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Abstract

Enabling interactions of agent-teams and humans is a critical area of re-

search, with encouraging progress in the past few years. However, previous

work suffers from three key limitations: (i) limited human situational aware-

ness, reducing human effectiveness in directing agent teams, (ii) the agent

team’s rigid interaction strategies that limit team performance, and (iii) lack

of formal tools to analyze the impact of such interaction strategies. This arti-

cle presents a software prototype called DEFACTO (Demonstrating Effective

Flexible Agent Coordination of Teams through Omnipresence). DEFACTO

is based on a software proxy architecture and 3D visualization system, which

addresses the three limitations mentioned above. First, the 3D visualization

interface enables human virtual omnipresence in the environment, improv-

ing human situational awareness and ability to assist agents. Second, gen-

eralizing past work on adjustable autonomy, the agent team chooses among
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a variety of team-level interaction strategies, even excluding humans from

the loop in extreme circumstances. Third, analysis tools help predict the per-

formance of (and choose among) different interaction strategies. DEFACTO

is illustrated in a future disaster response simulation scenario, and extensive

experimental results are presented.

1 Introduction

Human interaction with agent teams is critical in a large number of current and

future applications[2, 5, 18, 3]. For example, current efforts emphasize humans

collaboration with robot teams in space explorations, humans teaming with robots

and agents for disaster rescue, as well as humans collaborating with multiple soft-

ware agents for training [4, 7].

This article focuses on the challenge of improving the effectiveness of human

collaboration with agent teams. Previous work has reported encouragingprogress

in this arena, e.g., via proxy-based integration architectures [13], adjustable auton-

omy [17, 4] and agent-human dialog [1]. Despite this encouraging progress, pre-

vious work suffers from three key limitations. First, when interacting with agent

teams acting remotely, human effectiveness is hampered by low-quality interfaces.

Techniques that provide tele-presence via video are helpful [5], butcannot provide

the global situation awareness. Second, agent teams have been equipped with ad-

justable autonomy (AA)[18] but not the flexibility critical in such AA. Indeed, the

appropriate AA method varies from situation to situation. In some cases the human

user should make most of the decisions. However, in other cases human involve-

ment may need to be restricted. Such flexible AA techniques have been developed
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in domains where humans interact with individual agents [17], but whetherthey

apply to situations where humans interact with agent teams is unknown. Third,

current systems lack tools to analyze the impact of human involvement in agent

teams, yet these are key to flexible AA reasoning.

This article reports on a software prototype system, DEFACTO (Demonstrat-

ing Effective Flexible Agent Coordination of Teams through Omnipresence), that

enables agent-human collaboration and addresses the three shortcomingsoutlined

above. First, DEFACTO incorporates a visualizer that allows for the humanto

have anomnipresentinteraction with remote agent teams. This is referred to this

as the Omni-Viewer, and it combines two modes of operation. The Navigation

Mode allows for a navigable, high quality 3D visualization of the world, whereas

the Allocation Mode provides a traditional 2D view and a list of possible task allo-

cations that the human may perform. Human experts can quickly absorb on-going

agent and world activity, taking advantage of both the brain’s favored visual object

processing skills (relative to textual search, [12]), and the fact that 3D representa-

tions can be innately recognizable, without the layer of interpretation required of

map-like displays or raw computer logs. The Navigation mode enables the human

to understand the local perspectives of each agent in conjunction with theglobal,

system-wide perspective that is obtained in the Allocation mode.

Second, to provide flexible AA, this article generalizes the notion ofstrategies

from single-agent single-human context [17]. In this work, agents may flexibly

choose among team strategies for adjustable autonomy instead of only individual

strategies; thus, depending on the situation, the agent team has the flexibility to

limit human interaction, and may in extreme cases exclude humans from the loop.

Third, this article provides a formal mathematical basis of such team strategies.
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These analysis tools help agents in flexibly selecting the appropriate strategyfor a

given situation.

Results are presented from detailed experiments with DEFACTO, which reveal

two major surprises. First, contrary to previous results[18], human involvement is

not always beneficial to an agent team— despite their best efforts, humans may

sometimes end up hurting an agent team’s performance. Second, increasing the

number of agents in an agent-human team may also degrade the team performance,

even though increasing the number of agents in a pure agent team under identical

circumstances improves team performance. Fortunately, in both the surprising in-

stances above, DEFACTO’s flexible AA strategies alleviate such problematicsitu-

ations.

DEFACTO serves as a prototype of a future disaster response system. In par-

ticular, the key hypothesis in DEFACTO is that, in the future, teams comprised

of agent-assisted response vehicles, robots and people can work together during

a disaster rescue. A more current application is training incident commanders by

simulating agent behaviors to act as the disaster rescue personnel (resources) and

allowing the incident commander to allocate them. DEFACTO has been repeatedly

demonstrated to key police and fire department personnel in Los Angeles area, with

very positive feedback.

2 Mathematical Model of Strategy Selection

Whereas strategies in Scerri’s work [17] are based on a single decisionthat is se-

quentially passed from agent to agent, here it is assumed that there are multiple

homogeneous agents concurrently working on multiple tasks interacting with a sin-
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gle human user. These assumptions (which fit the domain) are exploited to obtain a

reduced version of the model and simplify the computation in selecting strategies.

2.1 Background on individual strategies

A decision,d, needs to be made. There aren entities,e1 . . .en, who can potentially

make the decision. These entities can be human users or agents. The expected

quality of decisions made by each of the entities,EQ = {EQei,d(t) : R →

R}n
i=1

, is known, though perhaps not exactly.P = {P⊤(t) : R → R} represents

continuous probability distributions over the time that the entity in control will

respond (with a decision of qualityEQe,d(t)). The cost of delaying a decision

until time t, denoted as{W : t → R}. The set of possible wait-cost functions

is W. W(t) is non-decreasing and at some point in time,Γ, when the costs of

waiting stop accumulating (i.e.,∀t ≥ Γ,∀W ∈ W,W(t) = W(Γ)).

To calculate the EU of an arbitrary strategy, the model multiplies the prob-

ability of response at each instant of time with the expected utility of receiving a

response at that instant, and then sum the products. Hence, for an arbitrary continu-

ous probability distribution ifec represents the entity currently in decision-making

control:

EU =

∫
∞

0

P⊤(t)EUec,d(t) .dt (1)

Since this article’s primary interest is in the effects of delay caused by trans-

fer of control, the expected utility of a decision at a certain instant,EUec,d(t),
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is decomposed into two terms. The first term captures the quality of the de-

cision, independent of delay costs, and the second captures the costs of delay:

EUec,dt = EQe,d(t) −W(t). To calculate the EU of a strategy, the probability of

response function and the wait-cost calculation must reflect the control situation at

that point in the strategy. If a human,H1 has control at timet, P⊤(t) reflectsH1’s

probability of responding att.

2.2 Introduction of team level strategies

AT Strategy: Starting from the individual model, team levelAT strategy, de-

noted asAT , are introduced in the following way: Start with Equation 2 for single

agentAT and single taskd. Obtain Equation 3 by discretizing time,t = 1, ..., T

and introducing set∆ of tasks. Probability of agentAT performing a taskd at

time t is denoted asPa,d(t). Equation 4 is a result of the introduction of the set

of agentsAG = a1, a2, ..., ak. Assume the same quality of decision for each

task performed by an agent and that each agentAT has the same quality so that

EQa,d(t) reduces toEQ(t). Given the assumption that each agentAT at time step

t performs one task,
∑

d∈∆
Pa,d(t) = 1 which is depicted in Equation 5. Then

express
∑ak

a=a1

∑
d∈∆

Pa,d(t) × Wa,d(t) as the total team penalty for time slicet,

i.e, at time slicet, subtract one penalty unit for each not completed task as seen in

Equation 6. Assuming penalty unitPU = 1 finally resulting Equation 7.
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EUa,d =

∫
∞

0

P⊤a(t) × (EQa,d(t) −W(t)).dt (2)

EUa,∆ =
T∑

t=1

∑
d∈∆

Pa,d(t) × (EQa,d(t) −W(t)) (3)

EUAT ,∆ =
T∑

t=1

ak∑
a=a1

∑
d∈∆

Pa,d(t) × (EQa,d(t) − Wa,d(t)) (4)

EUAT ,∆,AG =
T∑

t=1

(

ak∑
a=a1

EQ(t) −

ak∑
a=a1

∑
d∈∆

Pa,d(t) × Wa,d(t)) (5)

EUAT ,∆,AG =
T∑

t=1

(|AG| × EQ(t) − (|∆| − |AG| × t) × PU) (6)

EUAT ,∆,AG = |AG| ×
T∑

t=1

(EQ(t) − (
|∆|

AG
− t)) (7)

H Strategy: The difference betweenEUH,∆,AG andEUAT ,∆,AG results from

three key observations: First, the human is able to choose strategic decisions with

higher probability, therefore hisEQH(t) is greater thanEQ(t) for both individual

and team levelAT strategies. Second, this article hypothesizes that a human cannot
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control all the agentsAG at disposal, but due to cognitive limits will focus on

a smaller subset,AGH of agents (evidence of limits onAGH appears later in

Figure 6-a).|AGH | should slowly converge toB, which denotes its upper limit, but

never exceedAG. Each functionf(AG) that modelsAGH should be consistent

with three properties: i) ifB → ∞ thenf(AG) → AG; ii) f(AG) < B; iii)

f(AG) < AG. Third, there is a delay in human decision making compared to

agent decisions. This phenomena is modeled by shiftingH to start at time slice

tH . FortH − 1 time slices the team incurs a cost|∆| × (tH − 1) for all incomplete

tasks. By insertingEQH(t) andAGH into the time shifted utility equation forAT

strategy to obtain theH strategy (Equation 8).

AT H Strategy: TheAT H strategy is a composition ofH andAT strategies

(see Equation 9).

EUH,∆,AG = |AGH | ×
T∑

t=tH

(EQH(t)

−(
|∆|

AGH

− (t − tH))) − |∆| × (tH − 1) (8)

EUAT H,∆,AG = |AG| ×

tH−1∑
t=1

(EQ(t) − (
|∆|

|AG|
− t))

+|AGH | ×
T∑

t=tH

(EQH(t) − (
|∆| − |AG|

|AGH |
− (t − tH)))) (9)
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Strategy utility prediction: Given the strategy equations and the assumption

that EQH,∆,AG is constant and independent of the number of agents the graphs

representing strategy utilities are plotted (Figure 1). Figure 1 shows the number of

agents on the x-axis and the expected utility of a strategy on the y-axis. The focus is

on humans with different skills: (a) lowEQH , low B (b) highEQH , low B (c) low

EQH , highB (d) highEQH , highB. The last graph representing a human with

high EQH and highB follows results presented in [13] (and hence the expected

scenario), the curve ofAH andAT H appears to be flattening out to eventually

cross the line ofAT . Moreover, observe that the increase inEQH increases the

slope forAH andAT H for small number of agents, whereas the increase ofB

causes the curve to maintain a slope for larger number of agents, before eventually

flattening out and crossing theAT line.

3 DEFACTO System Details

DEFACTO consists of two major components: the Omni-Viewer and a team of

proxies (see Figure 2). The Omni-Viewer allows for global and local views. The

proxies allow for team coordination and communication, but more importantly also

implement flexible human-agent interaction via Adjustable Autonomy. Currently,

DEFACTO is applied to a disaster rescue domain. The incident commander of the

disaster acts as theuser of DEFACTO. This disaster can either be “man made”

(terrorism) or “natural” (earthquake). The experiments in a later section focus on

two urban areas: a square block that is densely covered with buildings (from Kobe,

Japan) and the University of Southern California (USC) campus , which ismore

sparsely covered with buildings. In this scenario, several buildings areinitially on
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fire, and these fires spread to adjacent buildings if they are not quickly contained.

The goal is to have a human interact with the team of fire engines in order to save

the most buildings. The overall system architecture applied to disaster response can

be seen in Figure 2. While designed for real world situations, DEFACTO can also

be used as a training tool for incident commanders when hooked up to a simulated

disaster scenario.

3.1 Omni-Viewer

An omnipresent viewer, or Omni-Viewer (see Figure 3), has been developed in

order to allow the human user fluid interaction with remote agent teams. While

a global view is obtainable from a two-dimensional map, a local perspectiveis

best obtained from a 3D viewer, since the 3D view incorporates the perspective

and occlusion effects generated by a particular viewpoint. The literature on 2D-

versus 3D-viewers is ambiguous. For example, spatial learning of environments

from virtual navigation has been found to be impaired relative to studying simple

maps of the same environments [14]. On the other hand, the problem may be

that many virtual environments are relatively bland and featureless. Ruddle points

out that navigating virtual environments can be successful if rich, distinguishable

landmarks are present [15].

To address these discrepant goals, the Omni-Viewer incorporates both acon-

ventional map-like 2D view, Allocation Mode (Figure 3-d) and a detailed 3D

viewer, Navigation Mode (Figure 3-c). The Allocation mode shows the global

overview as events are progressing and provides a list of tasks that theagents have

transferred to the human. The Navigation mode shows the same dynamic world

view, but allows for more freedom to move to desired locations and views. Inpar-
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ticular, the user can drop to the virtual ground level, thereby obtaining the world

view (local perspective) of a particular agent. At this level, the user can“walk”

freely around the scene, observing the local logistics involved as various entities

are performing their duties. This can be helpful in evaluating the physical ground

circumstances and altering the team’s behavior accordingly. It also allows the user

to feel immersed in the scene where various factors (psychological, etc.) may come

into effect.

In order to prevent communication bandwidth issues, it is assumed that a high

resolution 3D model has already been created and the only data that is transferred

during the disaster are important changes to the world. Generating this suitable 3D

model environment for the Navigation mode can require months or even years of

manual modeling effort, as is commonly seen in the development of commercial

video-games. However, to avoid this level of effort, the work of You et. al. [20]

is leveraged toward rapid, minimally assisted construction of polygonal models

from LiDAR (Light Detection and Ranging) data. Given the raw LiDAR point

data, buildings can automatically be segmented from the ground and create the

high resolution model that the Navigation mode utilizes. The construction of the

USC campus and surrounding area required only two days using this approach.

LiDAR is an effective way for any new geographic area to be easily inserted into

the Omni-Viewer.

3.2 Proxy: Team Coordination

The critical role of intelligent agents will be to manage coordination between all

members of the response team. Specifically, DEFACTO uses coordination algo-

rithms inspired by theories of teamwork to manage the distributed response [17].
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The general coordination algorithms are encapsulated inproxies, with each team

member having its own proxy and representing it in the team. The current ver-

sion of the proxies is calledMachinetta[16] and extends the successful Teamcore

proxies [13]. Machinetta is implemented in Java and is freely available on the

web. Notice that the concept of a reusable proxy differs from many other “multi-

agent toolkits” in that it provides the coordinationalgorithms, e.g., algorithms for

allocating tasks, as opposed to theinfrastructure, e.g., APIs for reliable communi-

cation.

The Machinetta software consists of five main modules, three of which are do-

main independent and two of which are tailored for specific domains. The three

domain independent modules are for coordination reasoning, maintaining local be-

liefs (state) and adjustable autonomy. The domain specific modules are for com-

munication between proxies and communication between a proxy and a team mem-

ber. The modules interact with each other only via the local state with a blackboard

design and are designed to be “plug and play.” Thus new adjustable autonomy al-

gorithms can be used with existing coordination algorithms. The coordination rea-

soning is responsible for reasoning about interactions with other proxies, thereby

implementing the coordination algorithms. The adjustable autonomy algorithms

reason about the interaction with the team member, providing the possibility for

the team member to make any coordination decision instead of the proxy.

Communication: communication with other proxies

Coordination: reasoning about team plans and communication

State: the working memory of the proxy
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Adjustable Autonomy: reasoning about whether to act autonomously or pass con-

trol to the team member

RAP Interface: communication with the team member

Teams of proxies implementteam oriented plans(TOPs) which describe joint

activities to be performed in terms of the individualroles to be performed and

any constraints between those roles. Generally, TOPs are instantiated dynamically

from TOP templates at runtime when preconditions associated with the templates

are filled. Typically, a large team will be simultaneously executing many TOPs.

For example, a disaster response team might be executing multiple fight fire TOPs.

Such fight fire TOPs might specify a breakdown of fighting a fire into activities such

as checking for civilians, ensuring power and gas is turned off, and spraying water.

Constraints between these roles will specify interactions such as requiredexecution

ordering and whether one role can be performed if another is not currently being

performed. Notice that TOPs do not specify the coordination or communication

required to execute a plan; the proxy determines the coordination that should be

performed.

Current versions of Machinetta include state-of-the-art algorithms for plan in-

stantiation [11], role allocation [25], information sharing [24], task deconfliction

[11], and adjustable autonomy [17]. Key algorithms, including role allocation, re-

source allocation, information sharing and plan instantiation are based on theuse of

tokenswhich are “pushed” onto the network and routed to where they are required

by the proxies. For example, the role allocation algorithm, explained here [25],

represents each role to be allocated with a token and pushes the tokens around the
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network until a sufficiently capable and available team member is found to execute

the role. The implementation of the coordination algorithms uses the abstraction

of a simple mobile agent to implement the tokens, leading to robust and efficient

software.

3.3 Proxy: Adjustable Autonomy

Adjustable autonomy refers to an agent’s ability to dynamically change its own

autonomy, possibly to transfer control over a decision to a human. Previouswork

on adjustable autonomy could be categorized as either involving a single person

interacting with a single agent (the agent itself may interact with others) or a single

person directly interacting with a team. In the single-agent single-human cate-

gory, the concept of flexible transfer-of-control strategy has shown promise [17].

A transfer-of-control strategy is a preplanned sequence of actions totransfer con-

trol over a decision among multiple entities. For example, anAH1H2 strategy

implies that an agent (A) attempts a decision and if the agent fails in the decision

then the control over the decision is passed to a humanH1, and then ifH1 cannot

reach a decision, then the control is passed toH2. Since previous work focused on

single-agent single-human interaction, strategies were individual agentstrategies

where only a single agent acted at a time.

An optimal transfer-of-control strategy optimally balances the risks of notget-

ting a high quality decision against the risk of costs incurred due to a delay in

getting that decision. Flexibility in such strategies implies that an agent dynami-

cally chooses the one that is optimal, based on the situation, among multiple such

strategies (H1A, AH1, AH1A, etc.) rather than always rigidly choosing one strat-

egy. The notion of flexible strategies, however, has not been applied in the context

14



of humans interacting with agent-teams. Thus, a key question is whether such

flexible transfer of control strategies are relevant in agent-teams, particularly in a

large-scale application such as ours.

DEFACTO aims to answer this question by implementing transfer-of-control

strategies in the context of agent teams. One key advance in DEFACTO is that the

strategies are not limited to individual agent strategies, but also enables team-level

strategies. For example, rather than transferring control from a human toa single

agent, a team-level strategy could transfer control from a human to an agent-team.

Concretely, each proxy is provided with all strategy options; the key is to select

the right strategy given the situation. An example of a team level strategy would

combineAT Strategy andH Strategy in order to makeAT H Strategy. The default

team strategy,AT , keeps control over a decision with the agent team for the entire

duration of the decision. TheH strategy always immediately transfers control

to the human.AT H strategy is the conjunction of team levelAT strategy with

H strategy. This strategy aims to significantly reduce the burden on the user by

allowing the decision to first pass through all agents before finally going to the

user, if the agent team fails to reach a decision.

4 Experiments and Evaluation

The DEFACTO system was evaluated in three key ways, with the first two focusing

on key individual components of the DEFACTO system and the last attempting to

evaluate the entire system. First, detailed experiments were performed comparing

the effectiveness of Adjustable Autonomy (AA) strategies over multiple users. In

order to provide DEFACTO with a dynamic rescue domain it is connected to a sim-
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ulator. The previously developed RoboCup Rescue simulation environment[9] is

used. In this simulator, fire engine agents can search the city and attempt to extin-

guish any fires that have started in the city. To interface with DEFACTO, each fire

engine is controlled by a proxy in order to handle the coordination and execution

of AA strategies. Consequently, the proxies can try to allocate fire enginesto fires

in a distributed manner, but can also transfer control to the more expert user. The

user can then use the Omni-Viewer in Allocation mode to allocate engines to the

fires that he has control over. In order to focus on the AA strategies (transferring

the control of task allocation) and not have the users ability to navigate interfere

with results, the Navigation mode was not used during this first set of experiments.

The results of these experiments are shown in Figure 5, which shows the results

of subjects 1, 2, and 3. Each subject was confronted with the task of aiding fire

engines in saving a city hit by a disaster. For each subject, three strategiesare

tested, specifically,H, AH andAT H; their performance was compared with the

completely autonomousAT strategy. AH is an individual agent strategy, tested

for comparison withAT H, where agents act individually, and pass those tasks to a

human user that they cannot immediately perform. Each experiment was conducted

with the same initial locations of fires and building damage. For each strategy

tested, varied the number of fire engines between 4, 6 and 10. Each chart in Figure

5 shows the varying number of fire engines on the x-axis, and the team performance

in terms of numbers of building saved on the y-axis. For instance, strategyAT

saves 50 building with 4 agents. Each data point on the graph is an averageof three

runs. Each run itself took 15 minutes, and each user was required to participate in

27 experiments, which together with 2 hours of getting oriented with the system,

equates to about 9 hours of experiments per volunteer.
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Figure 5 enables us to conclude the following:

• Human involvement with agent teams does not necessarily lead to improve-

ment in team performance.Contrary to expectations and prior results, hu-

man involvement does not uniformly improve team performance, as seen by

human-involving strategies performing worse than theAT strategy in some

instances. For instance, for subject 3, human involving strategies such as

AH provide a somewhat higher quality thanAT for 4 agents, yet at higher

numbers of agents, the strategy performance is lower thanAT . While the

strategy model predicted such an outcome in cases ofHigh B, LowEQH ,

the expected scenario wasHigh B, HighEQH .

• Providing more agents at a human’s command does not necessarily improve

the agent team performanceAs seen for subject 2 and subject 3, increas-

ing agents from 4 to 6 givenAH andAT H strategies is seen to degrade

performance. In contrast, for theAT strategy, the performance of the fully

autonomous agent team continues to improve with additions of agents, thus

indicating that the reduction inAH andAT H performance is due to human

involvement. As the number of agents increase to 10, the agent team does

recover.

• No strategy dominates through all the experiments given varying numbersof

agents.For instance, at 4 agents, human-involving strategies dominate the

AT strategy. However, at 10 agents, theAT strategy outperforms all possible

strategies for subjects 1 and 3.

• Complex team-level strategies are helpful in practice: AT H leads to im-
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provement overH with 4 agents for all subjects, although surprising domi-

nation ofAH overAT H in some cases indicates thatAH may also a useful

strategy to have available in a team setting.

Note that the phenomena described range over multiple users, multiple runs,

and multiple strategies. The most important conclusion from these figures is that

flexibility is necessary to allow for the optimal AA strategy to be applied. The

key question is then whether the mathematical model can be leveraged to select

among strategies. However, first the model must be checked if it can explain the

phenomenon in the domain accurately. To that end, the predictions are compared

at the end of Section 2 with the results reported in Figure 5. If the “dip” observed

at 6 agents inAH andAT H strategies is temporarily ignored, then subject 2 may

be modeled as aHigh B, HighEQH subject, while subjects 1 and 3 modeled via

High B, LowEQH . (Figure 6-(b) indicates an identical improvement in H for 3

subjects with increasing agents, which suggests that B is constant acrosssubjects.)

Thus, by estimating theEQH of a subject by checking the “H” strategy for small

number of agents (say 4), and comparing toA strategy, the appropriate strategy

may now be selected.

Unfortunately, the strategies including the humans and agents (AH andAT H)

for 6 agents show a noticeable decrease in performance for subjects 2 and 3 (see

Figure 5), whereas the mathematical model would have predicted an increase in

performance as the number of agents increased (as seen in Figure 1). It would be

useful to understand which of the key assumptions in the model has led to such a

mismatch in prediction.

The crucial assumptions in the model were that while numbers of agents in-
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crease,AGH steadily increases andEQH remains constant. Thus, the dip at 6

agents is essentially affected by eitherAGH or EQH . First, AGH is tested in

the domain. The amount of effective agents,AGH , is calculated by dividing how

many total allocations each subject made by how many theAT strategy made per

agent, assumingAT strategy effectively uses all agents. Figure 6-(a) shows the

number of agents on the x-axis and the number of agents effective used,AGH , on

the y-axis; theAT strategy, which is using all available agents, is also shown as a

reference. However, the amount of effective agents is actually aboutthe same in 4

and 6 agents. This would not account for the sharp drop seen in the performance.

Then attention is turned to theEQH of each subject. One reduction inEQH could

be because subjects simply did not send as many allocations totally over the course

of the experiments. This, however is not the case as can be seen in Table 1where

for 6 agents, the total amount of allocations given is comparable to that of 4 agents.

To investigate further, the quality of human allocation is studied to see if it has

degraded. For the domain, the more fire engines that fight the same fire, themore

likely it is to be extinguished and in less time. For this reason, the amount of agents

that were tasked to each fire is a good indicator of the quality of allocations that the

subject makes. The model expected the amount of agents that each subject tasked

out to each fire would remain independent of the number of agents. Figure7 shows

the number agents on the x-axis and the average amount of fire engines allocated

to each fire on the y-axis.AH andAT H for 6 agents result in significantly less

average fire engines per task (fire) and therefore less averageEQH .

The next question is then to understand why for 6 agentsAH andAT H result

in lower average fire engines per fire. One hypothesis is the possible interference

among the agents’ self allocations vs human task allocations at 6 agents. Table2
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shows the number of task changes for 4, 6 and 10 agents forAH andAT H strate-

gies, showing that maximum occurs at 6 agents. A task change occurs because an

agent pursuing its own task is provided another task by a human or a human-given

task is preempted by the agent. Thus, when running mixed agent-human strategies,

the possible clash of tasks causes a significant increase task changes.While the rea-

son for such interference peaking at 6 may be domain specific, the key lesson is

that interference has the potential to occur in complex team-level strategies.The

model would need to take into account such interference effects by not assuming a

constantEQH .

The second aspect of the evaluation was to explore the benefits of the Naviga-

tion mode (3D) in the Omni-Viewer over solely an Allocation mode (2D). 2 tests

were performed on 20 subjects. All subjects were familiar with the USC cam-

pus. Test 1 showed Navigation and Allocation mode screenshots of the university

campus to subjects. Subjects were asked to identify a unique building on campus,

while timing each response. The average time for a subject to find the building

in 2D was 29.3 seconds, whereas the 3D allowed them to find the same building

in an average of 17.1 seconds. Test 2 again displayed Navigation and Allocation

mode screenshots of two buildings on campus that had just caught fire. InTest 2,

subjects were asked first asked to allocate fire engines to the buildings using only

the Allocation mode. Then subjects were shown the Navigation mode of the same

scene. 90 percent of the subjects actually chose to change their initial allocation,

given the extra information that the Navigation mode provided.

Third, the complete DEFACTO system has been periodically demonstrated to

key government agencies, public safety officials and disaster researchers for assess-

ing its utility by the ultimate consumers of the technology, with exciting feedback.
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Indeed they were eager to deploy DEFACTO and begin using it as a research tool

to explore the unfolding of different disasters. For example, during oneof the

demonstrations on Nov 18, 2004 Gary Ackerman, a Senior Research Associate at

the Center for Nonproliferation Studies at the Monterey Institute of International

Studies pointed out in reference to DEFACTO,“This is exactly the type of sys-

tem we are looking for”to study the potential effect of terrorist attacks. Also, the

authors have met with several public safety officials about using DEFACTO as a

training tool for their staff. According to Los Angeles County Fire Department

Fire Captain Michael Lewis:“Effective simulation programs for firefighters must

be realistic, relevant in scope, and imitate the communication challenges on the

fire ground. DEFACTO focuses on these very issues.”

5 Related Work

First, current methods of training within the Los Angeles Fire Department (LAFD)

are discussed. In order to train incident commanders, the LAFD uses a projection

screen to simulate the disaster (Figure 8-(a)). In addition, the participating inci-

dent commander is seated at a desk, directing an assistant to take notes (Figure

8-(b)). Other firefighters remain in the back of the room and communicate to the

incident commander via radios. Firefighters are taken temporarily out of duty in

order to help act out these pre-determined scenarios in order to test the incident

commander’s abilities.

Second, current simulation tools are mentioned. Among the current tools

aimed at simulating rescue environments, it is important to mention products like

JCATS [22] and EPICS [10]. JCATS represents a self-contained, high-resolution
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joint simulation in use for entity-level training in open, urban and subterranean en-

vironments. Developed by Lawrence Livermore National Laboratory, JCATS gives

users the capability to detail the replication of small group and individual activi-

ties during a simulated operation. At this point however, JCATS cannot simulate

agents. Finally, EPICS is a computer-based, scenario-driven, high-resolution simu-

lation. It is used by emergency response agencies to train for emergencysituations

that require multi-echelon and/or inter-agency communication and coordination.

Developed by the U.S. Army Training and Doctrine Command Analysis Center,

EPICS is also used for exercising communications and command and control pro-

cedures at multiple levels. Similar to JCATS however, EPICS does not currently

allow agents to participate in the simulation.

Third, related work in the area of agents is discussed. Hill et al’s work is asim-

ilar immersive training tool [21]. Their work focused more on multi-modal dialog

and emphasize single agent interaction along predefined story lines, whereas this

work focuses on adjustable autonomy and coordinating large numbers of agents

in a dynamic, complex fire-fighting domain. In the past, agent-based simulations

have been designed with the aim of training military helicopter pilots as well [6].

Our simulations allow for more complex scenarios and also allow for adjustable

autonomy between the trainee and the team of agents. Also, there is some related

work in agents being done at Honeywell Laboratories that assists first responders

[23]. In their work, however they focus on helping human first responders com-

municate and coordinate, as opposed to this work, where a single first responder

manage and assist a team of agents.

This work is in the same thread as Scerri et al’s previous work on robot-agent-

person (RAP) teams for disaster rescue [18] is closely related to DEFACTO. This
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work takes a significant step forward in comparison. First, the omni-vieweren-

ables navigational capabilities improving human situational awareness not present

in previous work. Second, provide team-level strategies are provided,which are

experimentally verified, absent in that work. Third, extensive experimentation is

provided, and illustrates that some of the conclusions reached in [18] were indeed

preliminary. For example, they conclude that human involvement is always bene-

ficial to agent team performance, while these more extensive results indicate that

sometimes agent teams are better off excluding humans from the loop. Human

interactions in agent teams has also been investigated in [2, 20], and there issig-

nificant research on human interactions with robot-teams [5, 3]. However, they do

not use flexible AA strategies and/or team-level AA strategies. Furthermore, the

experimental results here may assist these researchers in recognizing the potential

for harm that humans may cause to agent or robot team performance. Significant

attention has been paid in the context of adjustable autonomy and mixed-initiative

in single-agent single-human interactions [8, 1]. However, this article focuses on

new phenomena that arise in human interactions with agent teams.

6 Conclusion

This article presents a large-scale operational prototype, DEFACTO. DEFACTO

incorporates state of the art proxy framework, 3D visualization and Adjustable

Autonomy (AA) human-interaction reasoning. This provides three key advances

over previous work. First, DEFACTO’s Omni-Viewer enables the human to both

improve situational awareness and assist agents, by providing a navigable 3D view

along with a 2D global allocation view. Second, DEFACTO incorporates flexible

23



AA strategies, even excluding humans from the loop in extreme circumstances.

Third, analysis tools help predict the performance of (and choose among) differ-

ent interaction strategies. We performed detailed experiments using DEFACTO,

leading to some surprising results. These results illustrate that an agent teammust

be equipped with flexible strategies for adjustable autonomy, so that they may se-

lect the appropriate strategy autonomously. Exciting feedback from DEFACTO’s

ultimate consumers illustrates its promise and potential for real-world
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9 Tables

Strategy H AH AT H

# of agents 4 6 10 4 6 10 4 6 10

Subject 1 91 92 154 118 128 132 104 83 64
Subject 2 138 129 180 146 144 72 109 120 38
Subject 3 117 132 152 133 136 97 116 58 57

Table 1: Total amount of allocations given.
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Strategy 4 agents 6 agents 10 agents

AH 34 75 14
AT H 54 231 47

Table 2: Task conflicts for subject 2.
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10 Figure Captions

Figure 1: Model predictions for various users.

Figure 2: DEFACTO system applied to a disaster rescue.

Figure 3: Omni-Viewer during a scenario: (a) Multiple fires start across the

USC campus (b) The Incident Commander uses the Navigation mode to quickly

grasp the situation (c) Navigation mode shows a closer look at one of the fires (d)

Allocation mode is used to assign a fire engine to the fire (e) The fire engine has

arrived at the fire (f) The fire has been extinguished.

Figure 4: Proxy Architecture

Figure 5: Performance of subjects 1, 2, and 3.

Figure 6: (a)AGH and (b)H performance.

Figure 7: Amount of agents per fire assigned by subjects 1, 2, and 3

Figure 8: Current Training Methods: (a) projected photo of fire and (b) incident

commanders at a table
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11 Figures
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