
Reasoning Support for Semantic Web Ontology
Family Languages Using Alloy

Hai H. Wang
Department of Computer Science

The University of Manchester, United Kingdom
hai.wang@cs.manchester.ac.uk

Jin Song Dong
School of Computing

National University of Singapore
dongjs@comp.nus.edu.sg

Jing Sun
Department of Computer Science

The University of Auckland, New Zealand
j.sun@cs.auckland.ac.nz

Jun Sun
School of Computing

National University of Singapore
sunj@comp.nus.edu.sg

August 14, 2006

Abstract

Semantic Web (SW), commonly regarded as the next generationof the Web, is
an emerging vision of the new Web from the Knowledge Representation and the
Web communities. To realize this vision, a series of techniques has been proposed.
Semantic Web Ontology Langauge (OWL) and its extension Semantic Web rule
Language (SWRL) and Semantic Web Logic Language (SWRL-FOL)are some of
the most important outputs from the SW activities. However the existing reason-
ing and consistency checking tools for those languages are primitive. This paper
proposes using the existing formal modelling tool, in particular Alloy, to provide
an automatic reasoning service for the Semantic Web ontology family languages
(OWL/SWRL/SWRL-FOL).1

keywords: Semantic Web, Alloy, OWL, SWRL, FOL.

1Primary contact: Hai H. Wang, School of Computer Science, The University of Manchester, M13 9JPL,
United Kingdom Email: hai.wang@cs.manchester.ac.uk Telephone: +44 161 275 0686 Fax: +44 161 275
6204

1 Introduction

The power of the Semantic Web [1], as the next generation of the Web, will be realized
when software agents are able to understand the Web content,process the informa-
tion and exchange the results with other software agents. Adding logic to the Web is
one of the key requirements. This logic must be powerful enough to describe com-
plex properties of web resources but not so complicated thatagents could be tricked by
being asked to consider a paradox. To achieve these two contradictory requirements,
researchers attempt to adopt the layered approach, where the upper layer is extended
from the lower layer with enhanced expressive power. This allows that different appli-
cations can choose the logic language suiting their needs most.

The bottom layer is Web Ontology Language (OWL) [14]. OWL, a recommen-
dation by the World Wide Web Consortium (W3C), is the latest standard to define
the ontology. It is based on Description Logic (DL). Although OWL adds consider-
able expressive power to the Semantic Web, to retain the decidability of key inference
problems in OWL DL and OWL Lite, OWL has its expressive limitations. Certain
desired properties can not be expressed for some applications. Semantic Web Rule
Language (SWRL) [9] extends OWL by combining the OWL DL and OWL Lite with
the Unary/Binary Catalog sub-languages of the Rule Markup Language. It introduces
a new kind of axiom, named Horn clause rules, to OWL DL. Recently, Semantic Web
Rule Language First Order Logic (SWRL-FOL) [15] has been proposed to further ex-
tend the SWRL to handle unary/binary first-oder logic.

Reasoning can be useful at many stages during the design, maintenance and deploy-
ment of ontology. Using the reasoning service provided by Semantic Web reasoners,
software agents can autonomously infer new knowledges fromthe given knowledges
and perform different tasks. For example, Pizzafinder2, as a small application devel-
oped by our research group, demonstrates how the reasoner could be used by a web
software agent for their application. Pizzafinder uses the Pizza Ontology, and a rea-
soner to dynamically generate pizza toppings and pizza topping categories. The user
can include toppings that they would like on their pizza and exclude any toppings that
they do not want on their pizza. The description logic reasoner is used to determine
if the choices that have been made contradict each other - forexample, choosing to
include Jalapeno Pepper topping, but choosing to exclude all hot toppings - the choices
are automatically adjusted to modify any decisions that could potentially lead to con-
tradictions and inconsistent results.

Because autonomous software agents may perform their reasoning and come to
conclusions without human supervision, it is essential that the shared ontology is con-
sistent. However, since the Semantic Web technology is still in the early stage, the
reasoning and consistency checking tools are primitive. The existing OWL reasoning
tools such as FaCT [8] and RACER [6] have been developed specifically for the de-
cidable description logic, which are based on tableaux algorithm. They are far from
perfect. Furthermore, currently there does not exist a tableaux algorithm that can sup-
port the reasoning of SWRL-FOL, or even SWRL. Hence, it wouldtake some effort
and time for people to research into new algorithms and buildnew tools to support

2http://www.co-ode.org/downloads/pizzafinder/

SWRL and SWRL-FOL reasoning. However, as it can been foreseen that it is critical
and urgent to provide some reasoning service to SWRL and SWRL-FOL in order to
make them to be integrated into ontology languages hierarchy and to have their impacts
on the practical web applications.

Alternatively, rather than developing new algorithms and tools, a light-weight ap-
proach to provide reasoning service which can complement existing OWL reasoners
and support SWRL and SWRL-FOL is to customize and reuse some existing tools.
After decades of research and development, some mature formal modelling/reasoning
tools have been established successfully. These tools could well be adopted to reason-
ing about OWL, SWRL and SWRL-FOL.

This paper proposes to develop a reasoning environment using the software mod-
elling language Alloy and its Analyzer [11] for web ontologyfamilies language. It
complements the existing OWL reasoning tools like RACER, and also supports the
newly extended SWRL and SWRL-FOL.

The rest of the paper is organized as follows. Section 2 briefly introduces the OWL,
SWRL, SWRL-FOL and Alloy. In section 3, we present the Alloy semantics for the
OWL/SWRL/SWRL-FOL language and the transformation from the ontologies into
their corresponding Alloy models. Section 4 presents a casestudy to demonstrate the
reasoning processes of SWRL-FOL ontology models in the Alloy Analyzer. Section 5
concludes the paper and discusses the future work.

This paper is substantially extended and revised from the early conference paper
‘Reasoning Support for SWRL-FOL Using Alloy’ [19].

2 Backgrounds

2.1 Semantic web overview

2.1.1 Semantic web and OWL

The Semantic Web is a vision for a new kind of Web with enhancedfunctionality
which will require semantic-based representation and processing of Web information.
W3C has proposed a series of technologies that can be appliedto achieve this vision.
The Semantic Web extends the current Web by giving the web content a well-defined
meaning, better enabling computers and people to work in cooperation. XML is aimed
at delivering data to systems that can understand and interpret the information. XML
is focused on the syntax (defined by the XML schema or DTD) of a document and it
provides essentially a mechanism to declare and use simple data structures. However
there is no way for a program to actually understand the knowledge contained in the
XML documents.

Resource Description Framework (RDF) [12] is a foundation for processing meta-
data; it provides interoperability between applications that exchange machine-understandable
information on the Web. RDF uses XML to exchange descriptions of Web resources
and emphasizes facilities to enable automated processing.The RDF descriptions pro-
vide a simple ontology system to support the exchange of knowledge and semantic
information on the Web. RDF Schema [2] provides the basic vocabulary to describe
RDF documents. RDF Schema can be used to define properties andtypes of the web

OWL constructs Description

OWL class classes

OWL property properties

OWL subclass [C] subclasses of C

OWL subproperty[P] subproperties of P

instanceof [C] instances of the OWL class C

Table 1: OWL constructs (partial)

resources. The advent of RDF Schema represented an early attempt at an SW ontology
language based on RDF.

OWL [14] is a standard (W3C recommendation) for expressing ontologies in the
Semantic Web. The OWL language facilitates greater machineunderstandability of
Web resources than that supported by RDFS by providing additional constructors for
building class and property descriptions (vocabulary) andnew axioms (constraints),
along with a formal semantics. OWL consists of three sub-languages: OWL Lite, OWL
DL and OWL Full, with increasing expressiveness. OWL Lite and DL are decidable,
but OWL Full is generally not. An OWL ontology consists of classes, properties and
individuals. Classes are interpreted as sets of objects that represent the individuals in
the domain of discourse. Properties are binary relations that link individuals, and are
interpreted as sets of tuples, which are the subsets of the cross product of the objects in
the domain of discourse. OWL classes fall into two main categories – named classes
and anonymous classes. Anonymous classes are formed from logical statements. They
contain the individuals that satisfy the logical description. Anonymous classes may be
further sub-divided into restrictions and logical class expressions. We summarize some
essential OWL constructs in Table 1. To be simpler, informalOWL syntax has been
used here. For example,OWL class denotes the OWL construct “Class” .

2.1.2 SWRL

Although OWL includes a relatively rich set of class constructors, the language pro-
vided for expressing properties is much weaker. SWRL [9] intends to overcome the
expressive restriction of OWL properties by extending OWL with some form of “rule
language”. SWRL is based on a combination of the OWL DL and OWLLite sub-
languages of the OWL Web Ontology Language with the Unary/Binary Catalog sub-
languages of the Rule Markup Language. SWRL introduces a high-level abstract syn-
tax for Horn-like rules in both the OWL DL and OWL Lite sub-languages of OWL.
SWRL extends OWL by also allowing rule axioms, i.e., by adding the construct:

axiom ::= rule

A rule axiom consists of an antecedent and a consequent, eachof which consists of
a set of atoms which could be class membership (C(x)), property membership (P(x,y))
or individual in/equalities(differentFrom(x,y)/sameAs(x, y)). Informally, a rule means
that if the antecedent holds (is “true”), then the consequent must also hold. A simple

example of the rules could be used to express the knowledge that “if ?x1 is a child of
?x2 and?x2 is a brother of?x3, then?x3 is an uncle of?x1”. Informally, this rule
could be written as:

hasChild(?x2, ?x1) ∧ hasBrother(?x2, ?x3)
⇒ hasUncle(?x1, ?x3)

2.1.3 SWRL-FOL

SWRL-FOL [15] extends SWRL axiom to arbitrary first-order formula over unary and
binary predicates. It extends SWRL with “assertion” axiomsthat contain first-order
sentences , i.e.

axiom ::= assertion

Assertions assert first-order sentences, where no free variables are allowed in the
formulae. For example an axiom could be used to express the knowledge that “for all
the person?x1 if s/he is a ‘wealthy Parent’, then s/he has at least one child?x2 who is
a millionnaire.”. Informally, this axiom could be written as:

∀?x1 | wealthyParent(?x1) ⇒
∃?x2 | hasChild(?x1, ?x2) ∧ millionnaire(?x2)

We can see from the above example that by introducing first-order formulas, more
complex logical statements can be expressed in SWRL.

2.1.4 Existing reasoning tools for Semantic Web

Ontology reasoning tools have been built alongside the development of ontology lan-
guages. The rest of this subsection will introduce a few of these tools.

Cwm (Closed world machine) [18] is a general-purpose data processor for the Se-
mantic Web. Implemented in Python and command-line based, it is a forward chaining
reasoner for RDF.

Triple [17] is a RDF query, inference and transformation language. It does not
have a built-in semantics for RDF Schema, but it allows semantics of languages to be
defined with rules on top of RDF. This feature of Triple facilitates data aggregation as
users can perform RDF reasoning and transformation under different semantics. The
Triple tool supports OWL through external OWL reasoners such as FaCT and RACER.

FaCT (FastClassification ofTerminologies) [8], developed at University of Manch-
ester, is a TBox (concept-level) reasoner that supports automated concept-level reason-
ing, namely class subsumption and consistency reasoning. It does not support ABox
(instance-level) reasoning. It is implemented in Common Lisp and comes with a FaCT
server, which can be accessed across network via its CORBA interface. Given an OWL
ontology, it can classify the ontology (performs subsumption reasoning) so as to reduce
redundancy and detect any inconsistency within it.

RACER, theRenamedABox andConceptExpressionReasoner [6], implements
a TBox and partial ABox reasoner for the description logicALCQHIR+(D)− [7]. It
can be regarded as (a) a Semantic Web inference engine, (b) a description logic reason-
ing system capable of both TBox and ABox reasoning and (c) a prover for modal logic

Km. In the Semantic Web domain, RACER’s functionalities include developing on-
tologies (creating, maintaining and deleting concepts, roles and individuals); querying,
retrieving and evaluating the knowledge base, etc. It supports OWL and RDF.

The FaCT and RACER are the most well accepted OWL reasoners. However,
they still have many limitations, such as both of them can only flag an OWL class
is inconsistent without providing any explanation. The debugging task is left to the
user. Furthermore, there is very limited datatype support,such as integer and string.
Also FaCT does not provide any ABox reasoning. RACER can onlypartially support
ABox reasoning. Alloy approach proposed in this paper can complement FaCT and
RACER [3].

Currently, there is not a well accepted system supporting SWRL, and only few
prototypes has been developed. There is no reasoning tool supporting SWRL-FOL yet.

2.2 Alloy overview

Alloy [11] is a structural modelling language based on first-order logic, for express-
ing complex structural and behavioral constraints. Alloy treats relations as first class
citizens and uses relational composition as a powerful operator to combine various
structured entities. The essential constructs of Alloy areas follows:

• Signature: A signature (sig) paragraph introduces a basic type, a collection of
relations (called field), and a set of constraints on their values. A signature may
inherit fields and constraints from another signature.

• Function: A function (fun) captures behavior constraints. It is a parameterized
formula that can be “applied” elsewhere.

• Fact: Fact (fact) imposes global constraints on the relations and objects. Afact

is a formula that takes no arguments and needs not to be invoked explicitly.

• Assertion: An assertion (assert) specifies an intended property. It is a formula
whose correctness needs to be checked, assuming the facts inthe model.

The Alloy Analyzer is a tool for analyzing models written in Alloy. Given a fi-
nite scope for a specification, Alloy Analyzer translates itinto a propositional formula
and uses SAT solving technology to generate instances that can satisfy the facts and
properties expressed in the specification.

3 Alloy semantics for OWL/SWRL/SWRL-FOL

This section presents the Alloy semantics for OWL, SWRL and SWRL-FOL lan-
guages, which forms the foundation of the reasoning environment. Due to limited
space, only part of semantic model has been presented here. Acomplete Alloy seman-
tics for these languages can be found athttp://www.cs.man.ac.uk/ ∼hwang/
swrlfol.als .

3.1 Alloy semantic for OWL constructs

3.1.1 Basic concepts

The semantic model for OWL is encoded in the moduleOWL. Users only need to
import this module to reason about OWL ontology in Alloy.

module OWL

All the things described in the Semantic web context are referred to as web re-
sources. A basic typeResource is defined as:

sig Resource {}

Other concepts such as classes and properties defined later are extended from the
Resource . Property, which is a kind ofResource itself, relatesResource to Re-
source.

disj sig Property extends Resource
{sub_val: Resource -> Resource}

“disj” is a keyward from Alloy for denoting the disjointness. EachProperty has a
relationsub val from set<Property, Resource, Resource> with type<Resource,
Resource, Resource> (since in Alloysubsignature does not introduce a new type).
This relation can be regarded as a RDF statement, i.e., a triple of the form<property(or
predicate), subject, value(or object)>.

The class corresponds to the generic concept of type or category of resource. Each
Class maps a set of resources via the relationinstances, which contains all the in-
stance resources. The keyworddisj is used to indicate theClass andProperty are
disjoint.

disj sig Class extends Resource {instances: set Resource}

The OWL also allows the use of XML Schema datatypes to describe (or define)
part of the datatype domain. Alloy supports Integer and String. Apart from these there
are no predefined types in Alloy, Datatype has been treated asa special Class, which
contains all the possible datatype values in the instances relation.

disj sig Datatype extends Class {}

3.1.2 Class elements

ThesubClassOf is a relation between classes. The instances in a subclass are also in
the super-classes. A parameterized formula (a function in Alloy) is used to represent
this concept.

fun subClassOf(csup, csub: Class)
{csub.instances in csup.instances}

ThedisjointWith is a relation between classes. It asserts that there are no instances
common with each other.

fun disjointWith (c1, c2: Class) {no c1.instances & c2.inst ances}

3.1.3 Property restrictions

The allValuesFrom construct states that all instances of the classc1 that have the
values of propertyP all belong to the classc2.

fun allValuesFrom
(p: Property, c1: Class, c2: Class)

{all r1, r2: Resource |
r1 in c1.instances =>
r2 in r1.(p.sub_val) =>

r2 in c2.instances}

A hasValue function states that all instances of the classc1 have the values of
propertyP as resourcer. Ther could be an individual object or a datatype value.

fun hasValue (p: Property, c1: Class, r: Resource)
{all r1: Resource | r1 in c1.instances => r1.(p.sub_val) = r}

A MaxCardinality function states that all instances of the classc1 have at mostN
distinct values for the propertyP. Alloy supports some integer operations.

fun maxCardinality (p: Property, c1: Class, N: Int)
{all r1: Resource| r1 in c1.instances <=>

r1.(p.sub_val) <= int N }

3.2 Boolean combination of class expressions

The intersectionOf function defines a relation between a classc1 and a list of classes
clist. TheList is defined in the Alloy library. The classc1 consists of exactly all the
objects that are common to all class expressions from the list clist.

fun intersectionOf (clist: List, c1: Class)
{all r: Resource| r in c1.instances <=>

all ca: clist. * next.val | r in ca.instances}

The unionOf function defines a relation between a classc1 and a list of classes
clist. The classc1 consists of exactly all the objects that belong to at least one of the
class expressions from the listclist. It is analogous to logical disjunction;

fun unionOf (clist: List, c1: Class)
{all r: Resource| r in c1.instances <=>

some ca: clist. * next.val| r in ca.instances}

3.2.1 Property elements

ThesubPropertyOf construct states thatpsub is a sub-property of the propertypsup.
This means that every pair (subject,value) that is inpsup is also in thepsub.

fun subPropertyOf (psup, psub: Property)
{psub.sub_val in psup.sub_val}

The domain function asserts that the propertyP only applies to instances of the
classc.

fun domain (p: Property, c: Class)
{(p.sub_val).Resource in c.instances}

The inverseOf function shows two properties are inverse.

fun inverseOf (p1, p2: Property) {p1.sub_val = ˜(p2.sub_va l)}

All other OWL constructs can be defined in a similar manner. Please refer to the
complete OWL Alloy semantics online.

3.3 Alloy semantic for SWRL extension

SWRL extends OWL by adding the rule axioms. A rule axiom consists of an antecedent
and a consequent, each of which consists of a set of atoms. Atoms can be of the
following forms, where C is an OWL description, P is an OWL property, and x,y are
either variables, OWL individuals or OWL data values.

• C(x): Informally, it holds if x is an instance of the class description C.

• P(x,y): It holds if x is related to y by property P.

• sameAs(x,y): It holds if x is interpreted as the same object as y.

• differentFrom(x,y): It holds if x and y are interpreted as different objects.

Table 2 shows how the above atoms can be modelled in Alloy.

Atom Alloy representation
C (x) ‘x in C.instances’
P(x , y) ‘(x->y) in P.subval’
sameAs(x , y) ‘x = y’
differentFrom(x , y) ‘x != y’

Table 2: Alloy semantic for the atoms

As mentioned before, a rule means that if the antecedent holds, the consequent must
also hold. It can be modelled as a universally quantified factin the form of implication.
For example the following rule axiom (wherea0 ... an are atoms)

Implies(Antecedent(a1, ..., an) Consequent(a0))

will be modelled as:

fact { a_1 && ... && a_n => a_0 }

SWRL-FOL formula Alloy semantics
and(C1...Cn) fact{C1 && ... && Cn }

or(C1...Cn) fact{C1 || ... || Cn}

neg(C) fact{not C}
implies(C1 C2) fact{C1 => C2}

equivalent(C1 C2) fact{C1 <=> C2}

forall(V1...Vn C) fact{all V1, ...,Vn : Resource| C}
exists(V1...Vn C) fact{someV1, ...,Vn : Resource| C}

Table 3: Alloy Semantic for SWRL-FOL

3.4 Alloy semantic for SWRL-FOL extension

SWRL-FOL extends SWRL with assertion axioms that contain first-order formulas.
Table 3 presents the Alloy semantic for different SWRL-FOL formulas.

The above defines the basic transformation guidelines from the SWRL-FOL into
their corresponding Alloy semantics. We will demonstrate the actual transformation
process in the following section.

4 OWL/SWRL/SWRL-FOL to Alloy transformation

The previous section presented Alloy semantics for OWL, SWRL and SWRL-FOL,
which forms the foundation for the reasoning environment. To be able to perform the
automatic reasoning task using Alloy Analyzer, a Java program has been developed
for the automatic transformation from an OWL/SWRL/SWRL-FOL knowledge file (in
XML format) into its corresponding Alloy model.

A set of translation rules are developed in the following presentation.

4.1 OWL class translation

C ∈ OWL class

static disj sig C extends Class{}

An OWL classC will be transferred into a scalarC, constrained to be an element of
the signatureClass.

4.2 OWL property translation

P ∈ OWL property

static disj sig P extends Property{}

An OWL propertyp will be translated into a scalarP, constrained to be an element of
the signatureProperty.

4.3 Instance translation

x ∈ instancesof [Y]

static disj sig x extends Resource{}
fact{ x in Y .instances}

An OWL individualx of classY will be translated into a scalarx, constrained to be an
element of the signatureResource. x is a subset ofY.instances.

4.4 Other OWL translations

Other OWL constructs can be easily translated into the Alloyfunctions defined in the
previous section. For example the following rule shows how to translate the OWL
subclass relation into Alloy code.

subclass [X ,Y],X ∈ OWL class ,Y ∈ OWL class

fact{subClassOf (X ,Y)}

4.5 SWRL and SWRL-FOL translation

The transformation of SWRL rules follows the semantics defined in Table 2. The
variablex andy will be bound by some universal quantifiers. The SWRL rule canbe
modelled as a universally quantified fact in the form of implication.

Similarly, the transformation of SWRL-FOL follows the semantics presented in
Table 3. More translation rules can be found from [19] and theweb sitehttp:
//nt-appn.comp.nus.edu.sg/fm/alloy/introduction.htm .

4.6 Translation example

The translation rules have been implemented in a Java program. The following OWL
ontology defines two classesanimal and plant which are disjoint. Theeats and
eaten by are two properties, which are inverse to each other. The domain of eats
is animal. The carnivore is a subclass of animal which can only eat animals. The
ontology is given in a syntax similar to the “DL syntax” givenin [10].

Class (animal)
Class (plant)
DisjointClasses(animal plant)
ObjectProperty(eatenby)
ObjectProperty(eats

domain (animal))
InverseProperties(eats eatenby)
Class (carnivore complete animal

restriction(eat allValuesFrom animal))
Class (herbivore complete animal

restriction(eat allValuesFrom plant))

This fragment ontology can be transformed by the tool into the following Alloy
segment.

module animal
/ * import the defined library module * /
open SWRL-FOL
/ * plant and animal are translated to two class instances. The k ey

word static is used to a signature containing exactly one ele ment. * /
static disj sig plant, animal extends Class {}

/ * The disjoin element was translated into fact in Alloy * /
fact {disjointWith(plant, animal)}

/ * eats, eaten_by are translated to two property instances * /
static disj sig eats, eaten_by extends Property {}
fact {inverseOf(eats, eaten_by)}
fact {domain(eats, animal)}

static disj sig carnivore extends Class{}
fact{subClass(animal, carnivore)}
fact{allValuesFrom(eats, carnivore, animal)}
static disj sig herbivore extends Class{}
fact{subClass(animal, herbivore)}
fact{allValuesFrom(eats, herbivore, plant)}

The transformation of SWRL rules follows the semantics defined in Table 2. The
variablex andy will be bound by some universal quantifiers. The SWRL rule canbe
modelled as a universally quantified fact in the form of implication. For example the
following rule axiom

hasParent(?x1, ?x2) ∧ hasBrother(?x2, ?x3) ⇒
hasUncle(?x1, ?x3)

will be modelled as:

fact {all x1, x2, x3: Resource |
(x1->x2) in hasParent.sub_val &&
(x2->x3) in hasBrother.sub_val =>

(x1->x3) in hasUncle.sub_val}

The transformation of SWRL-FOL follows the semantic presented in Table 3. After
transforming the ontologties to the Alloy model, the consistency of the OWL/SWRL/SWRL-
FOL ontology can be checked and some reasoning can be done readily.

Figure 1: Inconsistence example

5 Reasoning OWL/SWRL/SWRL-FOL ontology with
Alloy Analyzer

Reasoning is one of the key tasks for Semantic Web applications. It can be useful
at many stages during the design, verification, maintenanceand deployment of web
ontology. In this section, we show that different Semantic Web reasoning tasks can be
accomplished by using the Alloy Analyzer.

5.1 Standard OWL reasoning tasks

There are two different levels of checking and reasoning in OWL, the conceptual level
and the instance level. At the conceptual level, the class properties and subclass rela-
tionships can be reasoned. At the instance level, the membership checking (instantia-
tion) and instance property reasoning can be done.

5.1.1 Class property checking

It is essential that the ontology shared between autonomoussoftware agents is con-
ceptually consistent. Reasoning with inconsistent ontologies may lead to erroneous
conclusions. An OWL class is deemed to be unsatisfiable (inconsistent) if, because of
its description, it cannot possibly have any instances. This section gives some exam-
ples of inconsistent ontology that can arise in ontology development, and demonstrate
how these inconsistencies can be detected by the Alloy Analyzer. For example, another

classtastyPlant which is a subclass ofplant and eaten by thecarnivore is defined.
There is an inconsistency since by the ontology definition carnivores can only eat ani-
mals. Animals and plants are disjoint.

Class (tastyPlant partial plant
restriction(eatby allValuesFrom(carnivore)))

We translate the ontology into an Alloy program, add some facts to remove the triv-
ial models (like every type is empty set) and load the programinto the Alloy Analyzer.
The Alloy Analyzer will automatically check the consistency. AA attempts to find a
model – a binding of the variables to values – that makes for the formulas (the formulas
translated from the OWL model) true. If no such model can be build, it means that the
model has been over constrained, i.e, there are some contradiction (inconsistency) in
the model.

In the example, it can be concluded that there is an inconsistency in the animal
ontology since Alloy can not find any solutions satisfying all facts within the scope
(Figure 1). Note that when Alloy can not find a solution, it maybe due to the scope
being too small. By picking a large enough scope, “no solution found’ is very likely
to mean that an inconsistency has occurred. AA tried to constructs a model which
satisfied all asserted axioms. If no such a model could be build (“no solution found”),
then there are some contradicted axioms in the model.

Besides discovering the existence of an inconsistency in ontology, tracing where
the inconsistency arises from is also crucial for a reasoning tool to be practical. The
existing OWL reasoners like FaCT and RACER can only flag the inconsistent class
without providing any explanation. The debugging process is left to users. Without any
tool support, identifying the conflicting knowledge could be frustrating. One possible
systematic technique for finding the causes of inconsistentontology is to manually
remove individual knowledge information until the culpritis identified. This task can
be lengthy and dangerous.

In Alloy, the “unsatisfied core” [16] functionality of recent SAT solvers was utilized
and it supportscore extraction, a new analysis technique that helps to discover over-
constraint in declarative models. This functionality can provide some assistance for the
user to trace the inconsistency.

Extracting theunsatisfiable core of a CNF formula, that is a subset of the clause
set sufficient to cause a contradiction, has been developed recently by satisfiability
solvers [16]. In the latest version of Alloy, the declarative model analysis has been
cast as satisfiability instances and the unsatisfiable core has been mapped back onto the
model. In other words, a user can identify the parts of model responsible for producing
the unsatisfiable CNF core. Those parts, by themselves, suffice to produce an over-
constraint, and their identification can help the user find the over-constraint. Using this
functionality, the portions of the ontology which contradict each other can be traced
readily. In the animal example, suppose a new class namedfunnything was defined to
be a subclass of bothanimal andplant classes. It is easy to see that there is an incon-
sistency since the classanimal andplant are disjoint. Alloy can automatically identify
a set of knowledge which makes the ontology unsatisfiable (Figure 2). The unsatisfi-
ability maybe due to the fact thatfunnything is a subclass ofanimal, funnything is a

Figure 2: Tracing the inconsistency

subclass ofplant or animal andplant are disjoint classes, and so on.

5.1.2 Subsumption reasoning

The task of subsumption reasoning is to infer an OWL class is the subclass of another
OWL class. That is for every instances of one OWL class, it is an instance of another
OWL class as well. Using AA, the subsumption relationship between classes can be
checked automatically. The relationship between the fish, shark and dolphin has been
used as an example to demonstrate this kind of reasoning task. In the animal ontol-
ogy a propertybreathe by is defined. Thefish is a subclass of theanimal which
breathe by thegill.

ObjectProperty(breatheby)
Class (gill)
Class (fish complete animal

restriction(breatheby allValuesFrom gill))

Since the purpose of this paper is to demonstrate ideas, the ontology has been kept
simple. In reality there are some animals such as frogs and toads, which can respire
by use of gills when they are young and by lungs when they reachadult stage. Also

Figure 3: Subsumption example

cases like that the animals which respire by use of the pharyngeal lining or skin, like
newborn Julia Creek dunnarts have not been considered. A classshark, a subclass of
carnivore whichbreathe by the gill, has also been defined.

Class (shark)
Class (fish complete animal

restriction(breatheby allValuesFrom gill))

Several of the classes were upgraded to be defined when their definitions consti-
tuted both necessary and sufficient conditions for class membership, e.g., ananimal is
a fish if and only if it breathes by thegill. Additional subclass relationships can be in-
ferred, i.e., theshark is also a subclass offish. We transfer this ontology into an Alloy
program and make an assertion that theshark is a subclass offish. The Alloy ana-
lyzer will check the correctness of this assertion automatically (Figure 3). The Alloy
Analyzer checks whether an assertion holds by trying to find acounterexample. Note
that “no solution” means no counterexample found, in this case, it strongly suggests
that the assertion is sound. To make it more interesting, classesdolphin andlung are
defined. Dolphins are a kind of animal which breathe by lungs.The classesgill and

Figure 4: Dolphin is not a fish

lung are disjoint.

Class (lung)
DisjointClasses(lung gill)
Class (dolphin complete animal

restriction(breatheby allValuesFrom lung))

Suppose an assertion that thedolphin is a kind offish is made, the Alloy Analyzer
will refute it since some counterexample was found (Figure 4). If the fact that dolphin
is a fish is added in the module, the AA will conclude that an inconsistency has arisen.

5.1.3 Debugging uncompleted ontology

Information in OWL is gathered into ontologies, which can then be from different
parties and stored as documents in the World Wide Web. Some knowledge may be
missing in the ontology. Reasoning about uncompleted ontologies may lead to some
unexpected results. We refer to the situation that because of some unavailable knowl-
edges, the reasoners had inferred some unexpected knowledges which is different with
natural facts. We need some tools to help the users to trace what is the missed knowl-
edge causing the untrue conclusion that has been drew. AA checks the assertion by

generating counterexamples – structures or behaviors for which an expected property
does not hold; from a counterexample, it is usually not too hard to figure out what is
wrong. Looking at the counterexamples may provide some hints to the user on why the
expected result does not hold and what knowledge is missing.For example, to show
the OWL classdolphin andshark are disjoint, Intuitively, this is a correct statement
sincedolphin breathes by thegill while shark breathes by thelung. Gill andlung are
disjoint. When the following assertion is added to Alloy, surprisingly AA concludes it
is wrong.

assert disjointDS
{disjointWith(shark, dolphin)}

By looking at the counterexamples graph, it has been noticedthat all the counterex-
amples (an animal which is both a shark and a dolphin) generated by AA have empty
values for the propertybreath by. In fact this unexpected result comes from the se-
mantic ofallValuesFrom construct in OWL. An OWL semantic can not deduce from
a allValuesFrom restriction alone that there actually is at least one value for the prop-
erty. An allValuesFrom restriction for a property is trivially satisfied for an instance
that has no value for that property at all. TheallValuesFrom restriction demands that
all values of the property belong to a class, and if no such values exist, the restriction
is trivially true. That is the reason why AA finds out the common instance, which does
not breathe at all, for the classdolphin and classshark. To remove this expected result,
extra knowledge needs to be added, e.g., an animal must breathe by something.

5.1.4 Instantiation

Instantiation is one of the main contributions for reasoning over OWL ontology using
Alloy. Currently some successful OWL reasoners like FaCT are designed for descrip-
tion logic (DL) T-box reasoning, which lacks support for instances. In Alloy every
expression denotes relations. The scalars will be represented by singleton unary rela-
tions - that is, relations with one column and one row. The instance level reasoning can
be supported readily in Alloy.

Instantiation is a reasoning task which tries to check if an individual is an instance
of a class. For example, two resourcesaFeralAnimal andaMeekAminal are defined
as the instances of classanimal. aGill is an instance of classgill. aFeralAnimal eats
aMeekAnimal and breathes byaGill. People may want to check ifaFeralAnimal is a
carnivore and afish.

Individual(aMeekAnimal type(animal))
Individual(aGill type(gill))
Individual(aFeralAnimal type(animal) value(breathe by aGill)

value(eats aMeekAnimal))

We translate the ontology into an Alloy program and make an assertion as follow-
ing:

static disj sig aFeralAnimal, aMeekAnimal extends Resourc e{}

static disj sig aGill extends Resource{}
fact {aFeralAnimal in animal.instances &&

aMeekAnimal in animal.instances}
fact {aGill in gill.instances}
fact {(aFeralAnimal->aMeekAnimal) in eats.sub_val}
fact {(aFeralAnimal->aGill) in breathe_by.sub_val}
assert isFishCarnivore

{(aFeralAnimal in fish.instances)
&& (aFeralAnimal in carnivore.instances)}

check isFishCarnivore for 15

AA concludes that this assertion is correct.

5.1.5 Instance property reasoning

Instance property reasoning (often regarded as knowledge querying) is important in
Semantic Web applications. It is a task to query some properties with individuals.
Since one of the promising strengths of Semantic Web technology is that it gives the
agents the capability to do more accurate and more meaningful searches. The agent can
answer some questions for which the answers are not explicitly stored in the knowledge
base.

For example, theemerge early andemerge later are two properties, which are
inverse to each other. AnimalA emerges earlier thanB if the species ofA emerge earlier
than the species ofB on the earth.emerge early is transitive. Three animal instances
firstDinosaur, firstApe andfirstHuman are defined.firstDinosaur emerge early
thanfirstApe andfirstApe emerge early thanfirstHuman. One possible question
people may ask is whetherfirstHuman is emerge later thanfirstDinosaur. With the
assistance of Alloy reasoner, such questions can be answered.

fact{TransitiveProperty(emerge_early)}
static disj sig firstDinosaur, firstApe,

firstHuman extends Resource{}
fact { firstDinosaur in animal.instances

&& firstApe in animal.instances
&& firstHuman in animal.instances}

fact {(firstDinosaur->firstApe) in emerge_early.sub_va l}
fact {(firstApe->firstHuman) in emerge_early.sub_val}
assert hum {(firstHuman->firstDinosaur) in emerge_later .sub_val}
check hum for 14

AA concludes that this assertion is correct.

5.2 SWRL/SWRL-FOL related reasoning

Besides of being capable to support the standard reasoning tasks on OWL, such as per-
forming consistency checking, subsumption and instantiation reasoning automatically,
moreover, Alloy can also check more complicated ontology properties expressed by the

newly extended languages such as SWRL/SWRL-FOL. In this section, we demonstrate
how Alloy can be used to reasoning the SWRL-FOL ontologies.

A family relationship web ontology example is used here to illustrate the rea-
soning process. The following fragment of ontology first defines two OWL classes,
Person and twinParent that represents the set of person who are the parents
of twins, and three OWL object properties, i.e.,hasChild , brotherSister and
sameBirthTime . Secondly, the ontology classwealthyParent introduces the
set of parents who have a child who is amillionnaire . Thirdly, two SWRL-FOL
axiomatic assertions are defined to provide inference for the brotherSister and
twinParent relationships. Lastly, the ontology classwealthyTwinParent is
defined as a parent being bothwealthyParent andtwinParent .

Class (Person partial)
Class (twinParent partial Person)
Class (millionnaire partial Person)
ObjectProperty(hasChild)
ObjectProperty(brotherSister)
ObjectProperty(sameBirthTime)
Class (wealthyParent complete Person

restriction(hasChild someValuesFrom(millionnaire)))
Assertion(forall I-variable(x1) I-variable(x2)

(equivalent (exists (I-variable(x3)
(and(hasChild(x3,x1) hasChild(x3,x2)
differentFrom(x1,x2))))
(brotherSister(x1, x2)))))

Assertion(forall I-variable(x1)
(equivalent (exists (I-variable(x2)
(exists (I-variable(x3)
(and(brotherSister(x2, x3) sameBirthTime(x2, x3)
hasChild(x1, x2))))))
(twinParent(x1)))))

Class (wealthyTwinParent complete wealthyParent twinParent)
From the above, it is noticed that two SWRL-FOL axioms were asserted. The first

assertion shows that if two distinct people have a same parent, then they are brothers
or sisters. The second assertion in the above ontology showsthat if two people are
brothers or sisters, and they have the same birth time, then their parents are twin-
parents. Furthermore, suppose some instances of the above ontology are asserted into
the knowledge base as follows.

Individual(Tom type(person)
type(complementOf(wealthyTwinParent))
value(hasChild Jerry)
value(hasChild Jim))

Individual(Jerry type(millionnaire) value(sameBirthTime Jim))
Individual(Jim type(person))
DisjointWith(Jim Jerry)

We transform the above ontology (in XML format) into its Alloy model3 using our
transformation program.

3Due to the space limit, the complete Alloy model of the above family relationship ontology example can
be found athttp://www.cs.man.ac.uk/ ∼hwang/FAMILY.als .

Similar as reasoning OWL, the Alloy Analyzer can automatically perform different
reasoning tasks for SWRL/SWRL-FOL. For example, it can detect that there is an
inconsistency in the above ontology example, as the Alloy Analyzer can not find any
ontology instances (solutions) satisfying all facts within the scope.

In this family ontology example, the inconsistency comes from the fact thatTom
has been inferred as an instance of both the classwealthyParent and the class
twinParent . However, there is a piece of knowledge in the model that explicitly
indicates thatTomis not an instance of thewealthyTwinParent class, which con-
tradicts to the inferred conclusion. As discussed before, with the assistance of Alloy
Analyzer’s “unsatisfiable core” functionality, the debugging process of identifying the
source of inconsistency in the ontology becomes much more handy to the users.

5.3 Discussion

The correctness of the translation has been verified by many different test cases. A
same problem has been sent to existing SW tools, theorem provers and Alloy; the same
conclusions are drawn. Furthermore, the OWL has well definedsemantics in first order
logic and Alloy is also based on the first-order logic. The soundness of the translation
can also be proved easily. In the early work [13], it shows that the consistence between
the Alloy Semantic for the Semantic Web languages and the original OWL semantic
(Alloy has been regarded as a subset of Z). Formal proving this consistence is beyond
the scope of this paper.

6 Related works and conclusion

This paper presented a reasoning environment for the Semantic Web ontology family
languages (OWL/SWRL/SWRL-FOL). There are four main contributions of the paper.
Firstly, it defines a semantic encoding for the OWL/SWRL/SWRL-FOL constructs in
the Alloy first-order language. Secondly, it presents a systematic transformation tool
from the OWL/SWRL/SWRL-FOL ontology (in XML) into its corresponding Alloy
model. Thirdly, with the assistance of Alloy Analyzer, it has been demonstrated that
the consistency of an ontology model can be checked automatically and different kinds
of reasoning tasks can be supported. Our approach complements with existing OWL
reasoners by providing full automatic debugging aids and instance level reasoning.
Furthermore, SWRL-FOL is a newly proposed extension to OWL,and to our best of
knowledge, so far there is no existing reasoning support forSWRL-FOL prior to this
work. Finally, the paper also demonstrates a light-weight formal methods approach to
the web ontology domain. Alloy was chosen over other reasoning tools because it is
based on first-order relational logic and relations betweenWeb resources are the focus
issues in the Semantic Web context. Furthermore, Alloy has an impressive automatic
tool support, the Alloy Analyzer, where automated generation of finite set of ontology
instances, creation of counter-examples on assertions, and identifying the source of
inconsistencies in the model are made available. Usual ontology tools such as FACT
and RASER can detect errors in an ontology model, but may not be able to point out
where the error is. Alloy approach provides the ontology “surgery” like capability to

pin point the errors in the model with counter-examples or contradictory constraints.
This is a highly complementary approach to Semantic Web reasoning. The approach
has been successfully applied to a recent military ontology[5].

It has indeed been realized that there is a limitation on the scalability of the current
Alloy Analyzer in reasoning large ontology models. The approach presented here can
only deal with the ontologies with relatively small size. Based on the same idea, authors
also attempt to use the theorem prover, i.e. Z/EVES, to reason the SW ontology [4].
The theorem prover can handle large sized ontologies, but itrequires the user’s interac-
tion. Here authors do not claim that Alloy is the only and bestformal tool to reason over
SW ontologies, but authors do claim that it is an effective attempt with certain novel
and irreplaceable advantages like full automation and promising debugging assistance.
In fact, it is unlikely in the near future that both expressive and automatic tool will be
developed. Currently, it is desirable if the strength from different ontology reasoning
tools can be integrated. [3] presented the methodology of checking ontologies using
tools RACER, Z/EVES and AA in conjunction. This approach hasbeen successfully
applied for reasoning a real life military ontology.

In the future, it has been planned to integrate the current Alloy Analyzer reasoning
facilities into our OWL/SWRL/SWRL-FOL transformation tool by connecting it to the
Alloy API interfaces. In addition, we also plan to extend thetransformation tool with
the editing and designing functions for the ontology models, so that it will become an
integrated development environment for the web ontology modelling, which includes
design, transformation and reasoning functions in one coherent tool support.

Acknowledgements

This work was supported in part by the HyOntUse Project (GR/S44686) funded by the
UK Engineering and Physical Science Research Council.

References

[1] T. Berners-Lee, J. Hendler, and O. Lassila. The semanticweb. Scientific Ameri-
can, May 2001.

[2] D. Brickley and R.V. Guha (editors). Resource description framework
(rdf) schema specification 1.0. http://www.w3.org/TR/2000/CR-rdf-schema-
20000327/, March, 2000.

[3] J. S. Dong, C. H .Lee, Y. F. Li, and H. Wang. A combined approach to checking
web ontologies. InThe 13th ACM International World Wide Web Conference
(WWW’04), pages 714–722. ACM Press, May 2004.

[4] J. S. Dong, C. H. Lee, Y. F. Li, and H. Wang. Verifying DAML+OIL and Beyond
in Z/EVES. InProc. The 26th International Conference on Software Engineering
(ICSE’04), pages 201–210, Edinburgh, Scotland, May 2004.

[5] J. S. Dong, J. Sun, H. Wang, C. H. Lee, and H. B. Lee. Analysing Web Ontology
in Alloy: A Military Case Study. InProc. 15th International Conference on

Software Engineering and Knowledge Engineering: SEKE’2003, pages 542–546,
San Francisco, USA, July 2003.

[6] Volker Haarslev and Ralf Möller. RACER system description. Lecture Notes in
Computer Science, 2083:701–705, 2001.

[7] Volker Haarslev and Ralf Möller. Practical Reasoning in Racer with a Concrete
Domain for Linear Inequations. In Ian Horrocks and Sergio Tessaris, editors,
Proceedings of the International Workshop on Description Logics (DL-2002),
Toulouse, France, April 2002. CEUR-WS.

[8] I. Horrocks. The FaCT system.Tableaux’98, Lecture Notes in Computer Science,
1397:307–312, 1998.

[9] I. Horrocks, P.F. Patel-Schneider, H. Boley, S.Tabet, B. Grosof, and M. Dean.
SWRL: A Semantic Web Rule Language Combining OWL and RuleML.Avail-
able: http://www.daml.org/2003/11/swrl/, 2003.

[10] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. FromSHIQ
and RDF to OWL: The making of a web ontology language.J. of Web Semantics,
1(1):7–26, 2003.

[11] D. Jackson. Micromodels of software: Lightweight modelling and analysis with
alloy. Available: http://sdg.lcs.mit.edu/alloy/book.pdf, 2002.

[12] O. Lassila and R. R. Swick (editors). Resource description framework (rdf)
model and syntax specification. http://www.w3.org/TR/1999/REC-rdf-syntax-
19990222/, Feb, 1999.

[13] Dorel Lucanu, Yuan Fang Li, and Jin Song Dong. Institution Morphisms for
Relating OWL and Z. InThe 17th International Conference on Software Engi-
neering and Knowledge Engineering (SEKE’05), Taipei, Taiwan, July 2005.

[14] Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontology Lan-
guage Overview. Available: http://www.w3c.org/TR/owl-features/, 2004.

[15] P.F. Patel-Schneider, P. Hayes, I. Horrocks, and F. Harmelen. A
Proposal for a SWRL Extension to First-Order Logic. Available:
http://www.daml.org/2003/11/swrl/, 2004.

[16] Ilya Shlyakhter, Robert Seater, Daniel Jackson, Manu Sridharan, and Mana
Taghdiri. Debugging Overconstrained Declarative Models Using Unsatisfiable
Cores. InProc. 18th IEEE International Conference on Automated Software En-
gineering (ASE 2003), pages 94–105, Montreal, Quebec, Canada, October 2004.

[17] Michael Sintek and Stefan Decker.TRIPLE—A query, inference, and transfor-
mation language for the semantic web. In I. Horrocks and J. Hendler, editors,
The Semantic Web — ISWC 2002. Proceedings of the First International Seman-
tic Web Conference, volume 2348 ofLect. Notes in Comput. Sci., pages 364–378,
Sardinia, Italy, June 2002. Springer-Verlag.

[18] Tim Berners-Lee. cwm - a general purpose data processorfor the semantic web.
http://www.w3.org/2000/10/swap/doc/cwm , 2004.

[19] Hai Wang, Jin Song Dong, and Jing Sun. Reasoning Supportfor SWRL-FOL
Using Alloy. In 17th International Conference on Software Engineering and
Knowledge Engineering (SEKE’05), Taipei, Taiwan, July 2005.

Biographical Notes

Hai H. Wang obtained Bachelor (1st class honors) and PhD degrees from the School of
Computing, National University of Singapore (NUS) in 2001 and 2004. He worked as
a Research Assistant in the School of Computing at NUS from 2001-2003. Since 2004
he has been in the School of Computer Science at The University of Manchester where
he worked as a Research Associate. His main interests include Software Engineering,
Formal Methods Ontology and Semantic Web.

Jin-Song DONG received Bachelor (1st class honors) and PhD degrees in Com-
puting from University of Queensland in 1992 and 1996. From 1995-1998, he was a
Research Scientist at the Commonwealth Scientific and Industrial Research Organisa-
tion in Australia. Since 1998 he has been in the School of Computing at the National
University of Singapore (NUS) where he is currently Associate Professor and Assistant
Dean. He is a Steering Committee member of the InternationalConference on Formal
Engineering Methods (ICFEM) and the Asia Pacific Software Engineering Conference
(APSEC) series.

Jing Sun is a lecturer at the Department of Computer Science,The University of
Auckland, New Zealand. He obtained his PhD degree from the Department of Com-
puter Science, National University of Singapore in March 2004. Dr. Sun’s research
interests include Software Engineering, Formal Methods and Semantic Web.

Jun Sun received the BSc degree from the School of Computing,National Univer-
sity of Singapore (NUS) in 2002. Since then he has been pursuing the PhD degree in
software engineering from NUS. As of July 206, he is a research fellow in the depart-
ment of Computer Science at NUS.

