.g., by means of the MOD-
DELINS scheme presented in [12]. The MODDELINS reuse scheme describing the pre-
sented generalized repair approach is

(a1,a2, . . . ,au) · πfix · (a|π|−v,a|π|−(v−1), . . . ,a|π|), (4)

however a scheme

(a1, . . . ,au), π1
fix, (au+1, . . . ,au+v), π

2
fix, (a|π|−w, . . . ,a|π|) (5)

would be also possible, but generalized repair cannot directly represent it. Since the
motivation of the generalized repair is not to be general in the sense of reuse pattern
of the original plan, but be general from perspective of reuse of the original plan as
both prefix and suffix plan fragments. For such case, the generalized repair scheme is
complete, since breaking the π̄F [k, . . . , k+u] or the π[|π|− v, . . . , |π|] fragments into
smaller parts would require additional πfix plans, which could be concatenated into one
central fixing fragment as defined in Definition 7.

The algorithm for the generalized repair is outlined in Algorithm 1. In the case,
a failure is detected by the agent team, the current state after the failure is retrieved
and the plan repair algorithm for the plan repair problem Σ = 〈Π, π, F, k〉 is invoked.
In each plan repair attempt a modified multiagent planning problem is formulated ac-
cording to the current values of u and v prescribing the length of the reused prefix
and suffix of the original plan. These parameters are took from two vectors U and V
parameterizing the repair.

If a repair plan is found, the repair process finishes, otherwise another attempt with
a different combination of u and v is made (selection of u has priority over v in the
combination of indexes). The resulting repairing plan consists of three components:
the preserved prefix of the original plan πpre, a newly computed infix πfix and suffix
part πsuf , again preserving a part of the original plan π.

The preserved prefix part π̄F of the original plan corresponds to a plan fragment of
π ignoring the preconditions such that only actions applicable in sequence beginning
from state F are used. The actions with unmet preconditions are simply omitted. Ad-
ditionally, the prefix πpre is based only on a part of the original plan effectively reusing
u actions beginning after the k-th action of the original plan π. The suffix part πsuf is
obtained as the last v actions of the original plan π.

Finally, the infix part of the plan is computed by invocation of the inner multiagent
planner MA-Plan1. The initial state of the modified planning problem is the state in
which a failure-free execution of the repair prefix πpre would result in starting from the
state F , that is propagation F ⊕ πpre. The set of goal states G 	 πsuf corresponds to
a back-propagation of effects of the preserved suffix component πsuf from the set of
original goals G.

If the multiagent planner finds a plan for the modified planning problem, the repair
plan takes the form πpre · πfix · πsuf and gets executed from the failure point on. In

1In the experiments, we used the Planning First implementation of a MA-STRIPS planner from [13].

8



Algorithm 1 Generalized-Repair(Σ, U, V ,MA-Plan)
Input: A multiagent plan repair problemΣ = 〈Π, π, F, k〉.
Input: Parameters U and V prescribing the lengths for reusing of the original plan as

prefix and suffix respectively.

1: u, v =initial pair of u ∈ U and v ∈ V
2: repeat
3: πpre = π̄F [k, . . . , k + u]
4: πsuf = π[|π| − v, . . . , |π|]
5: πfix = MA-Plan(〈P,A, F ⊕ πpre, G	 πsuf〉)
6: if πfix 6= ∅ then
7: π = πpre · πfix · πsuf

8: break
9: end if

10: until tested all pairs ofu ∈ U andv ∈ V
11: ifπ = ∅ then return fail

the case no repair plan can be found, the algorithm attempts the repair for a different
combination of u and v until either a repair plan is found, or it turns out that no repair
for the failure exists.

The description of the algorithm will be concluded with proofs of soundness and
completeness. Since the generalized repair algorithm uses inner invocation of the in-
ner multiagent planner similarly to back-on-track and lazy repairs [10], its correctness
relies on the correctness of the inner planner.

Lemma 8. (soundness). Let Π = 〈P,A, I, G〉, be a multiagent planning problem with
agents situated in a dynamic environment in which the environment can interfere with
the plan execution and let π be a solution to Π. Let also F be a state resulting from an
interference of the environment, a plan failure, at a step k of execution of the plan π.
Σ = 〈Π, π, F, k〉 denotes the corresponding multiagent plan repair problem.

Provided that the execution of Generalized-Repair(Σ,U ,V ,MA-Plan) does not
fail, but finishes with a resulting plan π′ and MA-Plan is a sound MA-STRIPS plan-
ner, a failure-free execution of π′ leads to some goal state of the original multiagent
planning problem Π.

Proof. Regardless what particular state F ⊕ πpre the failure-free execution of the ap-
plicable actions from the fragment π̄F ends up in, the solution plan πfix, if exists, to
the problem 〈P,A, F ⊕ πpre, G 	 πsuf〉 will take the system from the state F ⊕ πpre

to a state G	 πsuf corresponding to the original multiagent planning problem Π. The
back-propagated propositions G	 πsuf either represent a required (part of) state along
the original execution trace of the original plan π and then the remainder πsuf leading
to an original final state is reused, or a failure-free execution of πfix leads directly to
one of the final states defined by G without reusing a part of π as suffix πsuf = ∅, and
therefore G	 πsuf = G.

The initial part and the final part of the proof is based on the soundness proofs of
lazy repair and back-on-track respectively in [10]. As mentioned before, in general-
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ized repair, these two approaches merge, therefore the proofs are based on the same
argumentation.

Lemma 9. (completeness). Let Π = 〈P,A, I, G〉 be a multiagent planning problem
and let π,F ,k, as well as Σ are as in the Lemma 8. Let U and V be integer vectors by
Definition 7.

If there exists a solution plan to the multiagent planning problem Π′ = 〈P,A, F,G〉
and MA-Plan is a complete MA-STRIPS planner, then the execution of Generalized-
Repair(Σ,U ,V ,MA-Plan) finishes and finds a repair plan ofπ.

Proof. The algorithm tests all combinations of U and V values. It eventually tests the
required combination u = 0 and v = 0. Based on the definition of the algorithm, in
such case, π = πpre · πfix · πsuf degenerates to π = πfix since π̄F [k, . . . , k + u] =
π̄F [k, . . . , k] = ∅ and π[|π| − v, . . . , |π|] = π[|π|, . . . , |π|] = ∅. The πfix is then a
solution of Π′ generated by MA-Plan. If such solution exists, it is found, since MA-
Plan is assumed to be complete.

The principle of the completeness proof follows the idea of the back-on-track proof
and in addition it requires fewer assumptions than the lazy repair which is complete
only for dead-end free planning problems.

4 Complexity Analysis
In this section, the presented plan repair algorithm will be theoretically studied from
perspective of a classical complexity metrics and one additional metrics suitable for
distributed algorithms. The classically studied metrics is time complexity. Addition-
ally, in multiagent systems, one can use a metrics based on an asymptotic ratio of com-
munication volume required for an algorithm to finish to size of the input, similarly as
in the case of the time complexity.

4.1 Time Complexity of MA-Plan
The generalized plan repair algorithm presented in the previous section use a mul-
tiagent planner as a component, therefore its complexity is an key part of the further
analysis. The time complexity of the multiagent planning based on solving of coordina-
tion Constraint Satisfaction Problem (CSP) and internal heuristic search (and therefore
the MA-Plan implementation of the planner presented in [13] as Planning First) was
studied in [2], therefore the analysis of the time complexity from [2] will be recalled in
the following paragraphs.

Informally, the complexity is “the number of times [needed] to verify that a certain
choice of coordination-sequence length forms a basis for a solution× the complexity of
the verification process”. To formally describe the time complexity of the MA-Plan ap-
proach, firstly [2] define size of the CSP domains for each agents’ CSP variable. Each
value of each domain represents one possible coordination sequence for one agent.
Such sequences consist of at most δ coordination points defined as pairs (a, t) with a
public action a and 1 ≤ t ≤ nδ for n agents.
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The idea of the nδ limit for the virtual time points t can be demonstrated on an
example with n = 2 agents Ai, Aj ,i 6= j and δ = 3 with precisely three used coordi-
nation points for both agents:

Ai :
Aj :

(
ai1 ∗ ai2 ∗ ai3 ∗
∗ aj1 ∗ aj2 ∗ aj3

)
. (6)

The example shows the longest possible coordination pattern for that particular in-
stance as both the agents use all coordination points possible and the actions depends
on each other such that no prolonging of the pattern is possible. In that case, the first
coordination point is (ai1, 1) and the last one (aj3, nδ), where nδ = 6.

The size of the CSP domain as defined in [2] is for an agent Ai

|Di| =
δ∑
d=1

(
nδ
d

)
· |Apub

i |
d = O((nδ|Apub

i |)
δ+1). (7)

The term
(
nδ
d

)
represents all possible combinations of d virtual time points for the

public actions (e.g., for d = 2, nδ = 6 there are 15 of them {(1, 2),(1, 3),. . . ,(1, 6),(2, 3),(2, 4),. . . ,(5, 6)})
and the term |Apub

i |d represents all possible public action sequences of length d of agent
α (e.g., for d = 2 and |Apub

i | = 2 and the sequences are {a1a1, a1a2, a2a1, a2a2}),
therefore for each d, the complete term in the sum counts the number of possible coor-
dination sequences for d coordination points. Finally, the summed up result represent
the number of all possible coordination sequences for one agent.

The domain size is then used in the final time complexity formula for the internal
planning constraints (ipc) in the CSP in the following form

O(f(I) · n · max
Ai∈A

|Di|) = O(f(I) · n(nδ|Apub|)δ+1) = Oipc, (8)

where the term f(I) represents maximal complexity of individual planning I with
a function f describing the cost of switching from regular planning and Apub =⋃n
i=1A

pub
i .

The complexity induced by the coordination constrains (cc) is in [2] derived from
time complexity of Adaptive-Tree-Consistency algorithm (ATC) for solving CSP
problems. The complexity is based on a tree-width ω of the CSP constraint graph [5]
which is

O(n · max
Ai∈A

|Di|ω+1) = O(n(nδ|Apub |)δω+ε) = Occ, (9)

where ε = δ + ω + 1 is dominated by δω. According to [2], the constraint graph is
isomorphic to the moral graph of agent interaction graph, therefore ω can be treated
as a tree-width of the agent interaction graph. An agent interaction graph describes
dependencies of the agents on each other defined by public actions.

The final complexity is a sum of the complexities from Eq. 8 and Eq. 9 for the
particular constraints

Oipc +Occ = O(f(I) · n(nδ|Apub |)δ+1 + n(nδ|Apub |)δω+ε) = OMAP . (10)
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The complexity has no direct exponential dependence on the number of agents n, has
no direct exponential dependence on the length of the individual plans of the agents and
has no direct exponential dependence on the size of the original planning problem |Π|.
However, the complexity of the individual planning f(I) is in general still exponential
in the size of the individual planning problems.

4.2 Time Complexity of the Generalized Repair Algorithm
Let Π = 〈P,A, I, G〉 be the original multiagent planning problem and Π′ = 〈P,A, F,G〉
be the related multiagent replanning problem. The time complexity of the planning
problemΠ is complexity of the MA-Plan algorithm as showed in the previous section

O(f(I) · n(nδq)δ+1 + n(nδq)δω+ε), (11)

where for brevity q = |Apub |. Straightforwardly, the replanning complexity is in gen-
eral the same as of planning, since the only difference is another initial state F . That
means n, q and ω are the same2. The length δ depends on the particular initial state,
however there is no guarantee that δ for F will be generally higher or lower then δ
for I . From [12], it is known that plan reuse cannot be generally less complex than
replanning from scratch.

Lemma 10. (time complexity). Let Σ = 〈Π, π, F, k〉 be a multiagent plan repair
problem and let Π = 〈P,A, I, G〉 be the related multiagent planning problem. Let U
and V be the index vectors of generalized plan repair by Definition 7.

The asymptotic time complexity of Generalized-Repair(Σ,U ,V ,MA-Plan)

OGEN = O(f(I) · l2n(nδq)δ+1 + l2n(nδq)δω+ε + 2l3G2 + 2l), (12)

where G = |Π|, l = |π|, q = |Apub |, and the rest of the symbols follow the definitions
for Eq. 10 from [2].

Proof. The Generalized-Repair algorithm is parametrized by two index vectors U
and V which are used in a repeated search for a solution of the multiagent plan re-
pair problem. The time complexity is informally how many times the algorithm needs
generate and test a repair strategy × what is the complexity of the generate and test
procedure.

The generate and test procedure consists of two proposition propagation procedures
(by Definitions 4 and 5) each in worst case using simulation of time complexity, which
in the worst case require l testings of all actions’ |A| possible preconditions |P |, there-
fore O(l|A||P |) = O(lG2), since the number of actions and propositions cannot be
bigger than the size of the whole planning problem. Technically, the extraction of the
prefix fragment πpre is part of the proposition propagation process F ⊕ πpre, there-
fore there is one O(lG2) term. Another O(lG2) term is needed for the proposition
back-propagation G 	 πsuf similarly related to extraction of the suffix πsuf . The πfix

fragments requires solving one multiagent planning problem, hence the time complex-
ity of one generate and test procedure is

OGT = OMAP +O(2lG2) = O(f(I) · n(nδq)δ+1 + n(nδq)δω+ε + 2lG2). (13)
2The difference in sizes of different states cannot be larger then |P |, which bounds it by a constant.
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The procedure with complexity OGT is in the Generalized-Repair used maxi-
mally |U | · |V | times. If a solution is found, two additional concatenations are needed
to finally build the solution, therefore

O(|U | · |V |) ·OGT +O(|πpre|) +O(|πpre|) =

O(l2 · f(I) · n(nδq)δ+1 + l2 · n(nδq)δω+ε + 2l3G2 + |πpre|+ |πsuf |) =

O(f(I) · l2n(nδq)δ+1 + l2n(nδq)δω+ε + 2l3G2 + 2l) = OGEN ,(14)

where |U | · |V | = O(|π|2) = O(l2), as the index vectors can parametrize at most
all combinations of the indices to the original plan π by Definition 7. The lengths of
the resulting plan segments |πpre| and |πsuf | are bounded by the length of the plan
l = |π|.

The resulting time complexity of generalized repair algorithm does not comprise
any extra exponential dependency on any of the additional terms, which are always
polynomial provided that l is polynomial w.r.t. G. Consistently with [12], the asymp-
totic worst-case complexity is also never reduced, which is anticipated result of the
analysis. The idea of the presented plan repair technique in general is of lowering δ by
simplifying the inner planning process with help of reuse of parts of the original plan.
Since δ is in OMAP in two exponent terms, such idea is positively supported by the
analysis as well.

The results of the time complexity analysis of the repair algorithms therefore prove
the time complexity part of the first stated Hypothesis 1 with an additional assumption
on the polynomial length of the repaired plan. Additionally, they are not in conflict
with the remaining three hypotheses. Hypothesis 2 targets taking only a subset of A
which can in effect lower the tree-width ω if the remaining agents are less coupled. In
Hypothesis 3, the length δ of the inner repair plan is targeted, as in the cases of problems
with actions having long dependency trees, it is theorized that fixing the problem sooner
will require smaller δ than solving it later possibly with longer reverting plan of a bigger
δ. In the last Hypothesis 4, smaller δ should be achieved by possibly short repair plans,
where no reverting is caused by overusing of the original plans u ∈ U, v ∈ V, u+ v >
l − k and no unnecessarily long repair plans are needed provided that u+ v < l − k.

4.3 Communication Complexity of MA-Plan
For the study of communication complexity of the presented multiagent plan repair
algorithm, firstly, the communication complexity of the inner planning process has to
be known. Since the work of Brafman and Domshlak [2] formally tackle only time
complexity, we propose a analysis of communication in a similar manner based on an
analysis of the Adaptive-Tree-Consistency (ATC) algorithm.

The communication complexity of ATC can be derived from space complexity
which was studied in [5]. The analysis will use the Big-O notation similarly to the
previous section. To distinguish time and communication complexity, the Big-O will
use superscript c for communication complexity Oc.

Size of each message in ATC is max
Ai∈A

|Di|sep, where sep is size of a maximal separa-

tor size in tree decomposition of the CSP. The size of the separator is in bucket-trees [5]
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the tree-width ω, therefore a worst case size of one message is max
Ai∈A

|Di|ω . Maximal

number of messages communicated in a bucket-tree CSP solver is double the number
of arcs (two messages for each arc in tree of n vertex graph), therefore 2(n−1), where
n is the number of the buckets. The buckets represent the CSP variables (with con-
straints in them resembling the principle of tree-decomposition), therefore the number
of the buckets is the number of agents in the coordination constraint (cc). Since the
internal planning constraints (ipc) are represented as unary constraints, they do not re-
quire any communication. All together, it gives the communication complexity of the
MA-STRIPS planning as

2(n− 1) · max
Ai∈A

|Di|ω = Oc(εn(nδq)δω+ε + ε′) = Oc(n(nδq)δω+ε) = OcMAP , (15)

where ε is dominated by δω in the exponent, ε = 2 is a polynomial coefficient and ε′

is dominated by the first polynomial term. The communication complexity of planning
using CSP for coordination is therefore not exponentially dependent on the number
of agents n, it is not dependent on the complexity of the individual planning I and it
has no direct exponential dependence on the size of the original planning problem |Π|,
similarly to the time complexity. The communication complexity is bounded by one
exponential term in the number of the coordination points and tree-width of the agent
interaction graph

exp(δω). (16)

4.4 Communication Complexity of the Generalized Repair Algo-
rithm

The communication complexity of generalized repair will be derived by an equal pro-
cess as in the case of the time complexity. It builds on the derived complexity of the
inner planning of MA-Plan which is in the case of communicationOc(n(nδq)δω+ε) as
showed in Eq. 15.

Equally to the time complexity, replanning is in general the same as planning from
the perspective of communication complexity. The only difference is in the initial state.
That means n, q and ω are the same and δ depends on the particular initial state without
any general guarantees on its change during replanning.

Lemma 11. (communication complexity) Let Σ = 〈Π, π, F, k〉 be a multiagent plan
repair problem and let Π = 〈P,A, I, G〉 be the related multiagent planning problem.
Let U and V be the index vectors of generalized plan repair by Definition 7.

The asymptotic communication complexity of Generalized-Repair(Σ,U ,V ,MA-
Plan)

OcGEN = Oc(l2n(nδq)δω+ε + 2nl3G + n2 + n), (17)

where G = |Π|, l = |π|, q = |Apub |, and the rest of the symbols follow the definitions
for Eq. 10 from [2].

Proof. In the Generalized-Repair, the process is separable to repeated sub-processes
of generating and testing of a repair strategy and it needs an additional synchronization
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broadcast as the agents has to be aware of new plan repair process in case of failure in
a private fact. Such broadcast is an additive factor Ocsync = O(n) as the messages are
sent to all agents.. The communication complexity will be firstly derived for one such
sub-process. The two proposition propagation procedures F ⊕πpre and G	πsuf , each
in the worst case use the same principle as a distributed simulation of execution of a
multiagent plan segment O(nl|P |) = O(nlG) and are used with one inner planning,
therefore

OcGT = Oc(n(nδq)δω+ε + 2nlG). (18)

Equally to the time complexity, the sub-process with the complexity OcGT can be used
in worst case |U | · |V | times. If a sound solution is found the agents has to inform each
other, therefore there is beside the initial synchronization a termination synchroniza-
tion of Oc(n2), although the local plans has not to be communicated as they are later
executed by the particular agents. The communication complexity of the Generalized-
Repair is

Ocsync +Oc(|U | · |V |) ·OcGT +Oc(n2) =

Oc(n+ l2n(nδq)δω+ε + 2nl3G + n2) =

Oc(l2n(nδq)δω+ε + 2nl3G + n2 + n) = OcGEN , (19)

where |U | · |V | = O(|π|2) = O(l2), as the index vectors can parametrize at most all
combinations of indices to the original plan π by Definition 7.

The analyzed communication complexity do not bring any new terms exponen-
tially dependent on any of the parameters, which are always polynomial provided that
l is polynomial w.r.t. G. Therefore the communication complexity of the proposed
plan repair algorithm remains exponential only in the factor of number of coordination
points δ in the inner repair plan and tree-width ω of the agent interaction graph, i.e.,
exp(δω) as in Eq. 16. This result is anticipated as the communication complexity is
usually proportional to the time complexity.

The resulting communication complexity of the generalized repair algorithm proves
the communication and final part of Hypothesis 1 with an additional assumption on the
polynomial length of the repaired plan. Additionally, the results support the experi-
mental results from [10] and concur with the remaining hypotheses, similarly as in the
case of the time complexity. The core hypothesis of [10] states that the communication
overhead is lowered by plan repair producing more preserving repairs in comparison to
replanning. Since the communication complexity of replanning is exponentially depen-
dent on δ this hypothesis is supported by the analysis as far as at least one coordination
point is spared, because decreasing the exponential factor by one exp((δ − 1)ω) dom-
inates any additional polynomial factors added by the plan repair techniques. This is
true only, if the problems are tightly coordinated ω � 0. If it is the contrary, the expo-
nential factor is negligible even if δ is not decreased by the preservation of the repair,
formally exp(δω)→ 1 iff δ → 0 or ω → 0.

The arguments on decreasing the amount of communication used for the remaining
three hypothesis of this article copies those in the time complexity analysis. Hypothe-
sis 2 targets taking only a subset ofA, which can in effect lower the tree-width ω if the
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Algorithm 2 Plan execution and monitoring scheme.
Input: An initial multiagent planning problem Π = 〈P,A, I, G〉, vectors U and V ,

and Planning First multiagent planner by [13] as MA-Plan.

1: π = MA-Plan(Π)
2: if MA-Plan failed then return fail
3: k = 1
4:
5: repeat
6: agents perform π[k]
7: if failure detected then
8: retrieve the current state F from the environment
9: π = Generalized-Repair(〈Π, π, F, k〉, F,G,MA-Plan)

10: k = 1
11: else
12: k = k + 1
13: end if
14: until Generalized-Repair failed or k > |π|

remaining agents are less coupled, and therefore lower the communication complexity.
In Hypothesis 3, the length δ of the inner repair plan should be minimized if failures
of actions with long dependency trees are fixed as soon as possible. In Hypothesis 4,
smaller δ should be achieved by possibly short repair plans by appropriate reusing of
the original plan.

5 Experimental Analysis
The further sections of the article focus on the remaining hypotheses and its experi-
mental analysis.

The experiments were conducted in a synthetic setting, a simulated world with a
group of agents using a plan execution, monitoring and repair loop (see Algorithm 2).
The world was modeled as fully observable. All failures of plan execution were gen-
erated by the simulator according to a uniform distribution over time and parametrized
by a probability p of failure occurrence in each step for each experiment. The failures
were handled by the agents immediately upon detection.

A failure was simulated by not-execution of some of the agent actions from the
actual plan step. The particular actions were chosen according to an uniform probabil-
ity distribution over the individual actions within a joint action. As showed by [10],
failure models with more radical impacts on the environment (e.g., state perturbations)
decrease usability of the plan repairing approaches. Our motivation in this work is to
study types of plan repairing strategies, therefore we stick only to action failures.

For the implementation of the experimental setup and the repairing algorithms,
we used a centralized world simulator integrating the multiagent domain-independent
planner Planning First [13] denoted as MA-Plan. Each agent run in its own thread
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Figure 4: Relation between communicated bytes and computation time for solving the
plan repairing problems.

and deliberated asynchronously. The experiments were executed on 8-core processor
at 3.6GHz with Java Virtual Machine limited to 2.5GB of RAM.

For the experiments, we used four planning domains. Three of them originate in
the standard single-agent IPC planning benchmarks. Similarly to the evaluation of the
MA-Plan algorithm in [13], we chose domains, which are straightforwardly modifiable
to a multiagent setting: LOGISTICS, ROVERS, and SATELLITES. Additionally, we have
extended the set of benchmarks by COOPERATIVE PATHFINDING coordination domain
on a grid [10].

The experimental measurements were based on two metrics focusing on the target
efficiencies: cumulative time consumed by the particular plan repairing algorithms dur-
ing a single run of the simulation, i.e., the overall time spent in the algorithm (incl. the
underlying planning process) excluding the initial planning phase of the scheme (Al-
gorithm 1). The second metric was communication complexity of the process, that is
the volume of communicated information in bytes among the involved agents during
the plan repairing processes. Those are mainly the messages generated by the DisCSP
solver of the Planning First MA-Plan planner and an additional synchronization pro-
cesses minimizing the number of agents involved in the plan repairing process.

To account for differences in essential computational and communication complex-
ity of the domains, we conducted a relationship experiment between these two mea-
sures. Figure 4 depicts the results and demonstrates that there is no essential discrep-
ancy between the computational and communication complexity of the plan repairing
solutions. That means the following results are not biased by problems extremely hard
in time and simple in communication and vice versa.
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5.1 The Number of Repairing Agents
Regardless of the theoretical results presented in [2], showing that the computational
complexity of CSP-based multiagent planning is not exponentially dependent on the
number of the agents, in practical experiments, we faced a non-negligible dependence
of this number and required communication and computational effort. The first set of
experiments analyzes this relation by means of Hypothesis 2.

5.1.1 Used Plan Repair

To validate Hypothesis 2, we have prepared an extensive set of plan repairing strategies
stemming from the generalized repair. They can be divided into three main groups:
one without agent count minimization, and two with agent minimization. First of the
minimization groups reuse the original plan purely as a suffix and the other one purely
as a prefix.

The differences of the strategies within one of the groups of repair strategies lies
in the preference between agent minimization, size of preservation of the original plan
and bound on the maximal length of the newly generated repairing plan component
πfix. This approach restrain bias possibly caused by unbalanced influences of the agent
minimization on various types of plan repair strategies.

The approach minimizing the number of involved agents was based on the notion
of a set of supporting agents. The iterative process from Algorithm 3 was extended
with an iteration starting only with a set of agents providing at least one action, which
can contribute to the repairing plan by a required proposition(s), i.e., support part of
G 	 πsuf . If such team of agents is not able to solve the plan repairing problem, the
team is extended by additional agents supporting any of the current agents in the team
by means of contributing to prepositions in their preconditions. If such additional agent
does not exist and the team is still not containing all the agent from A, a random agent
is added into the team and the process continues.

5.1.2 Results and Discussion

The experiments were conducted in all presented planning domains and for all com-
binations of agent counts, i.e., two to four agents giving twelve domain and problem
instances. Each of the group contained six variances of the repairing strategies giving
216 experiments in total. Each of the experiments was averaged over 5 measurements
with different random seeds.

Figure 5 shows results of the first batch of experiments. The first group of repair-
ing strategies not minimizing number of involved agents (red color) is in most mea-
surements in both computational and communication metrics worse than the baseline
replanning strategy. The suffix preserving algorithms minimizing numbers of agents
(green color) is on the other hand nearly in all measurements better in both metrics than
the baseline strategy with an exception in the simplest COOPERATIVE PATHFINDING
problems. The group of plan repairing strategies minimizing the number of involved
agents and preserving prefix part of the original plan (blue color) is on tie or better with
the replanning in rather loosely coupled domains. The communication and computa-
tional overheads decrease with decreasing coupling of the domains. However in tighter
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coupled domains, the strategies fall behind the replanning baseline. In LOGISTICS do-
main, only 33% of the strategies are better by communication overheads and only 18%
by means of computational overheads. With increasing coupling the approach lose
more. These results support the second hypothesis.

Additionally, the results revealed that the prefix preserving approaches, as not the
best in all agent minimizing approaches, in most of the experiments has one of the best
approaches outperforming the best suffix preserving approach. In LOGISTICS domain,
the separation between the best prefix and best suffix preserving plan repairing strategy
is about a half an order of magnitude in favor of the one prefix preserving approach.
On the other hand, in COOPERATIVE PATHFINDING, suffix preserving approaches gain
more than one order of magnitude.

5.2 Repairing of Actions with High Dependency Metrics
The intuition behind Hypothesis 3 can be rephrased as follows: If an action fails and
it has potentially a lot of future dependencies, possibly of other agents or even in the
goal, trying to fix it as soon as possible is rather better idea, than ignore it and try to
repair it later. The experiments in this section were conducted to validate this concept.

5.2.1 Used Plan Repair

The most straightforward approach here is to compare the two plan repairing strategies
re-using the whole original plan either as a prefix or as a suffix. These strategies are
again parameterizations of the plan generalized repair such that there is no iteration
over various u and v, but only two fixed values. The pure prefix strategy uses fixation
u = |π| − k, v = 0 and the pure suffix strategy uses fixation u = 0, v = |π| − k.

In order to explain the result, we have to present more details on the LOGISTICS do-
main. In the LOGISTICS problem with three agents used in the experiments, the agents
control two trucks T1 and T2 and one airplane A. There are two cities, each with one
storage depot (d1 andd2) and one airport (a1 anda2). The trucks can move m(from, to)
only within their cities, i.e., between one depot and one airport. The airplane can fly
f(from, to) among all airports in the environment, but cannot land at the depots. All
vehicles can load l(package, location) and unload u(package, location) a package at a
location. Initially, there is one package p at one of the depots and the goal is to trans-
port it to the other depot in the other city. The trucks start at the depots and the airplane
starts at one of the airports. A typical multiagent plan solving this particular instance
is depicted in the matrix form in Figure 6.

5.2.2 Results and Discussion

To validate Hypothesis 3, we run the pure prefix and pure suffix preserving repairing
strategies in all the testing domains. We have measured ratio of successful repairs of
these two repairing strategies against replanning by means of computation time. In
Figure 7, we summarize the results of these experiments.

In the ROVERS and SATELLITE domains the plans solving the problem do not con-
tain any significant actions by means of number of future dependencies to the overall
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A :
T1 :
T2 :

 ε ε ε l(p, a1) f(a1, a2) u(p, a2) ε ε ε

l(p, d1) m(d1, a1) u(p, a1) ε ε ε ε ε ε

m(d2, a2) ε ε ε ε ε l(p, a2) m(a2, d2) u(p, d2)


8 7 6 5 4 3 2 1

Figure 6: A multiagent plan solving the initial LOGISTICS problem used in the ex-
periments. Empty actions are denoted as ε. The overlines mark public actions. The
numbers in the last row represent particular counts of steps, i.e., number of actions
|π| − k, to the end of the plan.

Figure 7: Comparison of success ratio against replanning between suffix preserving
(green, back-on-track) and prefix preserving (blue, lazy) plan repairing with variable
length m = |π| − k of the repaired plan segment.
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count of actions in the plan. In SATELLITES, all actions are private and therefore actions
of one agent depend only on other actions of the same agent. The highest dependency
metrics is in such case maxa∈

⋃n
i=1 Ai

depπ(a) = |π| for the first action a of each satel-
lite in the multiagent plan π. The individual plans of the agents are relatively short
(three to four actions) and therefore the dependency metrics is never higher than four
and it is zero for public projection πpub of the plan π.

Multiagent plans for the ROVER problems contain several public actions at the end
of the plan, representing always only one rover communicating at one time point. Al-
though the plans solving the ROVERS problems contain public actions, there are again
no long dependencies among the actions. The dependencies in the private part of the
plan contain three components, each containing three to four private actions. Conse-
quently, the private dependencies are, similarly to the SATELLITE problems, maximally
four actions long. The dependencies among the public actions are even shorter, as there
is the same number of public actions as agents, which means maximally three-action
public dependencies for three agents. The dependency link between one public ac-
tion and one dependent private component increases the maximal dependent length
to maximally seven actions (four private actions of the component bound to three
public actions successively dependent on each other). Using the dependency metrics
maxa∈

⋃n
i=1 Ai

depπ(a) = 4+n and maxa∈
⋃n

i=1 Ai
depπpub(a) = n for the public plan

and for n rovers.
In such repair problem, even if one of the leading actions in a private component

fail, prefix preserving (i.e., lazy) approach solves nearly the complete problem only by
reusing the original plan. More precisely, it reuses the original solution for the rest of
the private components and all the public actions except one of the failed agent. As the
results show, the prefix-based repair is always better then the suffix-based and the ratio
between these two is rather stable over different points in the plan.

The situation changes in the LOGISTICS domain. In LOGISTIC with three agents
and one package, there is a chain of dependent actions. Particularly, u(p, d2) depends
on l(p, a2), which depends on u(p, a2) and so on to the first action of the plan l(p, d1).
The dependency chain has six public actions in the example plan and occupy the com-
plete length of it. As the results show in Figure 7, there are two distinctive peaks where
the suffix preserving repair outperforms the prefix preserving repair, additionally with
a increasing trend. The first one is for repair plans of length m = 3 and the other one is
form = 6. As presented in Figure 6, these lengths correspond to the package handover
points in the plan, more precisely, to repair of failing unloads u(p, a1) and u(p, a2).
These public actions’ dependency metrics is maxa∈

⋃n
i=1 Ai

depπpub(a) = 2|πpub|
3 ,

which in contrast to ROVERS is dependent not only on the number of the agents, but on
the length of the public plan. Ignoring a failure of unloading by the prefix preserving
(i.e., lazy) approach causes the package is left in the last vehicle and the rest of the
team finishes the executable remainder of the plan, which in principle means the vehi-
cles are moving, but they are not transporting the package. On the other hand, in the
same circumstances, the suffix preserving repair (i.e., back-on-track) only repeats the
unload action and successfully continues with the rest of the original plan ending in a
goal state.

One can argue that the complement load actions should be repaired more efficiently
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using this same argumentation as well. This is very true, however this phenomenon is
not captured in the results, because of a particular implementation of the MA-Plan
planner. The explanation is based on the fact the used planner efficiency is more de-
pendent on small differences in number of involved agents, than the number of planned
actions. In the case of m = 3 (the u(p, a2) action), 2 agents are needed to do lazy re-
pair, because firstly the executable remainder of the original plan is reused to the last
state without the package and than the planner has to be used to generate repair plan
πfix reverting all the moves and planning to one of the goal states again. Such plan has
to firstly unload the package from the airplane A and then transport it successfully by
the truck T2 to the goal destination d2. On the other hand, the pure suffix preserving
approach generates only a plan repeating the unload action u(p, a2) and afterward con-
tinues with the original plan as a suffix. This planning problem involves only one agent,
in particular, the airplane A carrying out unload of the package. The same principle can
be applied tom = 6, but with all three agents for pure preserving (lazy) repair, but only
2 agents for pure suffix repair (back-on-track).

In the last problem of COOPERATIVE PATHFINDING, the length of a sequence of
dependent actions correspond to the length of the plan as well, as all the actions in
such plan are public and inter-dependent. Nevertheless, this is quite different “order
of dependency”, than in SATELLITES for example. In SATTELITES, all the actions are
dependent as well, but only within one agent, whereas here, the actions are dependent
across the agents. In the experimental results of the COOPERATIVE PATHFINDING
a trend arises. In such dense types of inter-dependent problems, the longer are the
repaired plans, the more the suffix repair algorithm gains against the prefix one.

The results of these experiments, namely of LOGISTICS and COOPERATIVE PATHFIND-
ING, moderately support the third hypothesis of the paper.

5.3 Partitioning of the Original Plan
It is not intuitively clear what is a good strategy for reusing the original plan parts,
moreover related to a particular planning domain. The experiments conducted in these
sections provide several insights into this issue and focus especially on answering the
Hypothesis 4.

5.3.1 Used Plan Repair

A battery of plan repairing strategies was prepared to validate Hypothesis 4. We pa-
rameterize how much generalized repair reuse the original plan. Such parameterization
(based on the U and V indice vectors) lead to a two-dimensional discrete space of dif-
ferent plan repairing strategies, as depicted in Figure 8, representing a structure of the
repaired plan.

Each of the nine diagrams in the figure describes a variation on a resulting plan
repaired by one particular parameterization of the algorithm in the context of execution
of the original plan. The execution starts with a world in the initial state I and it is
anticipated to continue with help of the original plan to the last state Sm, which is one
of the goal states, i.e., Sm ⊇ G. However during execution of an action following a
state Sk, execution failed and the state of the world ends up not in the state Sk+1, but
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Figure 8: Scheme of a two-dimensional space representing plan repairing strategies
preserving different parts of the original plan and reusing it in different ways. The blue
segments represent prefix re-usage and the green ones the suffix re-usage. The notable
states are: initial state I , last achieved state Sk induced by the original plan, exceptional
state F after a failure and the last anticipated state Sm ⊇ G, provided that the original
plan would be executed without a failure.

in a state F , out of the anticipated sequence of states and actions. To fulfill the goal,
the agents use one of the plan repairing strategies, which under the condition of perfect
execution, would transform the world from F to a Sm ⊇ G.

In Figure 8, there are two dimensions depicted. One of the dimensions represent
the number of actions which has to be reused from beginning of the original plan as a
prefix corresponding to fixation of the iteration parameter U = (|π| − k). The other
dimension represents number of actions re-used as suffix of the final repairing plan,
i.e., fixed iteration parameter V = (|π| − k). In the presented scheme, πpre from the
Algorithm 3 is denoted as a blue line, πsuf as a green line and πfixas a black thick
arrow. Since both the dimensions reuse the same original plan, the space is always a
square with a side of the length |π| − k.

There are four extremes in the repair strategy space. The strategy at position (0, 0)
effectively degenerates from πpre ·πfix ·πsuf to πfix. Such process correspond to replan-
ning from the scratch. The strategies at positions (|π| − k, 0) and (0, |π| − k) represent
pure repairs πpre ·πfix and πfix ·πsuf respectively. The last extreme at (|π|−k, |π|−k)
represent an strategy, which firstly uses the original plan ignoring inapplicable actions,
then using a newly generated plan πfix returns to the anticipated state after execution
of the failed action Sk and than it reuses the original plan again to get to the goal state,
i.e., the algorithm generates a full overlap of the prefix and suffix plans.

Beside the extremes, also the (0,m), (1,m− 1), ..., (m− 1, 1),(m, 0) diagonal for
m = |π| − k in the space is important from perspective of the ongoing discussion.
All the strategies lying on this diagonal can re-use all the actions of the original plan
exactly once and in the original order. Meaning, the original plan is neither overused
nor underused. Formally, we define:

Definition 12. (m-normal generalized plan repair) Let Σ = 〈Π, π, F, k〉 be a multia-
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gent plan repairing problem, then an algorithm R is a m-normal generalized plan re-
pair, iff R solves the problem Σ by a multiagent plan π′ with decomposition πpre ·πfix ·
πsuf and at the same time (|πpre|, |πsuf |) ∈{(0,m), (1,m− 1), ..., (m− 1, 1), (m, 0)},
where m = |π| − k.

5.3.2 Results and Discussion

To validate the third and last hypothesis, we used a randomized sampling of the strategy
space and searched for more successful algorithms lying on the m-normal diagonal.
The results are present in Figure 9.

The sampling experimental process measured for each encountered repairing prob-
lem the computation time of the replanning strategy. After this base-line measurement,
a tested repairing strategy was run with a bound on the computation time based on
the replanning run-time. If the strategy performed better, a cell in the result map was
incremented by one. In effect, this process rendered the presented normalized results.
During the experimental execution and plan repairing, we used different lengths of the
original plan, i.e., the repair was done for various |π| − k. Therefore, the resulting
maps depict a continuous space, as the results with higher and lower |π| − k values
were merged into the most representative m value corresponding to the initial multia-
gent plan generated.

As the maps show, the hypothesis clearly holds for coupled domains with longer
plans (LOGISTICS, and ROVERS). In the coupled domain of COOPERATIVE PATHFIND-
ING, the diagonal is also present, but because of shorter repaired plans, it degenerated
considerably. In the experiment with SATELLITES, the diagonal is not present.

These results support Hypothesis 2 with an auxiliary observation, that the effect is
decreasing as the coupling of the domain decreases.

6 Related Work
There are several approaches capable to drive multiagent team activities in an environ-
ment with uncertain dynamics.

Firstly, there is a body of literature dealing with and extending models of decen-
tralized partially observable Markov Decision Processes (Dec-POMDPs) [1]. A Dec-
POMDP model leads to computation of a policy for the agents in the environment
ensuring that by following it, the team reaches (joint) rewards. The model assumes
only partial observability of the environment and it is capable of capturing various
eventualities which can occur in the environment. The eventualities, however, have to
be probabilistically known a priori, such that a model of action outcomes can be con-
structed before planning. Dec-POMDP solvers do not scale well to larger problems,
especially when the model of run-time action failures is a priori unknown. The plan re-
pairing algorithms proposed in this article do not require an explicit failure model as an
input. The price the plan repairing algorithms pay is their inefficiency in problems with
failures taking the system far from the presumed evolution based on the original plan
and rate of such failures as shown in [10]. A simplified single-agent models described
by Markov Decision Processes (MDP) were tackled by scalable techniques of online
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Figure 9: The maps present prefix (u on y-axis) vs. suffix (v on x-axis) preserving
repairing algorithms by a success rate against replanning in the repair time for all do-
mains with three agents and p = 0.3. Red color represents repair strategies faster then
replanning. The top-left to bottom-right diagonal represent algorithms neither overus-
ing or underusing the original plan.
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policy replanning by problem determinization e.g., in FF-Replan [16]. Determinization
approaches are related to the online replanning scheme. Since we do not assume the
probabilistic model of the failures for the multiagent plan repair algorithms, we cannot
prepare the (partial) policies using the determinization of the model. Our approach
focuses on efficiency of the replanning process per se, when it is needed because of a
failure. In other words, plan repair assumes an dynamic and optimistic determinization
of the problem based on the original plan.

Secondly, single-agent Contingency [11], Fault Tolerant [7] and Conformant [14]
planning techniques facilitate classical-style planning for domains with non-probabilistic
uncertainty in either action outcomes or state the system happens to be in. However,
again, in order to plan for actions in such domains, the possible contingencies and
action models in the environment must be known before the planning phase. In the
multiagent plan repair, it is assumed any possible outcome of an action in general. In
Contingency, Fault Tolerant, or Conformant planning such assumption would lead to
actions possibly taking the environment to any state. Thus a complete graph represent-
ing all transitions would render the techniques unusable.

Lastly, the idea of macro actions used for single-agent plan repair [15] build upon
the positive results of planning with prescribed sequences of primitive actions. The
technique stemmed from the area of integrating planning and machine learning [4] and
was adapted to describe parts of the repaired plan by fixed macro actions. In respect to
the recency of the techniques, it is not surprising that it was not extended for multiagent
planning yet.

7 Conclusion
Based on the theoretical and experimental results, we can come up with a summary of
heuristic approaches in form of simply usable advices decreasing computation and/or
communication overheads during repairing of multiagent plans. These advices can
be used for various plan repairing approaches targeting systems with planning agents
reusing the original plan in form of combination of prefix and suffix as we proposed in
the generalized repair. The results were verified for plan repairing techniques utilizing
preservation of the original plan and using an CSP-based multiagent planner to fill
prospective discontinuities in the repairing plan. The advices are:

1. Use plan reuse based on generalized repair only with plans of polynomially
bounded length.

2. Prefer smaller numbers of involved agents in the plan repairing process.
3. Prefer prefix preserving repairing techniques when repairing failures with long

dependencies among different agents.
4. Prefer m-normal generalized plan repairing algorithms.

This work opens several interesting questions left for the future work. Most notably,
how would another implementation of the underlying multiagent planner affect the
results and would it be possible to integrate principles from single-agent search effort
estimation approaches, e.g., as in [6] to provide more precise hints how to repair during
the execution and repairing process.
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