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Abstract 

This paper is about business modelling and negotiation protocol design in distributed 
scheduling, where individual agents have individual (potentially conflicting) interests. It is 
motivated by BT’s workforce scheduling problem, in which multiple service providers have to 
serve multiple service buyers. The service providers and buyers all attempt to maximize their 
own utility. The overall problem is a multi-objective optimization problem; for example, one 
has to maximize completion rates and service quality and minimize travelling distances. 
Although the work is motivated by BT’s business operations, the aim is to develop a general 
negotiation protocol for staff empowerment.  
Standard contract net is a practical strategy in distributed scheduling where agents may have 
conflicting objectives. In this paper, we have introduced a retractable contract net protocol, 
RECONNET, which supports hill-climbing in the space of schedules. It is built upon a 
job-release and compensation mechanism. A system based on RECONNET has been 
implemented for BT’s workforce scheduling problem. The software, which we call ASMCR, 
allows the management to exert full control over the company’s multiple objectives. The 
manager generates a Pareto set of solutions by defining, for each buyer and seller, the weights 
given to each objective. ASMCR gives service buyers and sellers ownership of their problem 
and freedom to maximize their performance under the criteria defined by the management. 
ASMCR was tested on real-sized problems and demonstrated to meet BT’s operational time 
requirement. It has full potential to be further developed for tackling BT’s workforce 
scheduling problem.  

Keywords: management, negotiation protocols, computational mechanism design, modelling, multi-objective 

optimization 
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1 Introduction 

Empowerment in management means giving employees opportunities to exercise personal 
choices (Wilkinson 1998). Thomas and Velthouse (1990) suggest that through employee 
empowerment, the workforce could be better motivated. This paper studies staff empowerment 
in workforce scheduling. The task is to model the operation and design a negotiation protocol 
to enable the employees to generate schedules which are consistent with the management’s 
objectives. Though motivated by a real-life application, the negotiation protocol proposed is 
designed to be general. 
The proposed negotiation protocol is deigned for distributed scheduling. In many real life 
scheduling problems, multiple entities have to work together. Human factors may lead to local 
considerations not being conveyed to the central scheduler. For example, different entities 
often have conflicting interest. Should scheduling be done centrally, independent entities do 
not always inform the central scheduler of all the relevant information (game playing). Besides, 
allocation of jobs may be based on unwritten rules. For example, a service seller manager (to be 
explained below) may take staff emotion into consideration and apply discretion in scheduling 
his staff. In such situations, centralised scheduling is very difficult. Partial information could 
lead to sub-optimal schedules being generated. Staff involvement in job allocation could lead 
to higher morale and higher efficiency. This motivates BT to look at distributed workforce 
scheduling seriously. 
From an optimization point of view, the business operation involves many optimization 
problems. Each entity looks after its only interest. Distributed constraint satisfaction is a well 
studied topic which is highly relevant to distributed scheduling. Most of the work in distributed 
constraint satisfaction involves cooperative agents, where agents work together to achieve 
some common goals; for example see Durfee (1999), Prosser (1990), Yokoo and Ishida (1999).  
In this paper, BT’s problem is formulated as a distributed scheduling problem (see Ursu, 
Virginas and Voudouris (2004), Virginas, et al. (2005)). It is worth pointing out that the task of 
extracting knowledge from BT’s operation and formalising the problem is nontrivial. This 
requires expertise in the operation as well the management’s philosophy. After formulation of 
the problem, the task is to find a negotiation protocol for achieving the management’s goals. 
This work is related to research in bargaining (e.g. see Sim  and Choi (2003), Sim (2005), Ito et 
al (2005)), mechanism design (e.g. see Sandholm 2003) and distributed constraint satisfaction 
(e.g. see Faltings (2005), where agents may have conflicting goals).  
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BT’s workforce is organized in regions. Each region has a Service Buyer (or Job Agent) and a 
Service Seller (or Engineer Agent). These agents are managed by a central manager. Each 
service buyer has a set of jobs to be completed. Each service seller manages a set of engineers, 
who can be assigned to jobs. The service buyers buy services from the sellers by inviting them 
to bid for individual jobs. The service sellers base their bidding on which engineers could 
service which job (depending on availability and skills), the engineers’ preferences and their 
travelling distances to the jobs. The buyer selects bids based on preferences and travelling 
distances (information supplied by the sellers). Offers are made to selected bids. These offers 
are binding, which means the buyer will have to honour a contract as soon as it is accepted by 
the seller. The sellers may receive multiple offers that require the same engineer. In this case, it 
uses its utility criteria to select offers. The question is how to design a protocol to enable 
efficient assignments of engineers to jobs.  
The buyers and sellers must maximize their utility. The manager is responsible for maximizing 
the company’s utility. The manager is able to achieve this by defining the utility function of 
each buyer and seller. The manager’s problem is a multi-objective optimization problem: it has 
to strike a balance between job completion rates, service quality, travelling distances and other 
objectives, which will be elaborated later. 

2 Modelling BT’s workforce scheduling problem 

2.1 Overview of the problem 

The first step towards tackling BT’s workforce scheduling problem was to model it. This is one 
of the most laborious parts of the project so far. Understanding of the business operations is 
crucial to modelling. The current operation is centralized. Staff empowerment motivates BT’s 
research into distributed scheduling: the aim is to raise productivity through raising morale 
through empowerment.  
Modelling is arguably the most important part of problem solving, as it determines what 
techniques one can and cannot apply to a problem (e.g. see Freuder 1999, Borrett and Tsang 
2001). The following is a specification of the components in BT’s workforce scheduling 
problem. The challenges are also highlighted: 

1. The Manager 

As mentioned above, the manager’s problem is a multi-objective optimization problem. 
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Our aim is to provide the end-user (the human manager who is in charge of day-to-day 
running of BT’s workforce scheduling) with a decision support tool. For convenience, 
we call this tool “the manager”. The role of the manager is to build a Pareto set of 
schedules for the end-user to choose from.  
The quality of a Pareto set can be defined in many ways (see, for example, (Okabe 
2004), for a good survey). In this project, the criteria for measuring the quality of Pareto 
sets are range and coverage. Range refers to the inclusion in the Pareto set solutions that 
optimize each of the individual objectives. Coverage refers to even distribution of 
solutions. For example, in a 2-objectives maximization problem, the Pareto set {(10, 
10), (20, 20), (30, 30)} has a better range than, say, {(10, 10), (11, 11), (12, 12)}, and a 
better coverage than, say, {(10, 10), (11, 11), (30, 30)}.  
The manager attempts to find a “good” Pareto set by the following means:  

� Let P be the Pareto set of schedules found so far. P is initialized to an empty set.  
� Repeat for a predetermined amount of time: 
� Based on the Pareto set of schedules found so far, the manager determines the 

weights of each objective for each buyer and seller. Each buyer and seller may 
be given different amalgamation functions. 

� The manager passes to each buyer and seller the weights of each objective.  
� Through negotiation, the buyers and sellers will arrive at a schedule, which will 

be returned to the manger and added to P. 
2. Service Buyers 

Each Buyer handles a set of jobs that need to be done. It has to find a contract for each 
job, by communicating with service sellers. The Buyer’s job is to formulate invitations 
to Service Sellers to bids for jobs. The buyer may (a) invite bids for one job at a time, or 
(b) invite bids for more than one job at a time. In the latter case, jobs can be bundled1. 
When bids are received, the Buyer is responsible for allocating jobs to the appropriate 
Seller. The Buyer then makes offers for those bids (binding) but these might not be 
accepted by the Seller. 
If needed, it can also contact other buyers for contract-release, which means offering 

                                                 
1 For any job that takes more than x days to finish and is more than y miles from the engineer, accommodation 
allowance is given. It is possible that Sellers may want to bundle jobs that are located in close proximity 
geographically. 
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other buyers as well as the seller compensation to give up their contracts (this will be 
formally defined later).  
The buyer has multi-objectives, but at any point, it is given an amalgamation function 
by the manager. So it is effectively dealing with a single objective optimization 
problem. A buyer would attempt to find good solutions to its problem through a local 
search, which is facilitated by the contract-release protocol.  
The buyer’s challenge is in how to hill-climb to improve its utility according to a

 malgamation function given by the manager. 
3. Service Sellers 

Each seller handles a number of engineers. Engineers may have different abilities and 
constraints. The Seller’s job is to bid for jobs. A bid can logically be described as a pair 
(Pref, Dist), where Pref is the preference and Dist is the distance. It may return just one, 
or the set of all available bids, or a subset (possibly Pareto set) of (non-dominating) bids 
for each job. Note that there are typically more jobs than those that the engineers can 
handle. Sellers can offer partial solutions to requests, e.g. “we cannot do all 3 bundled 
jobs in those 5 days, but we can do the first 2 jobs in the first 3 days”. In this paper, we 
assume that the sellers are relatively passive: when a seller receives invitations to bid 
for jobs, it is required to make all the non-dominated bids (as in multi-objective 
optimization). Then it waits for (binding) offers from the buyers, to which it may accept 
(binding) or decline. Each seller has multiple objectives, but, like the buyers, at any 
time, it is given an amalgamation function by the manager on the weights of each 
objective. So effectively, a seller deals with a single objective optimization problem. 
However, the seller does not know the buyer’s weights on its objective, hence the return 
of all potentially non-dominated bids to the buyer. For example, the seller might return 
a bid with travelling distance (to be minimized) equal to 10 and preference (also to be 
minimized) equal to 4, together with another bid with travelling distance equal to 15 
and preference equal to 2. Since the Seller does not know the buyer’s weights on 
travelling distance and preference, neither of these two bids dominates the other. 
The seller’s challenge is in how to schedule its engineers effectively, though only a 
simple strategy will be considered in this project.  

 

Naturally, most of the jobs are serviced by the seller in the same region as the buyer. However, 
better schedules could result in cross-regional services. The challenge in this work is to define 
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a mechanism for generating good solutions to BT’s dynamic workforce scheduling problem. 
Special attention is paid to the communication protocol among the agents. We want to design a 
negotiation protocol that supports different optimization algorithms and general advanced 
heuristic methods.  

2.2 A formal definition of the business model 

It is essential for the management to formalize their business model. This will allow them to 
review and improve their current operations. It also enables all parties in the project to verify 
whether the computational model meets the business specifications. In this section, we provide 
a rigorous description of the business model. Details of the model may not be needed for the 
negotiation protocol, but they allow others to evaluate and re-implement our system. 
Job information:  

Each job is described by a tuple: 
(Loc, Sk, D, SD, P) 

where Loc is a location, which describes the coordinates (x, y) of the job. Sk is the skill 
required, which ranges from 1 to 9 (which is not a rank order). D is the duration of the 
job, in terms of number of days. SD is the starting day, which could be 1 to MaxD, 
where MaxD is the number of days that we plan ahead (MaxD was set to 7 in our 
experiments, i.e. to plan 7 days ahead). P is a price, which relates to the value or 
importance of the job (this may be determined by the manager). 

Engineer information:  

Each engineer is described by: 
(Loc, LSP, SA, OT) 

where Loc is a location, which describes the coordinates (x, y) of the engineer. LSP is a 
list of (skill, preference) pairs, covering all skills. Each pair describes the preference of 
this engineer on jobs that require the specific skill. Preferences range between 1 and 9, 
with 1 meaning most favourable and 9 meaning least favourable. SA is the surplus 
availability of the engineer, which is a list of the days on which this engineer is 
available. OT is a Boolean variable on overtime availability (0 means no overtime is 
allowed by this engineer, 1 means overtime allowed).  

 

The problem of each buyer and seller was formulated as an open constraint 
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optimization system, Tsang (2002). An open constraint optimization system is a 
constraint satisfaction problem, Tsang (1993), where some constraints are not entirely 
within the control of the problem solver itself. Such constraints cover variables which 
values are assigned by other solvers. This means to check whether such constraints are 
satisfied, a problem solver has to negotiate with other solvers. It is therefore an open 
system, as opposed to a closed one, where all constraints are within the solver’s control. 
(The readers should not confuse this with the Open Constraint Satisfaction Problem 
defined by Faltings and Macho-Gonzalez  (2003), where the number of variables may 
change dynamically.)  

The Buyer’s Model: 

The problem of buyer b can be formulated as an open constraint satisfaction model:  
(Zb, Db, Cb, Eb, fb, Agb, EtAb, CPb) 

where  
Zb = {s[1],  s[2], …, s[nb], p[1],  p[2], …, p[nb], d[1],  d[2], …, d[nb]}, where nb is the 
number of jobs that b has, s[i] represents the service seller that b appoints to do job i, 
p[i] represents the preference and d[i] represents the distance for serving job i, which 
are proposed by the service sellers and accepted by the buyer; 
Agb is the set of seller agents who b has contact to; 
Db is a function that defines the domain of the variables in Zb, as in constraint 
satisfaction, Tsang (1993). For all i, Db(s[i]) = Agb plus φ, which means s[i] could be 
assigned one of the seller agents, or assigned no seller at all (which is represented by the 
value φ); Db(p[i]) = [0..9], which means p[i] could be assigned a value 0 to 9, with 0 
meaning the job is not served, 1 to 9 are preferences in the service. For all distance 
variables d[i], Db(d[i]) = R; 
Cb represents a set of internal constraints, which is an empty set in this case, i.e. there 
are no constraints on what value b assigns to the variables; 
Eb = { Eb(s[i], p[i], d[i]) | i = 1.. nb }, where Eb(s[i], p[i], d[i]) is a constraint on the 
values of s[i], p[i] and d[i], restricting the values that they can take simultaneously; the 
values of p[i] and d[i] are to be determined by external agents, s[i] indicates the seller 
that b assigns job i to; it is assigned by b, depending on the bids by the sellers; 
fb is the objective function for b. It is a multi-objective function; 

fb = (reveb, failureb, prefb, distb, commb) 
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� Maximize reveb = (Σi, p[i]>0 Price[i]), which is to maximize total revenue, where 
Price([i]) is a constant; 

� Minimize failureb = (Σi, p[i]=0 1), which is to minimize the number of unassigned 
jobs; 

� Minimize prefb = (Σi, p[i]>0 p[i]), which is to minimize the total preference; 
� Minimize distb = (Σi, p[i]>0 d[i]), which is to minimize total distance travelled; 
� Minimize commb = number of communications. 
The buyer b attempts to maximize its utility: 

Utility = k1 × reveb – k2 × failureb – k3 ×  prefb – k4 f×  distb – k5 ×  commb + Trade 

where the weights k1 to k5 are given by the manager; Trade is income from other 
buyers – payment to other buyers for contract-release; 

EtAb is the mapping from each external constraint Eb to a seller agent; i.e. EtAb(Eb(s[i], 
p[i], d[i])) returns a value in Agb; this indicates that the values of p[i] and d[i] are to be 
determined by all seller agents (Agb) in communication with b; 
CPb is the communication protocol. Here we assume the following protocol: 

 

1. The buyer b sends a set of invitation to bid to seller s; each invitation is 
(Job_ID, Job_information) 

where Job_ID is the identity of the job, and Job_information is a tuple as 
defined above: 

(Loc, Sk, D, SD, P) 

2. The seller s sends a set of pairs of values to b for instantiating (p[i], d[i]) 
3. The buyer b offers s a contract, which comprises a pair of p and d values 
4. The seller s accepts the contract (and commits its resources) or declines the 

offer, in which case, go back to Step 3 (where b could offer a contract to another 
seller) 

 

Once variables p (preferences) and d (distances) are communicated between b and s, t
 hey can be seen as contracts between the buyer and the seller. 
The Seller’s Model: 

The problem of seller s can be formulated as a dynamic open constraint satisfaction 
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model2:  
(Zs, Ds, Cs, Es, fs, Ags, EtAs, CPs) 

where  
Zs = {e[1],  e[2], …, e[N], p[1],  p[2], …, p[N], d[1],  d[2], …, d[N]}, where N is the 
total number of jobs that s has been invited to bid for and s is still in contention (i.e. the 
buyer has not yet assigned the job to another seller); e[i] represents the engineer that is 
assigned to do job i; p and d represents preferences and distances as defined in buyers; 
Ags is the set of buyer agents who s has contact to; 
Ds is a function that defines the domain of the variables in Zs, as in constraint 
satisfaction, Tsang (1993). For all i, Ds(e[i]) = the set of engineers plus φ, which means 
e[i] could be assigned one of the engineers, or assigned no engineer at all (which is 
represented by φ); Ds(p[i]) = [0..9], which means p[i] could be assigned a value 0 to 9, 
with 0 meaning the job is not served, 1 to 9 are preferences in the service; For all 
distance variables d[i], Ds(d[i]) = R; default values for p and d are 0, which means no 
engineer is assigned to job i until commitment is made (by s); 
Cs represents the internal constraints that governing the feasibility of the engineers 
doing the jobs; this involves the availability and skills of the technicians; 
Es = { Es(e[i], p[i], d[i]) | i = 1.. N }, where Es(e[i], p[i], d[i]) is a constraint on the values 
of e[i], p[i] and d[i], restricting the values that they can take simultaneously; the values 
of e[i], p[i] and d[i] are proposed by s, to be approved by the buyer; 
fs is the objective function for s. Associated to each job i, Price([i]) is a constant given 
by the Buyer. fs is a multi-objective function: 

� Maximize jobs done JD = (Σi, p[i]>0 1) 
� Minimize distance travelled DT = (Σi, p[i]>0 d[i]) 
� Maximize load balancing LB = – (Σi=1,N (free_time[i]- Mean_free_time)2)/N 

where N is the number of engineers 
� Minimize redundancy RD = (Σi=1,N (free_time[i]/time_available[i]))/N 

The seller s attempts to maximize its utility: 
Utility = k1 × JD – k2 × (DT)2 +  k3 × LB – k4 × RD + CR 

                                                 
2 The seller’s problem does not have to be formulated as an open constraint satisfaction system. It can be 
formulated independent of the buyer’s model. Here it is formulated as a dynamic scheduling model, with new 
variables being created when the seller receives requests from the buyer, and variables removed when the buyer 
does not select this seller. 
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where the weights k1 to k5 are given by the manager; CR is the income from buyers for 
contract-release. 
EtAs is the mapping from each external constraint Es to a buyer; i.e. EtAs(Es(e[i], p[i], 
d[i])) equals the service buyer for job i 
CPs: see Eb in the Buyer’s model 

The Manager (Centralized Coordination): 

The objective is to balance failure of all domains. In this research, the following 
objectives are considered: 

� Minimize the average failure rate: (Σb∈Buyer, FRb) / NB 
where FRb =  failureb / nb, where failureb is the number of failures for buyer b 
and nb is the number of jobs that b has, NB is the number of buyers; 

� Minimize the total distance travelled in all jobs done; 
� Minimize the average preferences of all jobs done; 
� Maximize failure-imbalance = (Σi=1,Nb (failurei – Mean_failures)2)/Nb 

where Nb = number of buyers in the system. 
The Manager’s overall objective is a multi-objective function. As a decision support 
tool, the manager (program) should attempt to produce a Pareto set of solutions for the 
end-user (human user, whose job is to look after the company’s overall interest in this 
problem). This can be done by giving the buyer/seller agents different sets of weights 
for the different buyers and seller measures (the ki’s mentioned above). For example, 
the ki’s can be used to empower individual buyers to increase their bargaining power so 
as to reduce their failure rates. The manager may ask the agents to: 

� Schedule from scratch; or 
� Improve on the previous schedule 

3 The RECONNET protocol for BT’s problem 

This work is loosely based on, and extended from the contract net protocol, a fundamental 
protocol for distributed artificial intelligence, Davis and Smith (1988), FIPA (2002), Smith 
(1980). Some modifications are motivated by BT’s workforce scheduling problem: 

1. In BT’s problem, each agent looks after its own interest. They work with each other in 
order to achieve their common goals (of getting the jobs done). 

2. BT’s problem is an optimization problem. The operation involves millions of Pounds, 
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and therefore a small percentage in saving could mean a lot in real terms. Therefore, it 
is worth investing computation time to reduce cost.  

3. The problem is a dynamic problem: new jobs arrive at all time, and availability of staff 
may change. Therefore, there is a limit in how much computation time one can spend 
on scheduling. 

4. There are hundreds of jobs and engineers in each region. Each job could potentially be 
served by most engineers, though not all of them are good matches (for example, due to 
travelling distance). If all possible contracts were communicated, the amount of 
communication would be impractically large. Therefore, we must attempt to reduce 
communication. 

Given points 2 and 3 above, local search would be a good candidate. A retractable contract net 
protocol, which we call RECONNET (which stands for Retractable Contract Net), that 
facilitates hill-climbing by the buyers and sellers is designed. Used by the manager in 
iterations, RECONNET will enable us to implement any meta-heuristic methods such as Tabu 
Search, Glover and Laguna (1997), Guided Local Search, Mills (2002), Voudouris and Tsang 
(2003) and other local search methods (e.g. see Glover and Kochenberger (2003), Hoos and 
Tsang (2006)). 

3.1 Building contracts 

A contract is a tuple: 
(ID, Seller, Buyer, Preference, Distance) 

where ID is the identity of the contract, Seller and Buyers are the agents involved, Distance and 
Preferences are as defined above.  
 

Following is the mechanism for building initial contracts in RECONNET: 
1. Invitation to bid: The buyers initiate contract building. The buyers would invite all 

sellers (or a subset of sellers, if it sees fit) to bid for all the jobs currently available.  
2. Bidding for jobs: Given an invitation to bid for a job j, a seller will find all engineers 

who are available and qualified to do j. Since each qualifying engineer may be at 
different locations and have different preferences for j, the seller builds up a list of 
(preference, distance) pairs. To reduce the volume of communication, the seller will 
only send to the buyer contract proposals that do not dominate each other. In other 
words, if engineers A and B can both serve job j, but A is closer to the location of j and 
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has higher preference than B, then the seller will not bid for a contract with B serving j. 
3. Making offers to sellers: After receiving bids from the sellers, the buyer will build a 

priority queue for each job. The bids are ordered by their contributions to the buyer’s 
weighted objective function. Jobs are then offered to the proposed contracts that are at 
the heads of priority queues. In a model, in every round, the buyer makes an offer on 
every job for which a contract has yet to be secured. This does not prevent the buyers 
from adopting more complex strategies. When the buyer makes an offer to a seller, the 
offer is binding. That means if the seller accepts the job, the buyer is not allowed to 
cancel it and offer the job to another seller.  

4. Acceptance of offers: In this project, we assume that the seller will accept an offer as 
long as an engineer is available. When a seller receives multiple contracts that require 
the same engineer at the same time, it will pick the offer that maximizes its objective 
function. This simple strategy can be replaced by a more sophisticated algorithm in the 
future (for example constraint satisfaction techniques and iOpts, Voudouris, et al. 
(2001)), in order to maximize the chance of doing more jobs (based on probabilities and 
past experience). For example, a seller may consider fairness amongst the engineers. 

When new jobs arrive dynamically, Steps 1 and 2 are invoked. Contracts are being built 
through repeated steps 3 and 4. At any time, the buyer maintains the status of all the jobs. For 
example, Table 1 shows a snap shot of the status of four jobs.  
 

Table 1 shows that two bids have been received for Job 1. The offers to both bids have been 
declined. Contracts have been secured for both jobs 2 and 4. A contract has yet to be secured 
for job 3, which has one bid left to be unexplored. At this point, the buyer may invite further 
bids for job 1. The sellers may bid contracts that were dominated by Bids 1 and 2, or contracts 
that become available due to change of engineers’ availability.  

3.2 Contract-release 

To facilitate hill-climbing, a contract-release mechanism is introduced. This is a mechanism 
for one service buyer to release its contract to another buyer, to enable to latter to complete jobs 
with higher utility (according to the manager’s amalgamation functions). Suppose buyer s has a 
job j that cannot be served by any seller given their current commitments. With information 
provided by the sellers, s may offer to pay another buyer to release its contract, and therefore 
releasing the engineers to do j.  
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A contract-release is a tuple:  
((ID, Seller, Buyer, P, D), (CR_ID, Owner), Cost) 

where (ID, Seller, Buyer, P, D) is a contract that the seller offers to the buyer who invites 
bidding. CR_ID is the identity of another contract, which must be released before this bid can 
be implemented. Owner is the owner of the contract with CR_ID. Cost is a cost (which could be 
0), from the seller’s point of view, of changing the contract. A cost is required if, by changing 
from the released contract to the new contract, the seller’s utility is reduced. For example, the 
new contract may require more travelling by the seller’s engineers. 
To complete a contract-release, the Buyer must request the Owner to release its contract. It will 
do so by offering compensation to Owner. The compensation is determined by the gain in 
completing the contract, based on the Buyer’s objective function, less the compensation 
requested by the seller.  
Before Owner accepts this request, it will look for an alternative contract. This may involve (a) 
making an offer to the next bid in the priority queue, or, in the case of the queue being reduced 
to empty, (b) invite further bids from the sellers. A bid from a seller could involve further 
contract-release. Owner decides to accept or reject a contract-release request with the 
following consideration: 

� Releasing the contract for a (typically) inferior contract involves a cost to Owner. 
� Owner will accept the contract-release if compensation received covers the cost of 

switching to the next available bid. 
Since every request for contract-release requires compensation, the chain will not continue 
indefinitely. The contract-release mechanism is shown in Figure 1. For example, suppose 
Buyer 1 cannot secure a contract for a particular job J. It may get a bid from Seller X, which 
states “I have an engineer who is committed to job J’ with Buyer 2; if Buyer 2 releases this 
contract, I can do job J with a travelling cost of 18 miles, and a preference of 4; I would also 
require a compensation of 21 points to me”. Buyer 1 would translate this into its own cost, 
using the parameters that it is given by the Manager. Suppose this translated to a cost of 170, 
and the utility of competing job J is 390. Then Buyer 1 may make a request to Buyer 2 with a 
compensation offer of, say 130, to release the contract. Exactly how much Buyer 1 offers to 
Buyer 2 depends on the algorithm that Buyer 1 uses (e.g. see Gosling et al 2006 and Jin and 
Tsang 2006). Buyer 2 will evaluate the offer by assessing the cost of securing a new contract 
for job J’, which Seller X can no longer serve. Buyer 2 may have to invoke further contract 
release chains. If Buyer 1’s offer of 130 is higher than the cost of revising the contract, then 
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Buyer 2 will inform Buyer 1 and Seller X its acceptance of the contract-release offer. Since the 
benefit that Buyer 2 can offer to other buyers must be less than 130, the contract-release chain 
will terminate.  

3.3 Decisions in contract-release 

A buyer s may receive more than one potential release contract for completing a job. Each of 
these release contracts is owned by a buyer. This owner could be another buyer, but it could 
also be s itself. Which release contract should s choose? We assume that s will always favour 
contract-release that involves itself. This is because releasing a contract by itself tends to be the 
cheapest. Besides, by knowing the availability of options in its other jobs, s has a better chance 
of completing the contract release chain. Consuming too many rounds of communication on 
one contract means having less time for other contracts (given that the whole system runs for a 
limited amount of rounds). Picking a contract that the buyer itself owns saves communication 
rounds and increases the chance of completing the chain. 
If a job requires more than one day to complete, it is possible that it can only be done by 
releasing two or more contracts. This will require the buyer to build a tree, as opposed to 
building a chain of contract-releases. This becomes more complex. A buyer will have to 
heuristically decide how much to pay each other buyer for a contract-release. Besides, since 
contract-release offers are binding, the buyer will have to pay others who have released their 
contract even if the whole tree of release cannot be completed (i.e. this buyer pays the 
contract-release compensations to other buyers for no return) We have decided to allow only 
one contract-release per job at this stage because, from both local and global point of view, the 
chance of benefiting of completing one job by releasing two is not high. 

4 ASMCR, an implementation of RECONNET 

ASMCR, which stands for Automatic Synchronising Multiple Communication Rounds, is a 
system that is applied to BT’s workforce scheduling problem. It implements the RECONNET 
protocol for reallocation of jobs. It is written in a way that allows easy adaptation to other 
problems.  
ASMCR was written in Java and makes use of WebLogic, a commercial server platform that 
supports message passing between processes. Specifically the software uses JMS (Java 
Messenger Service) for communication. Note that JMS handles messages as broadcasts, but 
that is just an implementation issue and should not be confused with our logical decision 
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mentioned in Section 3.1 point 1. If every seller agent sends to the buyers all the available 
contracts, the amount of communication would be very high. In ASMCR, the seller agents only 
offer non-dominated contracts, i.e. contracts that are not dominated (in Pareto sense) by other 
contracts by the same seller. 

4.1 Overall Control in ASMCR 

The manager’s task is to find a Pareto set for the user. There are many ways to conduct the 
search. In this project, we assume that the Management is responsible for finding the Pareto set. 
This leaves the sellers and buyers standard optimization problems.  
The following control strategy is used in ASMCR, Figure 2.  
 

By providing the agents with different sets of Fx, the manager can make sure that it gets a set of 
different assignments to make a Pareto set of solutions. In practice, human users like to have 
control over the system. Therefore, they are given the authority (and responsibility) to choose 
the solution.  

4.2 Job Allocation Procedure in ASMCR 

Section 3.1 describes how a contract is built for a job. In this section, our focus is on the agents’ 
control strategies.  
Contracts are built through a repeated loop of communications between buyers and sellers. 
Each round of communication is divided into four phases. The loop terminates when all buyers 
are satisfied with their contracts for all their jobs or the maximum number of iterations have 
been reached, see Figure 3.  
 

Communication between the agents is synchronised in ASMCR. The ordering of the four 
phases is subtly important. The arrangement in Procedure Control_for_Jobs_Allocation 
(Figure 3) allows a contract or contract-release to be completed within one round.  
A technical point needs clarification here. Before buyer X accepts a contract-release from 
buyer Y, X has to secure a contract to cover the job J served by the released contract. It is 
possible that buyer Y holds the next best contract to cover job J. If X makes a contract-release 
request to Y, a cycle would be formed. Cycles are undesirable because contract-release 
requests are binding offers. That means, once Y has made a request to X, it has to wait for X’s 
reply. Care has been taken in ASMCR to detect cycles in contract-release requests. We have 
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also imposed a limit to how long a buyer will attempt to fulfil a contract-release request before 
it gives up. 
It is worth elaborating the point that by adjusting the Fx, the Management may conduct a 
version of guided local search. The manager can reduce the number of unassigned jobs by 
modifying the cost functions given to the buyers, which could involve increasing incentives, 
which will increase the length of a contract revision chain. 
ASMCR shares the problems with other local search methods. Being an incomplete search, 
optimality is not guaranteed for its solutions. It is also difficult to know when to stop. The 
question of when to terminate the search depends on processing power and the desirable 
response time for the system.   

5 ASMCR for BT’s distributed workforce scheduling problem 

To test its feasibility, ASMCR was tested on real sized data. ASMCR took 5 to 15 minutes to 
generate a complete plan, and conducted 50 rounds of communication. Like most hill-climbing 
algorithms, the more time (in terms of rounds) ASMCR is allowed to hill-climb, the more 
chance it has in finding better or optimal solutions. In a typical run, initial solutions were 
generated after about 10 rounds. The rest of the rounds contributed to hill-climbing.  
For testing ASMCR, we generated random prices between 0.5 and 3.0 for the jobs. We used 7 
buyers and 7 sellers, with 150 to 300 jobs and 150 to 300 engineers each. This is within the size 
range of real problems. To stress-test the algorithm, most of the experiments were generated 
with far more jobs than engineers.  
ASMCR has been tested thoroughly using randomly generated problems. The usefulness of 
hill-climbing was confirmed. Figure 4 shows a scenario with three regions. Figure 4 (a) shows 
a situation with three jobs and two engineers. Each engineer was assigned to a job within the 
same region. A job in the rightmost region was not served. Suppose a new engineer in the 
leftmost region. When the costing is right, ASMCR was able to reschedule the assignments to 
serve all the three jobs, as shown in Figure 4 (b). This was only possible when contract-release 
was enabled. 
 

Experiments also confirmed that by changing the weights to the multiple objectives, the 
manager can reduce the number of jobs not served, travelling distance and preference (lower 
value in preference means better service quality).  
Table 2 provides an example ASMCR output. The figures were arrived at by averaging the 
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results of 50 experiments for each parameter set. The configuration parameters used are shown 
in the lower half and directly relate to those described in Section 2.2.  
 

Table 2 shows a baseline result with its parameters and the effect of adjusting those parameters.  
For instance by increasing the buyer distance penalty (distb) from 0.01 to 0.1, a lower contract 
distance (reduced from 35.29 to 34.74) can be seen in column 3. This change has a cost: the 
contract preference has risen (from 4 to 5) and the number of completed jobs has been slightly 
reduced (from 20.93 to 20.64). Columns 4 and 5 show the effects of increasing the weights for 
buyer preference and sellers’ travelling distance, respectively. Desired results were achieved as 
expected. The results show that ASMCR enables users to generate schedules of different 
quality by adjusting the weights of the multi-objectives. 
The model described in this paper is more general than the actual business set up. (That is why 
random problems, as opposed to real data, were used for testing.) For example, job prices have 
yet to be fully explored. ASMCR is a highly configurable system. This enables the system to be 
adapted to cope with BT’s demand. Given its flexibility and efficiency, ASMCR could 
potentially be developed further to replace the current operational system. 

6 Related Work 

Contract Net Protocol (CNP) was originally proposed in (Smith 1980) as a high level 
communication and control mechanism for distributed problem solving.  Since then, it was 
widely adopted and acknowledged in both industry and academics in various fields, for 
example see Parunak & Van Dyke (1987), Davis & Smith (1983), Ramamritham & Stankovic 
(1984), Fischer et al (1996), Ouelhadj et al (2003) and Sandholm (2000). In particular, it was 
heavily studied in distributed scheduling and multi-agents negotiation system. 
In the original paper, CNP was used to solve problems from cooperative environment. With the 
demands from Internet, electronic markets and related fields, recent researches are now 
focusing on CNPs in self-interested agents (Sandholm 2002) (Akinee 2004), which is a hot 
topic among distributed artificial intelligence community. However, when CNP is applied to 
self-interested agent system, some major limitations must be noted: 

� The contract in CNP is binding, which means the parties in a contract must devote 
themselves to the contract without intentionally breaking it.  In CNP, a contract can be 
cancelled by an agent sending a cancel message from the contractor to a contractee. In 
effect, the contractor may cancel a contract at anytime even if contractee has already 
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invested a substantial amount of effort into the contract. This arrangement is viable 
when the agents are cooperative to a common goal. However, it would not be 
appropriate for self-interested agents.  

� When CNP is used in a dynamic environment, where events are not known in advance, 
the sequence of the events happening will have significant impact on the final result. 
For example, in BT’s dynamic scheduling problem above, new jobs emerge from time 
to time. At any point of time, a schedule must be available (so that the engineers know 
which job to attend). Given a schedule S, the sequence in which the new jobs become 
available for biding will affect the result of S. When new jobs emerge, repairing S is 
preferred to rescheduling from scratch whenever possible. This is because the engineers 
may have already prepared for the jobs allocated to them in S. Rescheduling from 
scratch does not help the course of staff empowerment, which is the motivation of this 
project. 

� When agents are self-interested, they may manipulate the bidding in CNP to achieve 
their maximum benefit. Also, agents normally only have bounded rationality (Simon 
1957), which means the decisions (accept/reject bids, choose bids, etc.) they made can 
only be local optimal. The system’s overall payoff may be badly defected by 
individuals’ behaviours. The original CNP cannot readily handle these situations. In 
RECONNET, contract release facilitates exchanges of jobs. Thus, conflict of interest is 
handled through a market. As long as the rules are set appropriately, there is a higher 
chance of generating efficient schedules in a market (Sunder 2004). This project is to 
define the rules for BT’s market. 

To address these problems of CNP, various extensions have been proposed. Here we limit 
ourselves to proposals related to RECONNET. We shall highlight the difference among them 
as well as their advantages and disadvantages. 
In (Fischer et al 1996), a CNP capable of decomposing tasks into sub-tasks is introduced. Both 
tasks and sub-tasks can be bid separately through auctions. It was a good attempt to attack the 
problem of contract binding. The technique was useful to domain in which tasks can be 
decomposed. Auction is an option for biddings in RECONNET.  
In (Sen & Durfee 1994, 1996, 1998), decommitting among cooperative agents was studied in a 
meetings-scheduling domain. The study mainly focused on the commitment to conflicting 
resources within an agent when bidding. It pointed out that different commitment strategies 
(commit or not commit) have different effects on different problems. Thus they proposed an 
adaptive commitment strategy based on the analysis of the resources and events. It used 
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multistage negotiation protocol for negotiation purpose during the scheduling process, which 
allowed multiple rounds of negotiation before an agreement is reached between the negotiating 
agents. In (Sen & Durfee 1996), cancellation and rescheduling of contracts were discussed. 
Contracts that have higher priority can ‘bump’ lower priority contracts, which in turn have to 
be rescheduled later. The cost of cancellation and rescheduling were calculated based on a 
globally beneficial strategy (from a system perspective) or a locally beneficial strategy (from 
an individual perspective), which determined whether cancellations could occur. The 
mechanism used here was similar to RECONNET, except that RECONNET demands 
compensation for cancellation to protect the interest of the individual agents in self-interested 
environments. Also, the mechanism was not explicitly used for local search, while 
RECONNET does. 
Contingency Contract is proposed in (Raiffa 1982), in which the obligations of the contract are 
made contingent on future events. Sandholm & Lesser (2001) noted that contingency contract 
had certain drawbacks.  For one, in real situations, not all possible future events may be known 
beforehand. Thus contingency contracts may not be used optimally. Besides, the system 
becomes intractable as the number of future events increases. Most importantly, self-interested 
agents could manipulate negotiations when they encounter events unbeneficial to them. These 
drawbacks make contingency contract not favourable in self-interested environment. 
Akinee (2004) introduced a two-phase negotiations mechanism to CNP. The bidding for a 
contract was separated into PreBid and DeffinitiveBid phases. Agents could change their biding 
prices strategically during the phases to increase their possibility of winning and help the 
contractor to find a better contractee with more information. However, it does not allow 
cancellation of contracts, even though it partly consumed the cancellation internally (between 
the two phases, changing of a bidding price of a PreAccepted winner could be seen as a kind of 
cancellation). Therefore, as in the original CNP, it could not easily respond to future events. It 
could be argued that the more phases there were, the better result could be expected.  However, 
in normally circumstances, the negotiation process is limited by time, which makes it not 
favourable in time critical applications such as BT’s workforce scheduling problem. 
Sandholm & Lesser (2001, 2002) proposed the Leveled Commitment Protocol (LCP) to avoid 
the drawbacks of contingency contracts. Agents in a contract can release or decommit its 
contracts by paying a penalty to the other party. The idea of cancellation with payment is 
shared by RECONNET. Three games derived from different contracting settings were 
analysed. It claimed that cancellation with penalty could perform at least no worse than 
full-commitment CNP, and could increase the expected payoffs of both contract parties. A 
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similar analysis could be done for RECONNET. 
The focuses of RECONNET and LCP are quite different. In RECONNET, we try to use a 
swap-like mechanism to facilitate local search in the space of schedules. Whenever swap 
happens, all parties involved will benefit from it. Thus we can hill-climb to another better 
solution until find a local optima. Although Sandholm & Lesser (1995) suggested agents 
carrying out their tasks separately can exchange contracts to improve their own utility, it was 
not widely used to improve the whole system’s profitability and efficiency. LCP claimed to be 
able search and backtrack in the contract space in a systematic way (global search). While this 
is true, it was obviously not tractable for large scale applications like BT’s problem here (which 
have tens of thousands of jobs to schedule). In either way, search will be costly because of 
penalties, but RECONNET is supposed to be less costly compared to LCP. 
RECONNET and LCP take different approaches to tackle the problem of manipulation by 
self-interested agents. LCP, from the game theory point of view, proved that there was always 
at least one Nash equilibrium for LCP, which meant no matter how individuals manipulated, 
they could not improve their payoff if other individuals pertain to their strategies. However, 
since LCP’s proof was based on Game Theory (to find Nash equilibrium), it assumed perfect 
information for every party of a contract. In real situations, such as BT’s scheduling problem, 
perfect information is quite often not available. For example, in an auction, one does not 
normally know the other bidders’ bottom line. RECONNET does not assume information 
about other agents’ utilities. It attempts to use the market’s invisible hand to find locally 
optimal schedules. Besides, it tackles a multi-objective optimization problem. The manager is 
given the task of finding a Pareto set of solutions by means of setting the weights for the 
multiple objectives for the individual agents. Individual can only achieve their best payoff 
within the manager’s weights definitions. 
Penalties must be calculated for both RECONNET and LCP. This is a nontrivial problem, 
especially under incomplete information (which is the case in BT’s scheduling problem). In 
LCP, penalties must be defined before a contract is made binding. In the same authors’ earlier 
work, TRACONET (Sandholm & Lesser 1995), local optimisers were used to calculate local 
“marginal costs” (which define the penalties) before bidding starts. In (Sandholm et al 1999), 
algorithms to compute the optimal contract in LCP were provided. In contrary, RECONNET’s 
penalties (prices for contract release, to be precise) are computed dynamically according to the 
current situation. The exact algorithm used in RECONNET is left open on purpose. In order to 
support staff empowerment, pricing of contract release may be left to the user in the operational 
system. 
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7 Future Research 

This project lays the foundations of an architecture that enables hill-climbing in building 
contract nets. Following are some of the directions that are under investigation: 

1. Adjustment of parameters 
The Manager generates one solution at a time, by supplying the buyers and sellers with 
a set of parameters for amalgamation of objectives. Okabe (2004) defines a set of 
metrics for measuring the quality of a Pareto Set. Given a Pareto Set of solutions, the 
Manager would like to enhance the Pareto Set by supplying the Buyers and Sellers with 
a new set of parameters. With workforce scheduling being a recurrent problem, we 
attempt to model (using machine learning methods) the relationship between the 
variable space and the objective space. This enables us to enhance the Pareto Set in an 
intelligent way.  

2. Scheduling 
The Sellers are relatively passive under the current system. This does not have to be, 
and in fact, should not be the case. A seller should be able to improve its performance, 
as defined by the objective function that it is given. For example, the current stipulation 
is that the seller will accept offers with maximum utility (a greedy strategy). It may 
benefit from delaying acceptance of offers for engineers who can serve many jobs, and 
committing engineers who has fewer options. This resembles the smallest-domain-first 
principle in constraint satisfaction, Smith and Grant (1998), Tsang (1993). Besides, 
jobs could sometimes take more time to complete. Schedule-repairing is also high on 
our research agenda. Guided local search (Voudouris and Tsang 2003) is a candidate 
algorithm for repairing. 

3. Real life concerns 
The work described above is only part of a larger picture. In practice, the manager has 
to deal with dynamic scheduling, where staff may become unavailable, jobs may be 
added or cancelled.  Strategic planning is also needed, for example, forecasting of 
demands could be used for planning the workforce.  

8 Conclusions 

This paper reports a general architecture and a negotiation protocol to facilitate employee 
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empowerment in workforce scheduling. The aim is to arrive at all-win schedules for the top 
management and service buyers and sellers, each of whom is given an opportunity to look after 
its own interests. It is tested on BT’s workforce scheduling problem, which is modelled as an 
open constraint optimization system. The overall problem is a multi-objective optimization 
problem: one attempts to maximize completion rates and service quality and minimize 
travelling distances. The job of balancing different objectives is given to the manager. This 
leaves us with single-objective optimization problems to solve at the lower level. We do not 
assume that the manager knows what the optimal weights are for all the parameters. The 
proposal is to generate a Pareto set of schedules for the human users.  
Standard contract net is a practical strategy in distributed scheduling where agents may have 
conflicting objectives. Therefore, it is used as our starting point. We have introduced a 
retractable contract net protocol, RECONNET, which supports hill-climbing in the space of 
solutions. It is built upon a job-release and compensation mechanism. RECONNET is a general 
protocol, which supports general multi-objective optimization algorithms and meta-heuristic 
algorithms. 
A system based on RECONNET has been implemented in Java using WebLogic at BT for its 
workforce scheduling problem. The software, which we call ASMCR, allows the management 
to have full control over the company’s multi-objectives. The manager generates a Pareto set of 
solutions by defining, for each buyer and seller, the weights given to each of their objectives. 
ASMCR also gives service buyers and sellers ownership of their problem and freedom to 
maximize their performance under the criteria defined by the management. ASMCR took 5 to 
15 minutes to complete when tested on real-sized problems. It has full potential to be 
developed to tackle BT’s workforce scheduling problem.  
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Tables  
Table 1. Sample priority queue for a particular service buyer 
 Bid 1 Bid 2 Bid 3 Bid 4 Bid 5 Bid 6 
Job1 � �     
Job2 �      
Job3 � � � �   
Job4 � � �    
Keys:  � means contract secured, � means bids declined 
 

 

Table 2. ASMCR Performance 
 

Base line 
Change in Buyer 

Distance 
Change in 

Buyer 
Preference 

Change in 
Seller 

Distance 
Results     
Completed Jobs 20.93 20.64 20.71 18.57 
Contract Distance 35.29 34.74 38.14 30.92 
Contract Preference 4 5 2 4 
Control Parameters     
Buyer Revenue (reveb) 5 5 5 5 
Buyer Unassigned (failureb) 3 3 3 3 
Buyer Distance (distb) 0.01 0.1 0.01 0.01 
Buyer Preference (prefb) 0.01 0.01 0.1 0.01 
Seller Complete (JD) 5 5 5 5 
Seller Distance (DT) 0.01 0.01 0.01 0.1 
Seller LoadBalancing (LB) 0.1 0.1 0.1 0.1 
Seller Redundancy (RD) 0.1 0.1 0.1 0.1 
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Figures 

 
 

Figure 1: The Contract-release mechanism 

 

 

Procedure Overall_Control_by_Management 
/* the management defines and iteratively revises the cost function for job allocation */ 
Repeat  

1. Send each agent x (which is either a buyer or a seller) a cost function Fx, which determines how 
multi-objectives are amalgamated 

2. Run Control_for_Jobs_Allocation( Fx’s ) 
/* agents may be asked to build on their previous assignments or schedule afresh */ 
3. The buyers and sellers submit their final plan to the management 
4. The management revises the function 

Until all sellers have received an End of Process from every buyer, or a maximum number of iterations 

Figure 2: The procedure Overall_Control_by_Management 

 

Buyer 1 Buyer 2 

Seller 

Possible 
chain of 
Contract-

Seller 

(1) Request 
for bids 

(2) Bid that requires 
Contract-release 

(3) Binding request for 
contract-release, with 
a compensation offer 

(4) Accept contract-release  

(4) Release 
contract 
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Procedure Control_for_Jobs_Allocation (Fx’s) 
/* Fx’s is a set of amalgamation functions, one for each buyer and each seller. */ 
/* Buyers and sellers build their contracts by allocating jobs to technicians. */ 
/* All messages can be empty, with an End of Message marker. */ 
Repeat  

1. Each buyer b sends a message to each other buyer b1 (in parallel) 
The message may contain: 

Request for contract-release (binding) 
2. Each buyer b sends a message to each seller s (in parallel) 

The message may contain: 
Request for bids 
Request for bids with possible release of contracts 
Job offers (binding) 

3. Each service sellers s responses to each buyer who has sent s a message 
The message may contain: 

A list of options for each job sent by s 
A list of contract-release options for each job sent by s 
Accept offer 
Decline offer 

4. Each buyer that receives a contract-release request replies to the requesting buyer 
The message may contain: 

Agreement to release contract (binding) 
Decline in contract-release 
Wait for further decisions 

Until all sellers have received an End of Process from every buyer, or the search has reached a maximum 
number of iterations 

Figure 3: The procedure Control_for_Jobs_Allocation 
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Figure 4: The contract release mechanism enables ASMCR to revise contracts 

Unfulfilled 
job 

(a) Original schedule, with one unfulfilled job in the rightmost region 

Unfulfilled 
job 

Free 
engineer 

(b) With a new free engineer, ASMCR rescheduled the jobs using contract-release 
(released schedules shown in dotted line) 

Job 1 

Engineer A 

Job 2 

Engineer B 

Engineer A 

Job 1 


