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Abstract

Enabling interactions of agent-teams and humans is aaraiea of re-
search, with encouraging progress in the past few years.edawprevious
work suffers from three key limitations: (i) limited humaitustional aware-
ness, reducing human effectiveness in directing agentseéimthe agent
team’s rigid interaction strategies that limit team pemiance, and (iii) lack
of formal tools to analyze the impact of such interactioatstgies. This arti-
cle presents a software prototype called DEFACTO (Dematisty Effective
Flexible Agent Coordination of Teams through OmnipresgnB&EFACTO
is based on a software proxy architecture and 3D visuatinatystem, which
addresses the three limitations mentioned above. Fiss3Ehvisualization
interface enables human virtual omnipresence in the emviemt, improv-
ing human situational awareness and ability to assist age$¢cond, gen-

eralizing past work on adjustable autonomy, the agent tdavnoses among



a variety of team-level interaction strategies, even adoly humans from
the loop in extreme circumstances. Third, analysis todis peedict the per-
formance of (and choose among) different interactionegias. DEFACTO
is illustrated in a future disaster response simulatiomade, and extensive

experimental results are presented.

1 Introduction

Human interaction with agent teams is critical in a large number of current and
future applications[2, 5, 18, 3]. For example, current efforts enipadsumans
collaboration with robot teams in space explorations, humans teaming with robots
and agents for disaster rescue, as well as humans collaborating with mudfiple s
ware agents for training [4, 7].

This article focuses on the challenge of improving the effectivenessrmfhu
collaboration with agent teams. Previous work has reported encounagiggess
in this arena, e.g., via proxy-based integration architectures [13],talljasauton-
omy [17, 4] and agent-human dialog [1]. Despite this encouraging psegpee-
vious work suffers from three key limitations. First, when interacting withnage
teams acting remotely, human effectiveness is hampered by low-quality agerfa
Techniques that provide tele-presence via video are helpful [5Edniot provide
the global situation awareness. Second, agent teams have been douiihpad-
justable autonomy (AA)[18] but not the flexibility critical in such AA. Indedide
appropriate AA method varies from situation to situation. In some cases thenhuma
user should make most of the decisions. However, in other cases hunohreinv

ment may need to be restricted. Such flexible AA techniques have bedopieye



in domains where humans interact with individual agents [17], but whetiegr
apply to situations where humans interact with agent teams is unknown. Third,
current systems lack tools to analyze the impact of human involvement in agent
teams, yet these are key to flexible AA reasoning.

This article reports on a software prototype system, DEFACTO (Demonstrat-
ing Effective Flexible Agent Coordination of Teams through Omnipreseticat
enables agent-human collaboration and addresses the three shortcoutiimgsl
above. First, DEFACTO incorporates a visualizer that allows for the hutman
have anomnipresentnteraction with remote agent teams. This is referred to this
as the Omni-Viewer, and it combines two modes of operation. The Navigation
Mode allows for a navigable, high quality 3D visualization of the world, whsre
the Allocation Mode provides a traditional 2D view and a list of possible task allo
cations that the human may perform. Human experts can quickly absorbimog-g
agent and world activity, taking advantage of both the brain’s favoigeilobject
processing skills (relative to textual search, [12]), and the fact thaepresenta-
tions can be innately recognizable, without the layer of interpretation esjoir
map-like displays or raw computer logs. The Navigation mode enables the human
to understand the local perspectives of each agent in conjunction witfiabal,
system-wide perspective that is obtained in the Allocation mode.

Second, to provide flexible AA, this article generalizes the notiostraitegies
from single-agent single-human context [17]. In this work, agents nexybfly
choose among team strategies for adjustable autonomy instead of only uadlivid
strategies; thus, depending on the situation, the agent team has the flexibility to
limit human interaction, and may in extreme cases exclude humans from the loop.

Third, this article provides a formal mathematical basis of such team strategies



These analysis tools help agents in flexibly selecting the appropriate stfategy
given situation.

Results are presented from detailed experiments with DEFACTO, whichlreve
two major surprises. First, contrary to previous results[18], human ievodnt is
not always beneficial to an agent team— despite their best efforts, lsumay
sometimes end up hurting an agent team’s performance. Second, ingreeesin
number of agents in an agent-human team may also degrade the team pecirma
even though increasing the number of agents in a pure agent team uenlgrad
circumstances improves team performance. Fortunately, in both the sugpnis
stances above, DEFACTO’s flexible AA strategies alleviate such problesiatic
ations.

DEFACTO serves as a prototype of a future disaster response systerat-|
ticular, the key hypothesis in DEFACTO is that, in the future, teams comprised
of agent-assisted response vehicles, robots and people can wottketodering
a disaster rescue. A more current application is training incident comnsahger
simulating agent behaviors to act as the disaster rescue personner¢es and
allowing the incident commander to allocate them. DEFACTO has been repeatedly
demonstrated to key police and fire department personnel in Los Angetesath

very positive feedback.

2 Mathematical Model of Strategy Selection

Whereas strategies in Scerri's work [17] are based on a single detisibis se-
guentially passed from agent to agent, here it is assumed that there ardanultip

homogeneous agents concurrently working on multiple tasks interacting viith a s



gle human user. These assumptions (which fit the domain) are exploited ito@bta

reduced version of the model and simplify the computation in selecting strategies

2.1 Background on individual strategies

A decision,d, needs to be made. There arentities,e; . ..e,, who can potentially
make the decision. These entities can be human users or agents. Thie&xpec
quality of decisions made by each of the entiti#®) = {E£Q.,q(t) : R —
R}, is known, though perhaps not exactBy.= { Pr(t) : R — R} represents
continuous probability distributions over the time that the entity in control will
respond (with a decision of qualit¥ (). 4(t)). The cost of delaying a decision
until time ¢, denoted a§V : t — R}. The set of possible wait-cost functions
is W. W(t) is non-decreasing and at some point in tifiewhen the costs of
waiting stop accumulating (i.ev > T', YWV € W, W(¢) = W(T)).

To calculate the EU of an arbitrary strategy, the model multiplies the prob-
ability of response at each instant of time with the expected utility of receiving a
response at that instant, and then sum the products. Hence, foiitaargdontinu-
ous probability distribution it. represents the entity currently in decision-making

control:

BU = /0 PO EU, () dt 1)

Since this article’s primary interest is in the effects of delay caused by-trans

fer of control, the expected utility of a decision at a certain inst&it,, q(t),



is decomposed into two terms. The first term captures the quality of the de-
cision, independent of delay costs, and the second captures the tasiay
EU,, 4t = EQ. q(t) — W(t). To calculate the EU of a strategy, the probability of
response function and the wait-cost calculation must reflect the coittralisn at

that point in the strategy. If a humaH, has control at time, Pr(¢) reflectsH;’s

probability of responding &t

2.2 Introduction of team level strategies

Ap Strategy: Starting from the individual model, team levdlr strategy, de-
noted asAr, are introduced in the following way: Start with Equation 2 for single
agentA; and single taski. Obtain Equation 3 by discretizing time=1,...,T
and introducing set\ of tasks. Probability of agemd performing a taski at
time t is denoted ag>, 4(¢). Equation 4 is a result of the introduction of the set
of agentsAG = ai,as,...,ar. Assume the same quality of decision for each
task performed by an agent and that each agenhas the same quality so that
EQ,q(t) reduces tdzQ(t). Given the assumption that each agdntat time step

t performs one tasky ", P,a(t) = 1 which is depicted in Equation 5. Then
expressy ok, > ea Paa(t) x W, a(t) as the total team penalty for time slice
i.e, at time slice, subtract one penalty unit for each not completed task as seen in

Equation 6. Assuming penalty umitU = 1 finally resulting Equation 7.



EU, 4= /0 " Pra(t) x (EQualt) — W(t).dt 2)

T
EUsa =YY Paa(t) x (EQqa(t) = W(1)) (3)

t=1deA

T a
EUsra = Z Z Z Py a(t) X (EQad(t) — Wa,a(t)) (4)

t=1 a=a1 dEA

T ag ag
EUnpaac=» (D EQE)— > Y Pualt) x Wau(t)) (5)

t=1 a=a a=a1 deA

T
EUapaAG = Z (JAG| x EQ(t) — (|A| — |AG| x t) x PU) (6)
t=1

T
A

EUag,aa0 = [AG] x 3 _(EQ(t) = (5 — 1) ™
t=1

H Strategy: The difference betweeBUp A ac andEU 4, A ac results from
three key observations: First, the human is able to choose strategic deeisibn
higher probability, therefore hiBQy (¢) is greater tharzQ(t) for both individual

and team level strategies. Second, this article hypothesizes that a human cannot



control all the agentsiG at disposal, but due to cognitive limits will focus on
a smaller subsetAGy of agents (evidence of limits oAG g appears later in
Figure 6-a).|AG | should slowly converge t&, which denotes its upper limit, but
never exceedlG. Each functionf(AG) that modelsAGy should be consistent
with three properties: i) ifB — oo then f(AG) — AG; i) f(AG) < B; iii)
f(AG) < AG. Third, there is a delay in human decision making compared to
agent decisions. This phenomena is modeled by shiffingp start at time slice
ty. Forty — 1 time slices the team incurs a c¢At| x (¢ — 1) for all incomplete
tasks. By insertindZQ  (t) and AGy into the time shifted utility equation fod
strategy to obtain théf strategy (Equation 8).

ArH Strategy: The A H strategy is a composition dff and A strategies

(see Equation 9).

T
EUg.aac = |AGH| X Z (EQmu(t)

t=ty

Al

~(igy — (= tm)) = Al x (tr = 1) (8)
s A
EUap A 4G = |AG] X ; (EQ(t) — (m —t))
I Al — |AG
HAGH x 3 (BEQu(t) - <'|'AG'H| C—tw) O

t=ty




Strategy utility prediction: Given the strategy equations and the assumption
that EQm A, ac is constant and independent of the number of agents the graphs
representing strategy utilities are plotted (Figure 1). Figure 1 shows theamwhb
agents on the x-axis and the expected utility of a strategy on the y-axisotheib
on humans with different skills: (a) o Q g, low B (b) highEQ g, low B (c) low
EQpq, high B (d) high EQpz, high B. The last graph representing a human with
high EQ g and highB follows results presented in [13] (and hence the expected
scenario), the curve ol H and ArH appears to be flattening out to eventually
cross the line ofAr. Moreover, observe that the increasefi) y increases the
slope forAH and ArH for small number of agents, whereas the increas® of
causes the curve to maintain a slope for larger number of agents, beéotealy

flattening out and crossing ther line.

3 DEFACTO System Details

DEFACTO consists of two major components: the Omni-Viewer and a team of
proxies (see Figure 2). The Omni-Viewer allows for global and local siefhe
proxies allow for team coordination and communication, but more importantly also
implement flexible human-agent interaction via Adjustable Autonomy. Currently,
DEFACTO is applied to a disaster rescue domain. The incident commander of th
disaster acts as theser of DEFACTO. This disaster can either be “man made”
(terrorism) or “natural” (earthquake). The experiments in a later seabicusfon

two urban areas: a square block that is densely covered with buildings Kobe,
Japan) and the University of Southern California (USC) campus , whiotoie

sparsely covered with buildings. In this scenario, several buildingsialy on



fire, and these fires spread to adjacent buildings if they are not quiokkained.
The goal is to have a human interact with the team of fire engines in orderdo sa
the most buildings. The overall system architecture applied to disastensespan
be seen in Figure 2. While designed for real world situations, DEFACTCatso
be used as a training tool for incident commanders when hooked up to atgchula

disaster scenario.

3.1 Omni-Viewer

An omnipresent viewer, or Omni-Viewer (see Figure 3), has been dmeelm
order to allow the human user fluid interaction with remote agent teams. While
a global view is obtainable from a two-dimensional map, a local perspestive
best obtained from a 3D viewer, since the 3D view incorporates the quingp

and occlusion effects generated by a particular viewpoint. The literatube
versus 3D-viewers is ambiguous. For example, spatial learning of amvéots
from virtual navigation has been found to be impaired relative to studyinglsimp
maps of the same environments [14]. On the other hand, the problem may be
that many virtual environments are relatively bland and featureless.|®pdohts

out that navigating virtual environments can be successful if rich, disshgble
landmarks are present [15].

To address these discrepant goals, the Omni-Viewer incorporates boti a
ventional map-like 2D view, Allocation Mode (Figure 3-d) and a detailed 3D
viewer, Navigation Mode (Figure 3-c). The Allocation mode shows the ¢loba
overview as events are progressing and provides a list of tasks tregehés have
transferred to the human. The Navigation mode shows the same dynamic world

view, but allows for more freedom to move to desired locations and viewsarin
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ticular, the user can drop to the virtual ground level, thereby obtaining tklw
view (local perspective) of a particular agent. At this level, the user‘aatk”
freely around the scene, observing the local logistics involved as aebtities
are performing their duties. This can be helpful in evaluating the physioaihgl
circumstances and altering the team’s behavior accordingly. It also allews#r
to feelimmersed in the scene where various factors (psychological, etg gamee
into effect.

In order to prevent communication bandwidth issues, it is assumed that a high
resolution 3D model has already been created and the only data that ferraths
during the disaster are important changes to the world. Generating thids3ab
model environment for the Navigation mode can require months or eves gear
manual modeling effort, as is commonly seen in the development of commercial
video-games. However, to avoid this level of effort, the work of You &t.[20]
is leveraged toward rapid, minimally assisted construction of polygonal models
from LiDAR (Light Detection and Ranging) data. Given the raw LIiDAR point
data, buildings can automatically be segmented from the ground and create the
high resolution model that the Navigation mode utilizes. The construction of the
USC campus and surrounding area required only two days using thieaabpr
LiDAR is an effective way for any new geographic area to be easily iedanto

the Omni-Viewer.

3.2 Proxy: Team Coordination

The critical role of intelligent agents will be to manage coordination between all
members of the response team. Specifically, DEFACTO uses coordinatmn alg

rithms inspired by theories of teamwork to manage the distributed resporise [17
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The general coordination algorithms are encapsulatguidries with each team
member having its own proxy and representing it in the team. The current ver
sion of the proxies is calleMachinetta[16] and extends the successful Teamcore
proxies [13]. Machinetta is implemented in Java and is freely available on the
web. Notice that the concept of a reusable proxy differs from manyr 6thelti-
agent toolkits” in that it provides the coordinatiaigorithms e.g., algorithms for
allocating tasks, as opposed to th&astructure e.g., APIs for reliable communi-
cation.

The Machinetta software consists of five main modules, three of which are do
main independent and two of which are tailored for specific domains. The thr
domain independent modules are for coordination reasoning, maintainiridgpéaca
liefs (state) and adjustable autonomy. The domain specific modules are for com-
munication between proxies and communication between a proxy and a team mem-
ber. The modules interact with each other only via the local state with a blaakbo
design and are designed to be “plug and play.” Thus new adjustablecauyaai-
gorithms can be used with existing coordination algorithms. The coordinaien re
soning is responsible for reasoning about interactions with other prdRiesby
implementing the coordination algorithms. The adjustable autonomy algorithms
reason about the interaction with the team member, providing the possibility for

the team member to make any coordination decision instead of the proxy.

Communication: communication with other proxies
Coordination: reasoning about team plans and communication

State: the working memory of the proxy

12



Adjustable Autonomy: reasoning about whether to act autonomously or pass con-

trol to the team member

RAP Interfaces communication with the team member

Teams of proxies implemeigam oriented planéTOPs) which describe joint
activities to be performed in terms of the individuales to be performed and
any constraints between those roles. Generally, TOPs are instantiatadidgily
from TOP templates at runtime when preconditions associated with the templates
are filled. Typically, a large team will be simultaneously executing many TOPs.
For example, a disaster response team might be executing multiple fight fre TO
Such fight fire TOPs might specify a breakdown of fighting a fire into digs/such
as checking for civilians, ensuring power and gas is turned off, praygg water.
Constraints between these roles will specify interactions such as regxedtion
ordering and whether one role can be performed if another is notrtlyrieeing
performed. Notice that TOPs do not specify the coordination or communicatio
required to execute a plan; the proxy determines the coordination thatddtmu
performed.

Current versions of Machinetta include state-of-the-art algorithmsléor ip-
stantiation [11], role allocation [25], information sharing [24], task ddiaction
[11], and adjustable autonomy [17]. Key algorithms, including role allocatien
source allocation, information sharing and plan instantiation are based osetioé
tokenswhich are “pushed” onto the network and routed to where they are eztjuir
by the proxies. For example, the role allocation algorithm, explained hete [25

represents each role to be allocated with a token and pushes the tokemd dre®

13



network until a sufficiently capable and available team member is found toexec
the role. The implementation of the coordination algorithms uses the abstraction
of a simple mobile agent to implement the tokens, leading to robust and efficient

software.

3.3 Proxy: Adjustable Autonomy

Adjustable autonomy refers to an agent’s ability to dynamically change its own
autonomy, possibly to transfer control over a decision to a human. Prewimks
on adjustable autonomy could be categorized as either involving a singlenpers
interacting with a single agent (the agent itself may interact with others) ogkesin
person directly interacting with a team. In the single-agent single-human cate-
gory, the concept of flexible transfer-of-control strategy has shpmmise [17].
A transfer-of-control strategy is a preplanned sequence of actianartsfer con-
trol over a decision among multiple entities. For example Adiy Ho strategy
implies that an agent4) attempts a decision and if the agent fails in the decision
then the control over the decision is passed to a hufigrand then ifH; cannot
reach a decision, then the control is passeH4oSince previous work focused on
single-agent single-human interaction, strategies were individual agategies
where only a single agent acted at a time.

An optimal transfer-of-control strategy optimally balances the risks ofatt
ting a high quality decision against the risk of costs incurred due to a delay in
getting that decision. Flexibility in such strategies implies that an agent dynami-
cally chooses the one that is optimal, based on the situation, among multiple such
strategiesM1 A, AH,, AH, A, etc.) rather than always rigidly choosing one strat-

egy. The notion of flexible strategies, however, has not been applied ootitext
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of humans interacting with agent-teams. Thus, a key question is whether such
flexible transfer of control strategies are relevant in agent-teams, ydarticin a
large-scale application such as ours.

DEFACTO aims to answer this question by implementing transfer-of-control
strategies in the context of agent teams. One key advance in DEFACTQ ik¢ha
strategies are not limited to individual agent strategies, but also enahtedeesi
strategies. For example, rather than transferring control from a huneasitmle
agent, a team-level strategy could transfer control from a human to at-tegen.
Concretely, each proxy is provided with all strategy options; the key islaztse
the right strategy given the situation. An example of a team level strategidwou
combineAr Strategy and{ Strategy in order to maké, H Strategy. The default
team strategyAr, keeps control over a decision with the agent team for the entire
duration of the decision. Thél strategy always immediately transfers control
to the human. A+ H strategy is the conjunction of team levél- strategy with
H strategy. This strategy aims to significantly reduce the burden on the user by
allowing the decision to first pass through all agents before finally goingeto th

user, if the agent team fails to reach a decision.

4 Experimentsand Evaluation

The DEFACTO system was evaluated in three key ways, with the first twisiog
on key individual components of the DEFACTO system and the last attempting to
evaluate the entire system. First, detailed experiments were performed cagnparin
the effectiveness of Adjustable Autonomy (AA) strategies over multiplesudar

order to provide DEFACTO with a dynamic rescue domain it is connected to a sim-

15



ulator. The previously developed RoboCup Rescue simulation envirorj@jdst
used. In this simulator, fire engine agents can search the city and attemfihto ex
guish any fires that have started in the city. To interface with DEFACTQ B
engine is controlled by a proxy in order to handle the coordination andiggac
of AA strategies. Consequently, the proxies can try to allocate fire entpirfges
in a distributed manner, but can also transfer control to the more expartTise
user can then use the Omni-Viewer in Allocation mode to allocate engines to the
fires that he has control over. In order to focus on the AA strategiasdfierring
the control of task allocation) and not have the users ability to navigateergerf
with results, the Navigation mode was not used during this first set of iexpets.

The results of these experiments are shown in Figure 5, which showsthesre
of subjects 1, 2, and 3. Each subject was confronted with the task ofjdidén
engines in saving a city hit by a disaster. For each subject, three strategies
tested, specificallyd, AH and A H; their performance was compared with the
completely autonomoud strategy. AH is an individual agent strategy, tested
for comparison withAr H, where agents act individually, and pass those tasks to a
human user that they cannotimmediately perform. Each experiment wasatedd
with the same initial locations of fires and building damage. For each strategy
tested, varied the number of fire engines between 4, 6 and 10. Eatindhiggure
5 shows the varying number of fire engines on the x-axis, and the teéonrpance
in terms of numbers of building saved on the y-axis. For instance, strategy
saves 50 building with 4 agents. Each data point on the graph is an aoétagee
runs. Each run itself took 15 minutes, and each user was required tagetdim
27 experiments, which together with 2 hours of getting oriented with the system,

equates to about 9 hours of experiments per volunteer.
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Figure 5 enables us to conclude the following:

e Human involvement with agent teams does not necessarily lead to improve
ment in team performanceContrary to expectations and prior results, hu-
man involvement does not uniformly improve team performance, as seen by
human-involving strategies performing worse than thestrategy in some
instances. For instance, for subject 3, human involving strategies such a
AH provide a somewhat higher quality thain- for 4 agents, yet at higher
numbers of agents, the strategy performance is lower thanWhile the
strategy model predicted such an outcome in casédigif B, LOoWEQ g,

the expected scenario weligh B, HighEQ 5.

e Providing more agents at a human’s command does not hecessarigvenp
the agent team performandes seen for subject 2 and subject 3, increas-
ing agents from 4 to 6 givedH and ArH strategies is seen to degrade
performance. In contrast, for thér strategy, the performance of the fully
autonomous agent team continues to improve with additions of agents, thus
indicating that the reduction iAH and A H performance is due to human
involvement. As the number of agents increase to 10, the agent team does

recover.

¢ No strategy dominates through all the experiments given varying nurabers
agents. For instance, at 4 agents, human-involving strategies dominate the
Ar strategy. However, at 10 agents, the strategy outperforms all possible

strategies for subjects 1 and 3.

e Complex team-level strategies are helpful in practickrH leads to im-

17



provement ovelrd with 4 agents for all subjects, although surprising domi-
nation of AH over ArH in some cases indicates th&f/ may also a useful

strategy to have available in a team setting.

Note that the phenomena described range over multiple users, multiple runs,
and multiple strategies. The most important conclusion from these figured is tha
flexibility is necessary to allow for the optimal AA strategy to be applied. The
key question is then whether the mathematical model can be leveraged to select
among strategies. However, first the model must be checked if it canirexipéa
phenomenon in the domain accurately. To that end, the predictions are reampa
at the end of Section 2 with the results reported in Figure 5. If the “dip” meske
at 6 agents iMH and Ar H strategies is temporarily ignored, then subject 2 may
be modeled as High B, High £Qy subject, while subjects 1 and 3 modeled via
High B, LowEQp. (Figure 6-(b) indicates an identical improvement in H for 3
subjects with increasing agents, which suggests that B is constant aghpssts.)
Thus, by estimating th&Q ; of a subject by checking the “H” strategy for small
number of agents (say 4), and comparingAtetrategy, the appropriate strategy
may now be selected.

Unfortunately, the strategies including the humans and agdiissnd A H)
for 6 agents show a noticeable decrease in performance for subjects2(aee
Figure 5), whereas the mathematical model would have predicted an ieéreas
performance as the number of agents increased (as seen in Figurgvaild be
useful to understand which of the key assumptions in the model has ledit@suc
mismatch in prediction.

The crucial assumptions in the model were that while numbers of agents in-

18



crease,AGy steadily increases anBl()y remains constant. Thus, the dip at 6
agents is essentially affected by eithé€zy or EQp. First, AGy is tested in
the domain. The amount of effective agem€; , is calculated by dividing how
many total allocations each subject made by how manythetrategy made per
agent, assumingly strategy effectively uses all agents. Figure 6-(a) shows the
number of agents on the x-axis and the number of agents effective i6gg, on
the y-axis; thed strategy, which is using all available agents, is also shown as a
reference. However, the amount of effective agents is actually dbesame in 4
and 6 agents. This would not account for the sharp drop seen in tfegrmpance.
Then attention is turned to theQ i of each subject. One reduction#() ; could
be because subjects simply did not send as many allocations totally over the cou
of the experiments. This, however is not the case as can be seen in Tab&re
for 6 agents, the total amount of allocations given is comparable to thatgetsa
To investigate further, the quality of human allocation is studied to see if it has
degraded. For the domain, the more fire engines that fight the same firpthe
likely it is to be extinguished and in less time. For this reason, the amount afsagen
that were tasked to each fire is a good indicator of the quality of allocationththa
subject makes. The model expected the amount of agents that each tasg¥ed
out to each fire would remain independent of the number of agents. Fgimewvs
the number agents on the x-axis and the average amount of fire engireegeaallo
to each fire on the y-axisAH and Ay H for 6 agents result in significantly less
average fire engines per task (fire) and therefore less avé@ge

The next question is then to understand why for 6 agdifsand A+ H result
in lower average fire engines per fire. One hypothesis is the possibleeietere

among the agents’ self allocations vs human task allocations at 6 agents.2Table
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shows the number of task changes for 4, 6 and 10 agentsAoand A H strate-
gies, showing that maximum occurs at 6 agents. A task change occuanssieesn
agent pursuing its own task is provided another task by a human or a hyiuesm-
task is preempted by the agent. Thus, when running mixed agent-humagissate
the possible clash of tasks causes a significant increase task chéfigieshe rea-
son for such interference peaking at 6 may be domain specific, the lsynlés
that interference has the potential to occur in complex team-level stratdgies.
model would need to take into account such interference effects byssoirang a
constantEQ ;.

The second aspect of the evaluation was to explore the benefits of tigaNav
tion mode (3D) in the Omni-Viewer over solely an Allocation mode (2D). 2 tests
were performed on 20 subjects. All subjects were familiar with the USC cam-
pus. Test 1 showed Navigation and Allocation mode screenshots of thersity
campus to subjects. Subjects were asked to identify a unique building on sampu
while timing each response. The average time for a subject to find the building
in 2D was 29.3 seconds, whereas the 3D allowed them to find the same building
in an average of 17.1 seconds. Test 2 again displayed Navigation arzhtidio
mode screenshots of two buildings on campus that had just caught fifesti2,
subjects were asked first asked to allocate fire engines to the buildingsamgin
the Allocation mode. Then subjects were shown the Navigation mode of the same
scene. 90 percent of the subjects actually chose to change their initiatadinc
given the extra information that the Navigation mode provided.

Third, the complete DEFACTO system has been periodically demonstrated to
key government agencies, public safety officials and disaster réseafor assess-

ing its utility by the ultimate consumers of the technology, with exciting feedback.
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Indeed they were eager to deploy DEFACTO and begin using it as acbgeal

to explore the unfolding of different disasters. For example, duringairtbe
demonstrations on Nov 18, 2004 Gary Ackerman, a Senior Researocbkiatgsat

the Center for Nonproliferation Studies at the Monterey Institute of IntiEnmal
Studies pointed out in reference to DEFACTOhis is exactly the type of sys-
tem we are looking for'to study the potential effect of terrorist attacks. Also, the
authors have met with several public safety officials about using DEEAET a
training tool for their staff. According to Los Angeles County Fire Deparitne
Fire Captain Michael Lewis!Effective simulation programs for firefighters must
be realistic, relevant in scope, and imitate the communication challengeseon th

fire ground. DEFACTO focuses on these very issues.”

5 Related Work

First, current methods of training within the Los Angeles Fire DepartmenEQRA
are discussed. In order to train incident commanders, the LAFD usegezion
screen to simulate the disaster (Figure 8-(a)). In addition, the participatiitg in
dent commander is seated at a desk, directing an assistant to take notee (Fig
8-(b)). Other firefighters remain in the back of the room and communicateto th
incident commander via radios. Firefighters are taken temporarily outtgfidu
order to help act out these pre-determined scenarios in order to testitienn
commander’s abilities.

Second, current simulation tools are mentioned. Among the current tools
aimed at simulating rescue environments, it is important to mention products like

JCATS [22] and EPICS [10]. JCATS represents a self-containedi;feigolution
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joint simulation in use for entity-level training in open, urban and subteaaea-
vironments. Developed by Lawrence Livermore National Laborat@xXI5 gives
users the capability to detail the replication of small group and individualiacti
ties during a simulated operation. At this point however, JCATS cannot gienula
agents. Finally, EPICS is a computer-based, scenario-driven, highitien simu-
lation. It is used by emergency response agencies to train for emergjanayons
that require multi-echelon and/or inter-agency communication and coordinatio
Developed by the U.S. Army Training and Doctrine Command Analysis Center,
EPICS is also used for exercising communications and command and cantrol p
cedures at multiple levels. Similar to JCATS however, EPICS does nottiyrre
allow agents to participate in the simulation.

Third, related work in the area of agents is discussed. Hill et al's workiisia
ilar immersive training tool [21]. Their work focused more on multi-modal dialog
and emphasize single agent interaction along predefined story lines,ashbig
work focuses on adjustable autonomy and coordinating large numbeggenfsa
in a dynamic, complex fire-fighting domain. In the past, agent-based simulations
have been designed with the aim of training military helicopter pilots as well [6].
Our simulations allow for more complex scenarios and also allow for adjustable
autonomy between the trainee and the team of agents. Also, there is some relate
work in agents being done at Honeywell Laboratories that assistsd@gonders
[23]. In their work, however they focus on helping human first resigos com-
municate and coordinate, as opposed to this work, where a single fipsinckeyr
manage and assist a team of agents.

This work is in the same thread as Scerri et al's previous work on rajeta

person (RAP) teams for disaster rescue [18] is closely related to DEGATHis
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work takes a significant step forward in comparison. First, the omni-viemer
ables navigational capabilities improving human situational awarenessasstrpr

in previous work. Second, provide team-level strategies are prowdaidh are
experimentally verified, absent in that work. Third, extensive expetiatiem is
provided, and illustrates that some of the conclusions reached in [18]ingdeed
preliminary. For example, they conclude that human involvement is always be
ficial to agent team performance, while these more extensive resultstinthca
sometimes agent teams are better off excluding humans from the loop. Human
interactions in agent teams has also been investigated in [2, 20], and tisége is
nificant research on human interactions with robot-teams [5, 3]. Howthesrdo

not use flexible AA strategies and/or team-level AA strategies. Furtherrtitare
experimental results here may assist these researchers in recognizpaehtial

for harm that humans may cause to agent or robot team performanceficaigt
attention has been paid in the context of adjustable autonomy and mixed-initiative
in single-agent single-human interactions [8, 1]. However, this articlestes on

new phenomena that arise in human interactions with agent teams.

6 Conclusion

This article presents a large-scale operational prototype, DEFACTGADEO
incorporates state of the art proxy framework, 3D visualization and Adatples
Autonomy (AA) human-interaction reasoning. This provides three keprohs
over previous work. First, DEFACTO’s Omni-Viewer enables the humaroth b
improve situational awareness and assist agents, by providing a navaiakiew

along with a 2D global allocation view. Second, DEFACTO incorporatesbilex
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AA strategies, even excluding humans from the loop in extreme circumstances
Third, analysis tools help predict the performance of (and choose gnidfey-

ent interaction strategies. We performed detailed experiments using DEFACT
leading to some surprising results. These results illustrate that an agenntestm

be equipped with flexible strategies for adjustable autonomy, so that theyanay s
lect the appropriate strategy autonomously. Exciting feedback from BEErs

ultimate consumers illustrates its promise and potential for real-world
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9 Tables

Strategy H AH ArH

#ofagents| 4 | 6 |10 4 | 6 [10] 4 | 6 [10

Subjectl || 91 | 92 | 154 | 118 | 128 | 132 || 104 | 83 | 64

Subject2 || 138 | 129 | 180 | 146 | 144 | 72 || 109 | 120| 38

Subject3 || 117 | 132 | 152 | 133 | 136 | 97 || 116| 58 | 57

Table 1: Total amount of allocations given.
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| Strategy|| 4 agents| 6 agents| 10 agents|

AH 34 75 14
ArH 54 231 47

Table 2: Task conflicts for subject 2.
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10 Figure Captions

Figure 1: Model predictions for various users.

Figure 2: DEFACTO system applied to a disaster rescue.

Figure 3: Omni-Viewer during a scenario: (a) Multiple fires start across th
USC campus (b) The Incident Commander uses the Navigation mode to quickly
grasp the situation (c) Navigation mode shows a closer look at one of teddire
Allocation mode is used to assign a fire engine to the fire (e) The fire engine ha
arrived at the fire (f) The fire has been extinguished.

Figure 4: Proxy Architecture

Figure 5: Performance of subjects 1, 2, and 3.

Figure 6: (a)AG and (b)H performance.

Figure 7: Amount of agents per fire assigned by subjects 1, 2, and 3

Figure 8: Current Training Methods: (a) projected photo of fire ahdhftident

commanders at a table
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11 Figures
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