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Abstract

Semantic Web (SW), commonly regarded as the next genecitibie Web, is
an emerging vision of the new Web from the Knowledge Repttesen and the
Web communities. To realize this vision, a series of teaneschas been proposed.
Semantic Web Ontology Langauge (OWL) and its extension &&m¥Veb rule
Language (SWRL) and Semantic Web Logic Language (SWRL-F@&$0ome of
the most important outputs from the SW activities. Howeber éxisting reason-
ing and consistency checking tools for those languagesrargtipe. This paper
proposes using the existing formal modelling tool, in martar Alloy, to provide
an automatic reasoning service for the Semantic Web ontdigily languages
(OWL/SWRL/SWRL-FOL)!
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1 Introduction

The power of the Semantic Web [1], as the next generationsofeb, will be realized
when software agents are able to understand the Web coptecgss the informa-
tion and exchange the results with other software agentslifydogic to the Web is
one of the key requirements. This logic must be powerful ghaiw describe com-
plex properties of web resources but not so complicatedafpents could be tricked by
being asked to consider a paradox. To achieve these twoathctiory requirements,
researchers attempt to adopt the layered approach, wreetgtier layer is extended
from the lower layer with enhanced expressive power. Thdis\el that different appli-
cations can choose the logic language suiting their needs mo

The bottom layer is Web Ontology Language (OWL) [14]. OWL,eaammen-
dation by the World Wide Web Consortium (W3C), is the latdandard to define
the ontology. It is based on Description Logic (DL). Althdu@WL adds consider-
able expressive power to the Semantic Web, to retain theldeitity of key inference
problems in OWL DL and OWL Lite, OWL has its expressive liniites. Certain
desired properties can not be expressed for some appiisatiSemantic Web Rule
Language (SWRL) [9] extends OWL by combining the OWL DL and DWte with
the Unary/Binary Catalog sub-languages of the Rule Markapguage. It introduces
a new kind of axiom, named Horn clause rules, to OWL DL. RdgeSemantic Web
Rule Language First Order Logic (SWRL-FOL) [15] has beerppeed to further ex-
tend the SWRL to handle unary/binary first-oder logic.

Reasoning can be useful at many stages during the desigmemance and deploy-
ment of ontology. Using the reasoning service provided hy&w#ic Web reasoners,
software agents can autonomously infer new knowledges fhengiven knowledges
and perform different tasks. For example, Pizzafirfdexs a small application devel-
oped by our research group, demonstrates how the reasandrim® used by a web
software agent for their application. Pizzafinder uses tlagaPOntology, and a rea-
soner to dynamically generate pizza toppings and pizzargpgategories. The user
can include toppings that they would like on their pizza axclue any toppings that
they do not want on their pizza. The description logic reasas used to determine
if the choices that have been made contradict each otherextample, choosing to
include Jalapeno Pepper topping, but choosing to exclutiettioppings - the choices
are automatically adjusted to modify any decisions thatctpotentially lead to con-
tradictions and inconsistent results.

Because autonomous software agents may perform theirmegsand come to
conclusions without human supervision, it is essentidl i shared ontology is con-
sistent. However, since the Semantic Web technology isistthe early stage, the
reasoning and consistency checking tools are primitivee &tisting OWL reasoning
tools such as FaCT [8] and RACER [6] have been developedfaadlsi for the de-
cidable description logic, which are based on tableauxrdtgn. They are far from
perfect. Furthermore, currently there does not exist atabt algorithm that can sup-
port the reasoning of SWRL-FOL, or even SWRL. Hence, it waake some effort
and time for people to research into new algorithms and néld tools to support

2http://iwww.co-ode.org/downloads/pizzafinder/



SWRL and SWRL-FOL reasoning. However, as it can been foreses it is critical
and urgent to provide some reasoning service to SWRL and SW®L in order to
make them to be integrated into ontology languages hieyancti to have their impacts
on the practical web applications.

Alternatively, rather than developing new algorithms amald, a light-weight ap-
proach to provide reasoning service which can complemestieg OWL reasoners
and support SWRL and SWRL-FOL is to customize and reuse saisgng tools.
After decades of research and development, some maturaffarodelling/reasoning
tools have been established successfully. These toold eail be adopted to reason-
ing about OWL, SWRL and SWRL-FOL.

This paper proposes to develop a reasoning environmerg tlensoftware mod-
elling language Alloy and its Analyzer [11] for web ontolofgmilies language. It
complements the existing OWL reasoning tools like RACER] also supports the
newly extended SWRL and SWRL-FOL.

The rest of the paper is organized as follows. Section 2 piigfloduces the OWL,
SWRL, SWRL-FOL and Alloy. In section 3, we present the All@nsantics for the
OWL/SWRL/SWRL-FOL language and the transformation frora tmtologies into
their corresponding Alloy models. Section 4 presents a sagty to demonstrate the
reasoning processes of SWRL-FOL ontology models in theyMinalyzer. Section 5
concludes the paper and discusses the future work.

This paper is substantially extended and revised from thly eanference paper
‘Reasoning Support for SWRL-FOL Using Alloy’ [19].

2 Backgrounds

2.1 Semantic web overview
2.1.1 Semantic web and OWL

The Semantic Web is a vision for a new kind of Web with enharfcedtionality
which will require semantic-based representation andgssiag of Web information.
W3C has proposed a series of technologies that can be applathieve this vision.
The Semantic Web extends the current Web by giving the wetenba well-defined
meaning, better enabling computers and people to work ip@@tion. XML is aimed
at delivering data to systems that can understand and ieteie information. XML
is focused on the syntax (defined by the XML schema or DTD) ob@udhent and it
provides essentially a mechanism to declare and use simfdesttuctures. However
there is no way for a program to actually understand the kedgé contained in the
XML documents.

Resource Description Framework (RDF) [12] is a foundatmrpffocessing meta-
data; it provides interoperability between applicatidret eExchange machine-understandable
information on the Web. RDF uses XML to exchange descrigtioinWeb resources
and emphasizes facilities to enable automated procesBregRDF descriptions pro-
vide a simple ontology system to support the exchange of ledye and semantic
information on the Web. RDF Schema [2] provides the basi@batary to describe
RDF documents. RDF Schema can be used to define propertiggmesdof the web



OWL constructs Description

OWL_class classes

OWL_property properties

OWL_subclass|C] subclasses of C
OWL_subproperty[P] | subproperties of P

instanceof [ C] instances of the OWL class C

Table 1: OWL constructs (partial)

resources. The advent of RDF Schema represented an eartypatit an SW ontology
language based on RDF.

OWL [14] is a standard (W3C recommendation) for expressimiplogies in the
Semantic Web. The OWL language facilitates greater madmnuerstandability of
Web resources than that supported by RDFS by providingiadditconstructors for
building class and property descriptions (vocabulary) aed axioms (constraints),
along with a formal semantics. OWL consists of three sulgi@ges: OWL Lite, OWL
DL and OWL Full, with increasing expressiveness. OWL Litel &1 are decidable,
but OWL Full is generally not. An OWL ontology consists of s$&s, properties and
individuals. Classes are interpreted as sets of objectsepaesent the individuals in
the domain of discourse. Properties are binary relatioaslitk individuals, and are
interpreted as sets of tuples, which are the subsets of tiss product of the objects in
the domain of discourse. OWL classes fall into two main caieg — named classes
and anonymous classes. Anonymous classes are formed fgizallstatements. They
contain the individuals that satisfy the logical descaptiAnonymous classes may be
further sub-divided into restrictions and logical clasprssions. We summarize some
essential OWL constructs in Table 1. To be simpler, infor@A/L syntax has been
used here. For exampl®WL_class denotes the OWL construct “Class” .

212 SWRL

Although OWL includes a relatively rich set of class constaus, the language pro-
vided for expressing properties is much weaker. SWRL [9nds to overcome the
expressive restriction of OWL properties by extending OWthvgome form of “rule
language”. SWRL is based on a combination of the OWL DL and OMIe sub-
languages of the OWL Web Ontology Language with the UnangBji Catalog sub-
languages of the Rule Markup Language. SWRL introduceslzleigel abstract syn-
tax for Horn-like rules in both the OWL DL and OWL Lite sub-quages of OWL.
SWRL extends OWL by also allowing rule axioms, i.e., by addime construct:

aziom = rule
A rule axiom consists of an antecedent and a consequentpéadtich consists of
a set of atoms which could be class membersi)), property membershig?(x,y)

or individual in/equalitiegfifferentFrom(x,y)/sameAs(x,)y)Informally, a rule means
that if the antecedent holds (is “true”), then the consetjoarst also hold. A simple



example of the rules could be used to express the knowledgéitt?z1 is a child of
722 and?z2 is a brother of?z3, then?z3 is an uncle of’z1". Informally, this rule
could be written as:

hasChild(?x2,7x1) A hasBrother(?x2,7x3)
= hasUncle(?z1,723)

2.1.3 SWRL-FOL

SWRL-FOL [15] extends SWRL axiom to arbitrary first-orderfaula over unary and
binary predicates. It extends SWRL with “assertion” axicifmst contain first-order
sentences, i.e.

ariom = assertion

Assertions assert first-order sentences, where no freabkasi are allowed in the
formulae. For example an axiom could be used to express thwlkdge that “for all
the persortz1 if s/he is a ‘wealthy Parent’, then s/he has at least one ¢hitdwho is
a millionnaire.”. Informally, this axiom could be writtersa

V?z1 | wealthyParent(?z1) =
3?22 | hasChild(?z1,722) A millionnaire(?z2)

We can see from the above example that by introducing fiddiormulas, more
complex logical statements can be expressed in SWRL.

2.1.4 Existing reasoningtoolsfor Semantic Web

Ontology reasoning tools have been built alongside theldpueent of ontology lan-
guages. The rest of this subsection will introduce a few e$¢htools.

Cwm (Closed world machine) [18] is a general-purpose datagssor for the Se-
mantic Web. Implemented in Python and command-line basex forward chaining
reasoner for RDF.

Triple [17] is a RDF query, inference and transformationglaage. It does not
have a built-in semantics for RDF Schema, but it allows sditsof languages to be
defined with rules on top of RDF. This feature of Triple faeiles data aggregation as
users can perform RDF reasoning and transformation unéferetit semantics. The
Triple tool supports OWL through external OWL reasoner$iagFaCT and RACER.

FaCT astClassification off erminologies) [8], developed at University of Manch-
ester, is a TBox (concept-level) reasoner that supportswated concept-level reason-
ing, namely class subsumption and consistency reasontmpes not support ABox
(instance-level) reasoning. It is implemented in Commapland comes with a FaCT
server, which can be accessed across network via its CORBAace. Given an OWL
ontology, it can classify the ontology (performs subsumptieasoning) so as to reduce
redundancy and detect any inconsistency within it.

RACER, theRenamedABox andConceptExpressionReasoner [6], implements
a TBox and partial ABox reasoner for the description lagi€C OHZr+ (D)~ [7]. It
can be regarded as (a) a Semantic Web inference engine,€bramtion logic reason-
ing system capable of both TBox and ABox reasoning and (cpeguifor modal logic



Km. In the Semantic Web domain, RACER’s functionalitieslimiz developing on-
tologies (creating, maintaining and deleting concepissrand individuals); querying,
retrieving and evaluating the knowledge base, etc. It sup@@/VL and RDF.

The FaCT and RACER are the most well accepted OWL reasoneosveVvér,
they still have many limitations, such as both of them cary dislg an OWL class
is inconsistent without providing any explanation. The wlgding task is left to the
user. Furthermore, there is very limited datatype suppoith as integer and string.
Also FaCT does not provide any ABox reasoning. RACER can palyially support
ABox reasoning. Alloy approach proposed in this paper canpement FaCT and
RACER [3].

Currently, there is not a well accepted system supportindREWand only few
prototypes has been developed. There is no reasoning {mebeing SWRL-FOL yet.

2.2 Alloy overview

Alloy [11] is a structural modelling language based on fosler logic, for express-

ing complex structural and behavioral constraints. Allmats relations as first class
citizens and uses relational composition as a powerfulaipeto combine various

structured entities. The essential constructs of Alloyaaréollows:

e Signature: A signature §ig) paragraph introduces a basic type, a collection of
relations (called field), and a set of constraints on thdines A signature may
inherit fields and constraints from another signature.

e Function: A function (fun) captures behavior constraints. It is a parameterized
formula that can be “applied” elsewhere.

e Fact: Fact (fact) imposes global constraints on the relations and objecfacA
is a formula that takes no arguments and needs not to be idwdicitly.

e Assertion: An assertion ¢ssert) specifies an intended property. It is a formula
whose correctness needs to be checked, assuming the fdutsntodel.

The Alloy Analyzer is a tool for analyzing models written idldy. Given a fi-
nite scope for a specification, Alloy Analyzer translatestd a propositional formula
and uses SAT solving technology to generate instances dmasatisfy the facts and
properties expressed in the specification.

3 Alloy semanticsfor OWL/SWRL/SWRL-FOL

This section presents the Alloy semantics for OWL, SWRL aWdRE-FOL lan-
guages, which forms the foundation of the reasoning enwient. Due to limited
space, only part of semantic model has been presented hemmplete Alloy seman-
tics for these languages can be foun@itép://www.cs.man.ac.uk/ ~hwang/
swrifol.als



3.1 Alloy semantic for OWL constructs
3.1.1 Basic concepts

The semantic model for OWL is encoded in the modOM/L. Users only need to
import this module to reason about OWL ontology in Alloy.

module OWL

All the things described in the Semantic web context arerrefieto as web re-
sources. A basic typResource is defined as:
sig Resource {}
Other concepts such as classes and properties definedriatextanded from the
Resource . Property, which is a kind ofResource itself, relatesResource to Re-
source.

disj sig Property extends Resource
{sub_val: Resource -> Resource}

“disj” is a keyward from Alloy for denoting the disjointnessachProperty has a
relationsub_val from set<Property, Resource, Resource> with type<Resource,
Resource, Resource> (since in Alloysubsignature does not introduce a new type).
This relation can be regarded as a RDF statement, i.e.Jadfithe form<property(or
predicate), subject, value(or object)>.

The class corresponds to the generic concept of type oragtefjresource. Each
Class maps a set of resources via the relatinstances, which contains all the in-
stance resources. The keywadlidj is used to indicate th€lass and Property are
disjoint.
disj sig Class extends Resource {instances: set Resource}

The OWL also allows the use of XML Schema datatypes to desdob define)
part of the datatype domain. Alloy supports Integer anch§trApart from these there
are no predefined types in Alloy, Datatype has been treatedsascial Class, which
contains all the possible datatype values in the instaredaton.

disj sig Datatype extends Class {}

3.1.2 Classelements

ThesubClassOf is a relation between classes. The instances in a subcksatsarin
the super-classes. A parameterized formula (a functionlimypis used to represent
this concept.

fun subClassOf(csup, csub: Class)
{csub.instances in csup.instances}

ThedisjointWith is a relation between classes. It asserts that there arestamaes
common with each other.

fun disjointwith (cl, c2: Class) {no cl.instances & c2.inst ances}



3.1.3 Property restrictions

The allValuesFrom construct states that all instances of the clekgshat have the
values of property all belong to the class2.

fun allValuesFrom
(p: Property, cl: Class, c2: Class)
{all r1, r2: Resource |
rl in cl.instances =>
r2 in rl.(p.sub_val) =>
r2 in c2.instances}

A hasValue function states that all instances of the cladshave the values of
propertyP as resource Ther could be an individual object or a datatype value.

fun hasValue (p: Property, cl: Class, r: Resource)
{all r1l: Resource | rl in cl.instances => rl.(p.sub_val) = r}

A MaxCardinality function states that all instances of the clas$ave at mosN
distinct values for the propery. Alloy supports some integer operations.

fun maxCardinality (p: Property, cl: Class, N: Int)
{all r1: Resource| rl in cl.instances <=>
# rl.(p.sub_val) <= int N }

3.2 Boolean combination of class expressions

TheintersectionOf function defines a relation between a clagsand a list of classes
clist. ThelList is defined in the Alloy library. The clagsl consists of exactly all the
objects that are common to all class expressions from thelikss.

fun intersectionOf (clist: List, cl: Class)
{all r: Resource| r in cl.instances <=>
all ca: clist. *next.val | r in ca.instances}

The unionOf function defines a relation between a cladsand a list of classes
clist. The clasx1 consists of exactly all the objects that belong to at leastafrthe
class expressions from the Idist. It is analogous to logical disjunction;

fun unionOf (clist: List, c1: Class)
{all r: Resource| r in cl.instances <=>
some ca: clist. *next.val| r in ca.instances}

3.2.1 Property elements

ThesubPropertyOf construct states thasub is a sub-property of the propenpgup.
This means that every pair (subject,value) that igsap is also in thepsub.



fun subPropertyOf (psup, psub: Property)
{psub.sub_val in psup.sub_val}

The domain function asserts that the propeRyonly applies to instances of the
classc.

fun domain (p: Property, c: Class)
{(p.sub_val).Resource in c.instances}

TheinverseOf function shows two properties are inverse.
fun inverseOf (pl, p2: Property) {pl.sub_val = “(p2.sub_va N}
All other OWL constructs can be defined in a similar manneeaB¢ refer to the

complete OWL Alloy semantics online.

3.3 Alloy semantic for SWRL extension

SWRL extends OWL by adding the rule axioms. A rule axiom cstssif an antecedent
and a consequent, each of which consists of a set of atomsmsAtan be of the
following forms, where C is an OWL description, P is an OWL peaty, and x,y are
either variables, OWL individuals or OWL data values.

C(x): Informally, it holds if x is an instance of the class destiap C.

P(x,y): It holds if x is related to y by property P.

sameAs(x,y): It holds if x is interpreted as the same object as y.

differentFrom(x,y): It holds if x and y are interpreted as different objects.

Table 2 shows how the above atoms can be modelled in Alloy.

Atom Alloy representation
C(z) ‘X in C.instances’
P(z,y) ‘(x->Y) in P.subval’
sameAs(z,y) X=y'
differentFrom(z,y) | ‘X!1=y

Table 2: Alloy semantic for the atoms

As mentioned before, a rule means that if the antecedens hiblel consequent must
also hold. It can be modelled as a universally quantifiedifeitte form of implication.
For example the following rule axiom (wheag ... a,, are atoms)

Implies(Antecedent(ay, ..., a,) Consequent(ap))
will be modelled as:

fact { a1 && ... && a n =>a 0}



SWRL-FOL formula | Alloy semantics

and(Ci...Cy,) fact{C; && ... && C, }
or(Ch...Cy) fact{Cy || ... || Cv}
neg(C) fact{not C}

implies(C1 C2) fact{C1 => Cb}

equivalent(Cy C2) fact{C1 <=> (>}
forall(V:i...V,, C) fact{all V1, ..., V,.: Resourcg C}
exists(V1...Vy, C) fact{someV1, ..., V,,;: Resourcg C}

Table 3: Alloy Semantic for SWRL-FOL

3.4 Alloy semantic for SWRL-FOL extension

SWRL-FOL extends SWRL with assertion axioms that contast-firder formulas.
Table 3 presents the Alloy semantic for different SWRL-FOLtnfiulas.

The above defines the basic transformation guidelines flraSWRL-FOL into
their corresponding Alloy semantics. We will demonstrdte actual transformation
process in the following section.

4 OWL/SWRL/SWRL-FOL to Alloy transfor mation

The previous section presented Alloy semantics for OWL, $VdRd SWRL-FOL,
which forms the foundation for the reasoning environmentb& able to perform the
automatic reasoning task using Alloy Analyzer, a Java @oghas been developed
for the automatic transformation from an OWL/SWRL/SWRL1iFKhowledge file (in
XML format) into its corresponding Alloy model.

A set of translation rules are developed in the followingsergation.

41 OWL classtrandation

C € OWL_class

static disj sig C extends Class{}

An OWL_classC will be transferred into a scal#, constrained to be an element of
the signature€Class.

4.2 OWL property trandation

P € OWL_property

static disj sig P extends Property{}

An OWL_propertyp will be translated into a scal&, constrained to be an element of
the signaturéroperty.



4.3 Instancetrandation

z € instancesof Y]

static disj sig © extends Resource{}
fact{ z in Y .instances}

An OWL individualx of classY will be translated into a scalai;, constrained to be an
element of the signatuf®esource. x is a subset oY.instances.

4.4 Other OWL translations

Other OWL constructs can be easily translated into the Ailmctions defined in the
previous section. For example the following rule shows hovwranslate the OWL
subclass relation into Alloy code.

subclass[X, Y], X € OWL_class, Y € OWL_class
fact{subClassOf (X, Y)}

45 SWRL and SWRL-FOL trandation

The transformation of SWRL rules follows the semantics defiin Table 2. The
variablez andy will be bound by some universal quantifiers. The SWRL rule lsan
modelled as a universally quantified fact in the form of irogtion.

Similarly, the transformation of SWRL-FOL follows the semtias presented in
Table 3. More translation rules can be found from [19] andwled sitehttp:
/Int-appn.comp.nus.edu.sg/fm/alloy/introduction.htm

4.6 Trandation example

The translation rules have been implemented in a Java prograe following OWL
ontology defines two classemimal and plant which are disjoint. Theesats and
eaten_by are two properties, which are inverse to each other. The tioofeeats

is animal. Thecarnivore is a subclass of animal which can only eat animals. The

ontology is given in a syntax similar to the “DL syntax” givemn[10].

Class (animal)

Class (plant)

DisjointClasses( animal plant )

ObjectProperty(eateiby)

ObjectProperty(eats

domain (animal))

InverseProperties(eats eatbg)

Class (carnivore complete animal
restriction(eat allValuesFrom animal))

Class (herbivore complete animal
restriction(eat allValuesFrom plant))



This fragment ontology can be transformed by the tool int filllowing Alloy
segment.

module animal

/ *import the defined library module */

open SWRL-FOL

/= plant and animal are translated to two class instances. The k ey
word static is used to a signature containing exactly one ele ment. */

static disj sig plant, animal extends Class {}

[+ The disjoin element was translated into fact in Alloy */
fact {disjointWith(plant, animal)}

/ = eats, eaten_by are translated to two property instances */
static disj sig eats, eaten_by extends Property {}

fact {inverseOf(eats, eaten_by)}

fact {domain(eats, animal)}

static disj sig carnivore extends Class{}
fact{subClass(animal, carnivore)}
fact{allValuesFrom(eats, carnivore, animal)}
static disj sig herbivore extends Class{}
fact{subClass(animal, herbivore)}
fact{allValuesFrom(eats, herbivore, plant)}

The transformation of SWRL rules follows the semantics defim Table 2. The
variablez andy will be bound by some universal quantifiers. The SWRL rulelcan
modelled as a universally quantified fact in the form of irogtion. For example the
following rule axiom

hasParent(?z1,?22) A hasBrother(?z2,7z3) =
hasUncle(?z1,723)

will be modelled as:

fact {all x1, x2, x3: Resource |
(x1->x2) in hasParent.sub_val &&
(x2->x3) in hasBrother.sub_val =>
(x1->x3) in hasUncle.sub_val}

The transformation of SWRL-FOL follows the semantic preéediin Table 3. After
transforming the ontologties to the Alloy model, the cotesisy of the OWL/SWRL/SWRL-
FOL ontology can be checked and some reasoning can be datily.rea
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Figure 1: Inconsistence example

5 Reasoning OWL/SWRL/SWRL-FOL ontology with
Alloy Analyzer

Reasoning is one of the key tasks for Semantic Web applitatidt can be useful
at many stages during the design, verification, maintenandedeployment of web
ontology. In this section, we show that different Semant&b\keasoning tasks can be
accomplished by using the Alloy Analyzer.

5.1 Standard OWL reasoning tasks

There are two different levels of checking and reasoningWiL.Othe conceptual level
and the instance level. At the conceptual level, the clagpgaties and subclass rela-
tionships can be reasoned. At the instance level, the meshiperhecking (instantia-
tion) and instance property reasoning can be done.

5.1.1 Classproperty checking

It is essential that the ontology shared between autonormafware agents is con-
ceptually consistent. Reasoning with inconsistent owgie® may lead to erroneous
conclusions. An OWL class is deemed to be unsatisfiable iisistent) if, because of
its description, it cannot possibly have any instancess §hction gives some exam-
ples of inconsistent ontology that can arise in ontologyetigvment, and demonstrate
how these inconsistencies can be detected by the Alloy Zealy-or example, another



classtastyPlant which is a subclass gflant and eaten by thearnivore is defined.
There is an inconsistency since by the ontology definitionigares can only eat ani-
mals. Animals and plants are disjoint.

Class (tastyPlant partial plant
restriction(eatby allValuesFrom(carnivore)))

We translate the ontology into an Alloy program, add somtsfacremove the triv-
ial models (like every type is empty set) and load the programthe Alloy Analyzer.
The Alloy Analyzer will automatically check the consistgn®A attempts to find a
model — a binding of the variables to values — that makes fofdimulas (the formulas
translated from the OWL model) true. If no such model can bkl bt means that the
model has been over constrained, i.e, there are some cmtimadinconsistency) in
the model.

In the example, it can be concluded that there is an incamigtin the animal
ontology since Alloy can not find any solutions satisfyingfatts within the scope
(Figure 1). Note that when Alloy can not find a solution, it nta/due to the scope
being too small. By picking a large enough scope, “no sotufaund’ is very likely
to mean that an inconsistency has occurred. AA tried to cocist a model which
satisfied all asserted axioms. If no such a model could bd Ktrib solution found”),
then there are some contradicted axioms in the model.

Besides discovering the existence of an inconsistency tolagy, tracing where
the inconsistency arises from is also crucial for a reagptool to be practical. The
existing OWL reasoners like FaCT and RACER can only flag tleensistent class
without providing any explanation. The debugging proce#sft to users. Without any
tool support, identifying the conflicting knowledge could toustrating. One possible
systematic technique for finding the causes of inconsisiatdlogy is to manually
remove individual knowledge information until the culpstidentified. This task can
be lengthy and dangerous.

In Alloy, the “unsatisfied core” [16] functionality of receBAT solvers was utilized
and it supportgore extraction, a new analysis technique that helps to discover over-
constraint in declarative models. This functionality caoMide some assistance for the
user to trace the inconsistency.

Extracting theunsatisfiable core of a CNF formula, that is a subset of the clause
set sufficient to cause a contradiction, has been develggahtly by satisfiability
solvers [16]. In the latest version of Alloy, the declaratimodel analysis has been
cast as satisfiability instances and the unsatisfiable aséé&en mapped back onto the
model. In other words, a user can identify the parts of moelgonsible for producing
the unsatisfiable CNF core. Those parts, by themselves¢suffiproduce an over-
constraint, and their identification can help the user firddver-constraint. Using this
functionality, the portions of the ontology which contretdéach other can be traced
readily. In the animal example, suppose a new class ndnmegything was defined to
be a subclass of botinimal andplant classes. It is easy to see that there is an incon-
sistency since the classimal andplant are disjoint. Alloy can automatically identify
a set of knowledge which makes the ontology unsatisfiablguf€i2). The unsatisfi-
ability maybe due to the fact th&innything is a subclass adinimal, funnything is a
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fact {disjoinWith(plant, animal)}
atatic disj sig eats, eaten by extends Property {1}
fact {domain(eats, animal)}

Unsat core

© [ 0#1 Fact animall_Fact_88; Fact animali_Fact_88
@ 3 0A Fact animali_Fact_89; Fact animali_Fact_2849
O [ 141 Factanimali_Fact_90; Fact animali_Fact_30
@ ] oA Fact animali_Fact_94; Fact animali_Fact_94
@[3 0M Fact animall_Fact_85; Factanimal/_Fact_35
© [ 0/ Fact animall_Fact_97; Fact animali_Fact_37
@ 311 Fact animal/_Fact_99; Fact animali_Fact_a3)
©- [ 141 Factanimali_Fact_100; Fact animalf_Fact_100

static disj sig funnything extends Class{}
fact
fact {subClassOf(plant, funnything)}

Line 18, Column 38

Figure 2: Tracing the inconsistency

subclass oplant or animal andplant are disjoint classes, and so on.

5.1.2 Subsumption reasoning

The task of subsumption reasoning is to infer an OWL cladsdstibclass of another
OWL class. That is for every instances of one OWL class, inisnatance of another
OWL class as well. Using AA, the subsumption relationshipween classes can be
checked automatically. The relationship between the fis&rksand dolphin has been
used as an example to demonstrate this kind of reasoning tagke animal ontol-
ogy a propertyoreathe_by is defined. Theish is a subclass of thanimal which
breathe_by thedill.

ObjectProperty(breathby)

Class (gill)

Class (fish complete animal
restriction(breatheby allValuesFrom gill))

Since the purpose of this paper is to demonstrate ideasntbéogy has been kept
simple. In reality there are some animals such as frogs aabk{avhich can respire
by use of gills when they are young and by lungs when they redciit stage. Also
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static disj sig gill extends Class{}

§§ static disj sig fish extends Class{}

static dizj sig breathe_hy extends Property {3

§§ fact {suhClassOffanimal, fish)}

factitoClassihreathe_tw, fish, gilld}

§§ static disj sig shark extends Class{}

fact {suhClassOficarnivare, shark)}

§§ facttoClassibreathe_by, shark, gilly}

assert sharklsFish {subClassOfifish, shark)}

“check sharklsFish for 14

& " Mo solutions s Resourcef}

a ; o
[1 Mo solutions found. rhimal in anim

K

hnces) && (aFe

checkisFishCarnivore for 14

-

[ *]

Line 138, Column 3

Figure 3: Subsumption example

cases like that the animals which respire by use of the plgaairining or skin, like
newborn Julia Creek dunnarts have not been considered.sédffark, a subclass of
carnivore which breathe by the gill, has also been defined.

Class (shark)
Class (fish complete animal
restriction(breatheby allValuesFrom gill))

Several of the classes were upgraded to be defined when #f@iitidns consti-
tuted both necessary and sufficient conditions for classimeeship, e.g., aanimal is
afish if and only if it breathes by thgill. Additional subclass relationships can be in-
ferred, i.e., theshark is also a subclass diEh. We transfer this ontology into an Alloy
program and make an assertion that shark is a subclass dfish. The Alloy ana-
lyzer will check the correctness of this assertion autocadlti (Figure 3). The Alloy
Analyzer checks whether an assertion holds by trying to findunterexample. Note
that “no solution” means no counterexample found, in thisegdt strongly suggests
that the assertion is sound. To make it more interestingsekalolphin andlung are
defined. Dolphins are a kind of animal which breathe by lurijse classegjill and
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Line 130, Column 1

Figure 4: Dolphin is not a fish

lung are disjoint.

Class (lung)

DisjointClasses( lung gill )

Class (dolphin complete animal
restriction(breatheby allValuesFrom lung))

Suppose an assertion that th@phin is a kind offish is made, the Alloy Analyzer
will refute it since some counterexample was found (Figyrdf4he fact that dolphin
is a fish is added in the module, the AA will conclude that amirsistency has arisen.

5.1.3 Debugging uncompleted ontology

Information in OWL is gathered into ontologies, which cawerhtbe from different
parties and stored as documents in the World Wide Web. Sormelkdge may be
missing in the ontology. Reasoning about uncompleted ogie$ may lead to some
unexpected results. We refer to the situation that becausente unavailable knowl-
edges, the reasoners had inferred some unexpected kn@astathich is different with
natural facts. We need some tools to help the users to traatisvthe missed knowl-
edge causing the untrue conclusion that has been drew. Aékstibe assertion by



generating counterexamples — structures or behaviorsahwan expected property
does not hold; from a counterexample, it is usually not toal @ figure out what is
wrong. Looking at the counterexamples may provide some thirthe user on why the
expected result does not hold and what knowledge is mis$ingexample, to show
the OWL clasgdolphin andshark are disjoint, Intuitively, this is a correct statement
sincedolphin breathes by thgill while shark breathes by thtung. Gill andlung are
disjoint. When the following assertion is added to Alloyrmisingly AA concludes it

is wrong.

assert disjointDS
{disjointWith(shark, dolphin)}

By looking at the counterexamples graph, it has been notiwdll the counterex-
amples (an animal which is both a shark and a dolphin) gezebtat AA have empty
values for the propertipreath by. In fact this unexpected result comes from the se-
mantic ofallValuesFrom construct in OWL. An OWL semantic can not deduce from
aallValuesFrom restriction alone that there actually is at least one vabuétfe prop-
erty. AnallValuesFrom restriction for a property is trivially satisfied for an iastce
that has no value for that property at all. TéB/aluesFrom restriction demands that
all values of the property belong to a class, and if no sucheséxist, the restriction
is trivially true. That is the reason why AA finds out the comminstance, which does
not breathe at all, for the cladslphin and classhark. To remove this expected result,
extra knowledge needs to be added, e.g., an animal mushbreasomething.

5.1.4 Instantiation

Instantiation is one of the main contributions for reasgromer OWL ontology using
Alloy. Currently some successful OWL reasoners like FaGT designed for descrip-
tion logic (DL) T-box reasoning, which lacks support for tasces. In Alloy every
expression denotes relations. The scalars will be reptedday singleton unary rela-
tions - that is, relations with one column and one row. Thésinse level reasoning can
be supported readily in Alloy.

Instantiation is a reasoning task which tries to check ifratividual is an instance
of a class. For example, two resouregzralAnimal andaMeekAminal are defined
as the instances of claasimal. aGill is an instance of claggll. aFeralAnimal eats
aMeekAnimal and breathes bgGill. People may want to checkaf~eralAnimal is a
carnivore and &fish.

Individual(aMeekAnimal type(animal))

Individual(aGill type(qill))

Individual(aFeralAnimal type(animal) valug{reathe_by aGill)
value(eats aMeekAnimal))

We translate the ontology into an Alloy program and make aeréion as follow-
ing:

static disj sig aFeralAnimal, aMeekAnimal extends Resourc e{}



static disj sig aGill extends Resource{}
fact {aFeralAnimal in animal.instances &&
aMeekAnimal in animal.instances}

fact {aGill in gill.instances}
fact {(aFeralAnimal->aMeekAnimal) in eats.sub_val}
fact {(aFeralAnimal->aGill) in breathe by.sub_val}
assert isFishCarnivore

{(aFeralAnimal in fish.instances)

&& (aFeralAnimal in carnivore.instances)}
check isFishCarnivore for 15

AA concludes that this assertion is correct.

5.1.5 Instance property reasoning

Instance property reasoning (often regarded as knowledgeyig) is important in
Semantic Web applications. It is a task to query some prigsewith individuals.
Since one of the promising strengths of Semantic Web teolgydk that it gives the
agents the capability to do more accurate and more meamhsegtches. The agent can
answer some questions for which the answers are not exp$itired in the knowledge
base.

For example, themerge_early andemerge_later are two properties, which are
inverse to each other. AnimAlemerges earlier thaBif the species oA emerge earlier
than the species & on the earthemerge_early is transitive. Three animal instances
firstDinosaur, firstApe andfirstHuman are defined.firstDinosaur emerge_early
thanfirstApe andfirstApe emerge_early thanfirstHuman. One possible question
people may ask is whethBrstHuman is emerge_later thanfirstDinosaur. With the
assistance of Alloy reasoner, such questions can be arswere

fact{TransitiveProperty(emerge_early)}
static disj sig firstDinosaur, firstApe,
firstHuman extends Resource{}
fact { firstDinosaur in animal.instances
&& firstApe in animal.instances
&& firstHuman in animal.instances}
fact {(firstDinosaur->firstApe) in emerge_early.sub_va [}
fact {(firstApe->firstHuman) in emerge_early.sub_val}
assert hum {(firstHuman->firstDinosaur) in emerge_later .sub_val}
check hum for 14

AA concludes that this assertion is correct.

52 SWRL/SWRL-FOL related reasoning

Besides of being capable to support the standard reasaskg dn OWL, such as per-
forming consistency checking, subsumption and instaatiaeasoning automatically,
moreover, Alloy can also check more complicated ontologypprties expressed by the



newly extended languages such as SWRL/SWRL-FOL. In thisssgeve demonstrate
how Alloy can be used to reasoning the SWRL-FOL ontologies.

A family relationship web ontology example is used here tostrate the rea-
soning process. The following fragment of ontology first de§ two OWL classes,
Person andtwinParent that represents the set of person who are the parents
of twins, and three OWL object properties, ilbasChild , brotherSister and
sameBirthTime . Secondly, the ontology clasgealthyParent  introduces the

set of parents who have a child who isnllionnaire . Thirdly, two SWRL-FOL
axiomatic assertions are defined to provide inference febtbhtherSister and
twinParent  relationships. Lastly, the ontology clasgalthyTwinParent is

defined as a parent being botlealthyParent  andtwinParent
Class (Person partial)
Class (twinParent partial Person)
Class (millionnaire partial Person)
ObjectProperty(hasChild)
ObjectProperty(brotherSister)
ObjectProperty(sameBirthTime)
Class (wealthyParent complete Person
restriction(hasChild someValuesFrom(millionnaire)))
Assertion(forall I-variable(x1) I-variable(x2)
(equivalent (exists (I-variable(x3)
(and(hasChild(x3,x1) hasChild(x3,x2)
differentFrom(x1,x2))))
(brotherSister(x1, x2)))))
Assertion(forall I-variable(x1)
(equivalent (exists (I-variable(x2)
(exists (l-variable(x3)
(and(brotherSister(x2, x3) sameBirthTime(x2, x3)
hasChild(x1, x2))))))
(twinParent(x1)))))
Class (wealthyTwinParent complete wealthyParent twieitar
From the above, it is noticed that two SWRL-FOL axioms weseded. The first
assertion shows that if two distinct people have a same pahem they are brothers
or sisters. The second assertion in the above ontology stt@mtsf two people are
brothers or sisters, and they have the same birth time, then parents are twin-
parents. Furthermore, suppose some instances of the abtlegy are asserted into
the knowledge base as follows.
Individual(Tom type(person)
type(complementOf(wealthyTwinParent))
value(hasChild Jerry)
value(hasChild Jim))
Individual(Jerry type(millionnaire) value(sameBirthdé Jim))
Individual(Jim type(person))
DisjointWith(Jim Jerry)
We transform the above ontology (in XML format) into its Alonodef using our
transformation program.

3Due to the space limit, the complete Alloy model of the abaaify relationship ontology example can
be found atttp://www.cs.man.ac.uk/ ~hwang/FAMILY .als



Similar as reasoning OWL, the Alloy Analyzer can automadiygaerform different
reasoning tasks for SWRL/SWRL-FOL. For example, it can detieat there is an
inconsistency in the above ontology example, as the Allogljrer can not find any
ontology instances (solutions) satisfying all facts witthie scope.

In this family ontology example, the inconsistency comesrfithe fact thaffom
has been inferred as an instance of both the clasalthyParent  and the class
twinParent . However, there is a piece of knowledge in the model thatiexiyl
indicates thaT omis not an instance of the@ealthy TwinParent class, which con-
tradicts to the inferred conclusion. As discussed befoith the assistance of Alloy
Analyzer’s “unsatisfiable core” functionality, the debimmgprocess of identifying the
source of inconsistency in the ontology becomes much maoréyhi the users.

5.3 Discussion

The correctness of the translation has been verified by miéfeyeht test cases. A
same problem has been sent to existing SW tools, theorerayzrand Alloy; the same
conclusions are drawn. Furthermore, the OWL has well defieethantics in first order
logic and Alloy is also based on the first-order logic. Thersiness of the translation
can also be proved easily. In the early work [13], it shows the consistence between
the Alloy Semantic for the Semantic Web languages and thggnadi OWL semantic
(Alloy has been regarded as a subset of Z). Formal provirsgcibmsistence is beyond
the scope of this paper.

6 Reated worksand conclusion

This paper presented a reasoning environment for the Seméab ontology family
languages (OWL/SWRL/SWRL-FOL). There are four main cdmittions of the paper.
Firstly, it defines a semantic encoding for the OWL/SWRL/SMWHROL constructs in
the Alloy first-order language. Secondly, it presents aesystic transformation tool
from the OWL/SWRL/SWRL-FOL ontology (in XML) into its corsponding Alloy
model. Thirdly, with the assistance of Alloy Analyzer, ithbeen demonstrated that
the consistency of an ontology model can be checked autcatigitand different kinds
of reasoning tasks can be supported. Our approach compiemvith existing OWL
reasoners by providing full automatic debugging aids arstaimce level reasoning.
Furthermore, SWRL-FOL is a newly proposed extension to O@fid to our best of
knowledge, so far there is no existing reasoning supporSWRL-FOL prior to this
work. Finally, the paper also demonstrates a light-weightial methods approach to
the web ontology domain. Alloy was chosen over other reasptuols because it is
based on first-order relational logic and relations betw&eb resources are the focus
issues in the Semantic Web context. Furthermore, Alloy Inaisn@ressive automatic
tool support, the Alloy Analyzer, where automated generatif finite set of ontology
instances, creation of counter-examples on assertionkjdamtifying the source of
inconsistencies in the model are made available. Usualamtdools such as FACT
and RASER can detect errors in an ontology model, but may eathtte to point out
where the error is. Alloy approach provides the ontologygsuy” like capability to



pin point the errors in the model with counter-examples artiaictory constraints.
This is a highly complementary approach to Semantic Weloréag. The approach
has been successfully applied to a recent military onto]6py

It has indeed been realized that there is a limitation onc¢héability of the current
Alloy Analyzer in reasoning large ontology models. The agwh presented here can
only deal with the ontologies with relatively small size.s8d on the same idea, authors
also attempt to use the theorem prover, i.e. Z/EVES, to retts® SW ontology [4].
The theorem prover can handle large sized ontologies, begitires the user’s interac-
tion. Here authors do not claim that Alloy is the only and lfesnal tool to reason over
SW ontologies, but authors do claim that it is an effectiterapt with certain novel
and irreplaceable advantages like full automation and miogndebugging assistance.
In fact, it is unlikely in the near future that both expressand automatic tool will be
developed. Currently, it is desirable if the strength froiffedent ontology reasoning
tools can be integrated. [3] presented the methodology etkihg ontologies using
tools RACER, Z/EVES and AA in conjunction. This approach haen successfully
applied for reasoning a real life military ontology.

In the future, it has been planned to integrate the currdoiyAdnalyzer reasoning
facilities into our OWL/SWRL/SWRL-FOL transformation tbwy connecting it to the
Alloy API interfaces. In addition, we also plan to extend thensformation tool with
the editing and designing functions for the ontology modsdsthat it will become an
integrated development environment for the web ontologgelimg, which includes
design, transformation and reasoning functions in oneresti¢ool support.
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