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Abstract

This paper analyzes the problem of starting and stopping a Cox-Ingersoll-Ross (CIR) process
with fixed costs. In addition, we also study a related optimal switching problem that involves
an infinite sequence of starts and stops. We establish the conditions under which the starting-
stopping and switching problems admit the same optimal starting and/or stopping strategies.
We rigorously prove that the optimal starting and stopping strategies are of threshold type,
and give the analytical expressions for the value functions in terms of confluent hypergeometric
functions. Numerical examples are provided to illustrate the dependence of timing strategies on
model parameters and transaction costs.
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1 Introduction

Many problems in risk analysis and finance involve a sequence of starting and stopping decisions.

For instance, a trader may seek the optimal times to buy and then sell an asset, or a firm may seek

to invest in a project and subsequently sell it to another firm. This motivates us to study an optimal

starting-stopping (or entry-exit) timing problem.

In general, the optimal timing depends crucially on the dynamics of the underlying process. In

particular, if the process is a super/sub-martingale, such as the geometric Brownian motion, then it

is optimal either to stop immediately or wait forever (see e.g. Shiryaev et al. (2008)). As such, the

corresponding optimal single stopping, starting-stopping, or switching problems will admit a trivial

solution. In this paper, our optimal starting-stopping and switching problems are driven by the

Cox-Ingersoll-Ross (CIR) process (see Cox et al. (1985)). The CIR process has been widely used as

the model for interest rates, volatility, and energy prices (see, for example, Cox et al. (1985), Heston

(1993), Ribeiro and Hodges (2004), respectively). In the real option literature, mean reverting

processes have been used to model the value of a project. For instance, Ewald and Wang (2010)

studies the timing of an irreversible investment whose value is modeled by a CIR process, and

they solve the associated optimal single stopping problem. Carmona and León (2007) examine the

optimal investment timing where the interest rate evolves according to a CIR process. Other mean-

reverting models, such as the exponential Ornstein-Uhlenbeck (OU) model, have been discussed in

Dixit (1994). In contrast to these studies, our model addresses multiple timing decisions.

Our main contribution is the analytical derivation of the non-trivial optimal starting and stopping

timing strategies and the associated value functions. Under both starting-stopping and switching

approaches, it is optimal to stop when the process value is sufficiently high, though at different

levels. As for starting timing, we find the necessary and sufficient conditions whereby it is optimal

not to start at all when facing the optimal switching problem. In this case, the optimal switching

problem in fact reduces into an optimal single stopping problem, where the optimal stopping level

is identical to that of the optimal starting-stopping problem.

In the literature, Menaldi et al. (1996) study an optimal starting-stopping problem for general

Markov processes, and provide the mathematical characterization of the value functions. Sun (1992)

considers an optimal starting-stopping problem driven by a time-homogeneous diffusion, and ana-

lyzes the associated nested variational inequalities (VIs). Zervos et al. (2013) discusses a solution

methodology involving coupled variational inequalities for an optimal switching problem under some

time-homogeneous diffusions subject to fixed transaction costs. Tanaka (1993) studies an optimal

starting-stopping problem for two-parameter stochastic processes under discrete time.

The VI approach is commonly used not only for optimal starting-stopping and switching prob-

lems, but also for optimal stopping problems (see Bensoussan and Lions (1982) and Øksendal (2003),

among others). The VI method is most useful when the reward and value functions are simple ex-

plicit functions with amenable properties. In our starting-stopping problem, however, the reward

function for the starting problem is expressed in terms of the confluent hypergeometric function

of the first kind and can be positive or negative. This motivates us to adopt a probabilistic ap-
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proach to rigorously construct the value functions. In contrast to the VI approach, we solve the

optimal starting-stopping problem by characterizing the value functions as the decreasing small-

est concave majorant of the corresponding reward functions. This allows us to directly derive the

value function and prove its optimality, without a priori conjecturing the resulting regions for start-

ing/stopping/continuation. This methodology has been discussed in Dayanik and Karatzas (2003),

dating back to Dynkin and Yushkevich (1969). Having solved the optimal starting-stopping prob-

lem, we then apply our results to infer a similar solution structure for the optimal switching problem

and verify using the variational inequalities.

As for related applications of optimal starting-stopping problems, Leung and Li (2014) study

the optimal timing to trade a mean-reverting price spread with a stop-loss constraint. Leung et al.

(2014) investigate the problem of buying and selling an exponential-OU underlying subject to trans-

action costs. Karpowicz and Szajowski (2007) analyze the starting-stopping times for a risk process

for an insurance firm. In the context of derivatives trading, Leung and Liu (2012) study the opti-

mal timing to liquidate credit derivatives where the default intensity is modeled by an OU or CIR

process. They focus on the finite-horizon trading problem, and identify the conditions under which

immediate stopping or perpetual holding is optimal.

The rest of the paper is structured as follows. In Section 2, we formulate both the optimal

starting-stopping and optimal switching problems. Then, we present our analytical results and

numerical examples in Section 3. The proofs of our main results are detailed in Section 4. Finally,

the Appendix contains the proofs for a number of lemmas.

2 Problem Overview

Denote the probability space by (Ω,F ,P), where P is the historical probability measure. We consider

a CIR process (Yt)t≥0 that satisfies the SDE

dYt = µ(θ − Yt) dt+ σ
√

Yt dBt, (2.1)

with constants µ, θ, σ > 0, and B is a standard Brownian motion defined on the probability space.

If 2µθ ≥ σ2 holds, which is often referred to as the Feller condition (see Feller (1951)), then the level

0 is inaccessible by Y . If the initial value Y0 > 0, then Y stays strictly positive at all times almost

surely. Nevertheless, if Y0 = 0, then Y will enter the interior of the state space immediately and

stays positive thereafter almost surely. If 2µθ < σ2, then the level 0 is a reflecting boundary. This

means that once Y reaches 0, it immediately returns to the interior of the state space and continues

to evolve. For a detailed categorization of boundaries for diffusion processes, we refer to Chapter 2

of Borodin and Salminen (2002) and Chapter 15 of Karlin and Taylor (1981).

2.1 Optimal Starting-Stopping Problem

Given a CIR process, we first consider the optimal timing to stop. If a decision to stop is made at

some time τ , then the amount Yτ is received and simultaneously the constant transaction cost cs > 0
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has to be paid. Denote by F the filtration generated by B, and T the set of all F-stopping times.

The maximum expected discounted value is obtained by solving the optimal stopping problem

V (y) = sup
τ∈T

Ey

{
e−rτ (Yτ − cs)

}
, (2.2)

where r > 0 is the constant discount rate, and Ey{·} ≡ E{·|Y0 = y}.

The value function V represents the expected value from optimally stopping the process Y . On

the other hand, the process value plus the transaction cost constitute the total cost to start. Before

even starting, one needs to choose the optimal timing to start, or not to start at all. This leads us

to analyze the starting timing inherent in the starting-stopping problem. Precisely, we solve

J(y) = sup
ν∈T

Ey

{
e−rν(V (Yν)− Yν − cb)

}
, (2.3)

with the constant transaction cost cb > 0 incurred at the start. In other words, the objective is

to maximize the expected difference between the value function V (Yν) and the current Yν , minus

transaction cost cb. The value function J(y) represents the maximum expected value that can be

gained by entering and subsequently exiting, with transaction costs cb and cs incurred, respectively,

on entry and exit. For our analysis, the transaction costs cb and cs can be different. To facilitate

presentation, we denote the functions

hs(y) = y − cs, and hb(y) = y + cb. (2.4)

If it turns out that J(Y0) ≤ 0 for some initial value Y0, then it is optimal not to start at all.

Therefore, it is important to identify the trivial cases. Under the CIR model, since supy∈R+
(V (y)−

hb(y)) ≤ 0 implies that J(y) = 0 for y ∈ R+, we shall therefore focus on the case with

sup
y∈R+

(V (y)− hb(y)) > 0, (2.5)

and solve for the non-trivial optimal timing strategy.

2.2 Optimal Switching Problem

Under the optimal switching approach, it is assumed that an infinite number of entry and exit actions

take place. The sequential entry and exit times are modeled by the stopping times ν1, τ1, ν2, τ2, · · · ∈

T such that

0 ≤ ν1 ≤ τ1 ≤ ν2 ≤ τ2 ≤ . . . .

Entry and exit decisions are made, respectively, at times νi and τi, i ∈ N. The optimal timing to

enter or exit would depend on the initial position. Precisely, under the CIR model, if the initial

position is zero, then the first task is to determine when to start and the corresponding optimal
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switching problem is

J̃(y) = sup
Λ0

Ey

{
∞∑

n=1

[e−rτnhs(Yτn)− e−rνnhb(Yνn)]

}

, (2.6)

with the set of admissible stopping times Λ0 = (ν1, τ1, ν2, τ2, . . . ), and the reward functions hb and

hs defined in (2.4). On the other hand, if we start with a long position, then it is necessary to solve

Ṽ (y) = sup
Λ1

Ey

{

e−rτ1hs(Yτ1) +

∞∑

n=2

[e−rτnhs(Yτn)− e−rνnhb(Yνn)]

}

, (2.7)

with Λ1 = (τ1, ν2, τ2, ν3, . . . ) to determine when to stop.

In summary, the optimal starting-stopping and switching problems differ in the number of entry

and exit decisions. Observe that any strategy for the starting-stopping problem (2.2)-(2.3) is also a

candidate strategy for the switching problem (2.6)-(2.7). Therefore, it follows that V (y) ≤ Ṽ (y) and

J(y) ≤ J̃(y). Our objective is to derive and compare the corresponding optimal timing strategies

under these two approaches.

3 Summary of Analytical Results

We first summarize our analytical results and illustrate the optimal starting and stopping strate-

gies. The method of solutions and their proofs will be discussed in Section 4. We consider the

optimal starting-stopping problem followed by the optimal switching problem. First, we denote the

infinitesimal generator of Y as

L =
σ2y

2

d2

dy2
+ µ(θ − y)

d

dy
,

and consider the ordinary differential equation (ODE)

Lu(y) = ru(y), for y ∈ R+. (3.1)

To present the solutions of this ODE, we define the functions

F (y) := M(
r

µ
,
2µθ

σ2
;
2µy

σ2
), and G(y) := U(

r

µ
,
2µθ

σ2
;
2µy

σ2
), (3.2)

where

M(a, b; z) =

∞∑

n=0

anz
n

bnn!
, a0 = 1, an = a(a+ 1)(a+ 2) · · · (a+ n− 1),

U(a, b; z) =
Γ(1− b)

Γ(a− b+ 1)
M(a, b; z) +

Γ(b− 1)

Γ(a)
z1−bM(a− b+ 1, 2 − b; z)
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are the confluent hypergeometric functions of first and second kind, also called the Kummer’s func-

tion and Tricomi’s function, respectively (see Chapter 13 of Abramowitz and Stegun (1965) and

Chapter 9 of Lebedev (1972)). As is well known (see Göing-Jaeschke and Yor (2003)), F and G

are strictly positive and, respectively, the strictly increasing and decreasing continuously differen-

tiable solutions of the ODE (3.1). Also, we remark that the discounted processes (e−rtF (Yt))t≥0

and (e−rtG(Yt))t≥0 are martingales.

In addition, recall the reward functions defined in (2.4) and note that

(L − r)hb(y)







> 0 if y < yb,

< 0 if y > yb,
and (L − r)hs(y)







> 0 if y < ys,

< 0 if y > ys,
(3.3)

where the critical constants yb and ys are defined by

yb :=
µθ − rcb
µ+ r

and ys :=
µθ + rcs
µ+ r

. (3.4)

Note that yb and ys depend on the parameters µ, θ and r, as well as cb and cs respectively, but not

σ.

3.1 Optimal Starting-Stopping Problem

We now present the results for the optimal starting-stopping problem (2.2)-(2.3). As it turns out,

the value function V is expressed in terms of F , and J in terms of V and G. The functions F and

G also play a role in determining the optimal starting and stopping thresholds.

Theorem 3.1 The value function for the optimal stopping problem (2.2) is given by

V (y) =







b∗−cs
F (b∗)F (y) if y ∈ [0, b∗),

y − cs if y ∈ [b∗,+∞).

Here, the optimal stopping level b∗ ∈ (cs ∨ ys,∞) is found from the equation

F (b) = (b− cs)F
′(b). (3.5)

Therefore, it is optimal to stop as soon as the process Y reaches b∗ from below. The stopping

level b∗ must also be higher than the fixed cost cs as well as the critical level ys defined in (3.4).

Now we turn to the optimal starting problem. Define the reward function

ĥ(y) := V (y)− (y + cb). (3.6)

Since F , and thus V , are convex, so is ĥ, we also observe that the reward function ĥ(y) is decreasing

in y. To exclude the scenario where it is optimal never to start, the condition stated in (2.5), namely,
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supy∈R+ ĥ(y) > 0, is now equivalent to

V (0) =
b∗ − cs
F (b∗)

> cb, (3.7)

since F (0) = 1.

Theorem 3.2 The optimal starting problem (2.3) admits the solution

J(y) =







V (y)− (y + cb) if y ∈ [0, d∗],

V (d∗)−(d∗+cb)
G(d∗) G(y) if y ∈ (d∗,+∞).

The optimal starting level d∗ > 0 is uniquely determined from

G(d)(V ′(d)− 1) = G
′

(d)(V (d)− (d+ cb)). (3.8)

As a result, it is optimal to start as soon as the CIR process Y falls below the strictly positive

level d∗.

3.2 Optimal Switching Problem

Now we study the optimal switching problem under the CIR model in (2.1). We start by giving

conditions under which it is optimal not to start ever.

Theorem 3.3 Under the CIR model, if it holds that

(i) yb ≤ 0, or

(ii) yb > 0 and cb ≥
b∗−cs
F (b∗) ,

with b∗ given in (3.5), then the optimal switching problem (2.6)-(2.7) admits the solution

J̃(y) = 0 for y ≥ 0, (3.9)

and

Ṽ (y) =







b∗−cs
F (b∗)F (y) if y ∈ [0, b∗),

y − cs if y ∈ [b∗,+∞).
(3.10)

Conditions (i) and (ii) depend on problem data and can be easily verified. In particular, recall

that yb is defined in (3.4) and is easy to compute, furthermore it is independent of σ and cs. Since

it is optimal to never enter, the switching problem is equivalent to a stopping problem and the

solution in Theorem 3.3 agrees with that in Theorem 3.1. Next, we provide conditions under which

it is optimal to enter as soon as the CIR process reaches some lower level.
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Theorem 3.4 Under the CIR model, if

yb > 0 and cb <
b∗ − cs
F (b∗)

, (3.11)

with b∗ given in (3.5), then the optimal switching problem (2.6)-(2.7) admits the solution

J̃(y) =







KF (y)− (y + cb) if y ∈ [0, d̃∗],

QG(y) if y ∈ (d̃∗,+∞),
(3.12)

and

Ṽ (y) =







KF (y) if y ∈ [0, b̃∗),

QG(y) + (y − cs) if y ∈ [b̃∗,+∞),
(3.13)

where

K =
G(d̃∗)− (d̃∗ + cb)G

′(d̃∗)

F ′(d̃∗)G(d̃∗)− F (d̃∗)G′(d̃∗)
,

Q =
F (d̃∗)− (d̃∗ + cb)F

′(d̃∗)

F ′(d̃∗)G(d̃∗)− F (d̃∗)G′(d̃∗)
.

There exist unique optimal starting and stopping levels d̃∗ and b̃∗, which are found from the nonlinear

system of equations:

G(d) − (d+ cb)G
′(d)

F ′(d)G(d) − F (d)G′(d)
=

G(b)− (b− cs)G
′(b)

F ′(b)G(b) − F (b)G′(b)
,

F (d)− (d+ cb)F
′(d)

F ′(d)G(d) − F (d)G′(d)
=

F (b)− (b− cs)F
′(b)

F ′(b)G(b) − F (b)G′(b)
.

Moreover, we have that d̃∗ < yb and b̃∗ > ys.

In this case, it is optimal to start and stop an infinite number of times where we start as soon

as the CIR process drops to d̃∗ and stop when the process reaches b̃∗. Note that in the case of

Theorem 3.3 where it is never optimal to start, the optimal stopping level b∗ is the same as that

of the optimal stopping problem in Theorem 3.1. The optimal starting level d̃∗, which only arises

when it is optimal to start and stop sequentially, is in general not the same as d∗ in Theorem 3.2.

We conclude the section with two remarks.

Remark 3.5 Given the model parameters, in order to identify which of Theorem 3.3 or Theorem

3.4 applies, we begin by checking whether yb ≤ 0. If so, it is optimal not to enter. Otherwise,

Theorem 3.3 still applies if cb ≥
b∗−cs
F (b∗) holds. In the other remaining case, the problem is solved as

in Theorem 3.4. In fact, the condition cb <
b∗−cs
F (b∗) implies yb > 0 (see the proof of Lemma 4.3 in the

Appendix). Therefore, condition (3.11) in Theorem 3.4 is in fact identical to (3.7) in Theorem 3.2.
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Remark 3.6 To verify the optimality of the results in Theorems 3.3 and 3.4, one can show by

direct substitution that the solutions (J̃ , Ṽ ) in (3.9)-(3.10) and (3.12)-(3.13) satisfy the variational

inequalities:

min{rJ̃(y)− LJ̃(y), J̃(y)− (Ṽ (y)− (y + cb))} = 0,

min{rṼ (y)− LṼ (y), Ṽ (y)− (J̃(y) + (y − cs))} = 0.

Indeed, this is the approach used by Zervos et al. (2013) for checking the solutions of their optimal

switching problems.

3.3 Numerical Examples

We numerically implement Theorems 3.1, 3.2, and 3.4, and illustrate the associated starting and

stopping thresholds. In Figure 1 (left), we observe the changes in optimal starting and stopping

levels as speed of mean reversion increases. Both starting levels d∗ and d̃∗ rise with µ, from 0.0964

to 0.1219 and from 0.1460 to 0.1696, respectively, as µ increases from 0.3 to 0.85. The optimal

switching stopping level b̃∗ also increases. On the other hand, stopping level b∗ for the starting-

stopping problem stays relatively constant as µ changes.

In Figure 1 (right), we see that as the stopping cost cs increases, the increase in the optimal

stopping levels is accompanied by a fall in optimal starting levels. In particular, the stopping levels,

b∗ and b̃∗ increase. In comparison, both starting levels d∗ and d̃∗ fall. The lower starting level and

higher stopping level mean that the entry and exit times are both delayed as a result of a higher

transaction cost. Interestingly, although the cost cs applies only when the process is stopped, it also

has an impact on the timing to start, as seen in the changes in d∗ and d̃∗ in the figure.

In Figure 1, we can see that the continuation (waiting) region of the switching problem (d̃∗, b̃∗)

lies within that of the starting-stopping problem (d∗, b∗). The ability to enter and exit multiple times

means it is possible to earn a smaller reward on each individual start-stop sequence while maximizing

aggregate return. Moreover, we observe that optimal entry and exit levels of the starting-stopping

problem is less sensitive to changes in model parameters than the entry and exit thresholds of the

switching problem.

Figure 2 shows a simulated CIR path along with optimal entry and exit levels for both starting-

stopping and switching problems. Under the starting-stopping problem, it is optimal to start once

the process reaches d∗ = 0.0373 and to stop when the process hits b∗ = 0.4316. For the switching

problem, it is optimal to start once the process values hits d̃∗ = 0.1189 and to stop when the value

of the CIR process rises to b̃∗ = 0.2078. We note that both stopping levels b∗ and b̃∗ are higher

than the long-run mean θ = 0.2, and the starting levels d∗ and d̃∗ are lower than θ. The process

starts at Y0 = 0.15 > d̃∗, under the optimal switching setting, the first time to enter occurs on day

8 when the process falls to 0.1172 and subsequently exits on day 935 at a level of 0.2105. For the

starting-stopping problem, entry takes place much later on day 200 when the process hits 0.0306 and

exits on day 2671 at 0.4369. Under the optimal switching problem, two entries and two exits will

be completed by the time a single entry-exit sequence is realized for the starting-stopping problem.
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Figure 1: (Left) The optimal starting and stopping levels vs speed of mean reversion µ. Parameters: σ = 0.15,
θ = 0.2, r = 0.05, cs = 0.001, cb = 0.001. (Right) The optimal starting and stopping levels vs transaction
cost cs. Parameters: µ = 0.6, σ = 0.15, θ = 0.2, r = 0.05, cb = 0.001.

4 Methods of Solution and Proofs

We now provide detailed proofs for our analytical results in Section 3 beginning with the optimal

starting-stopping problem. Our main result here is Theorem 4.1 which provides a mathematical

characterization of the value function, and establishes the optimality of our method of constructing

the solution.

4.1 Optimal Starting-Stopping Problem

We first describe the general solution procedure for the stopping problem V , followed by the starting

problem J.

4.1.1 Optimal Stopping Timing

A key step of our solution method involves the transformation

φ(y) := −
G(y)

F (y)
, y ≥ 0. (4.1)

With this, we also define the function

H(z) :=







hs

F
◦ φ−1(z) if z < 0,

lim
z→+∞

(hs(y))+

F (y) if z = 0,
(4.2)

where hs is given in (2.4). We now prove the analytical form for the value function.
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Figure 2: A sample CIR path, along with starting and stopping levels. Under the starting-stopping setting,
a starting decision is made at νd∗ = inf{t ≥ 0 : Yt ≤ d∗ = 0.0373}, and a stopping decision is made at
τb∗ = inf{t ≥ νd∗ : Yt ≥ b∗ = 0.4316}. Under the optimal switching problem, entry and exit take place at
ν
d̃∗

= inf{t ≥ 0 : Yt ≤ d̃∗ = 0.1189} , and τ
b̃∗

= inf{t ≥ ν
d̃∗

: Yt ≥ b̃∗ = 0.2078} respectively. Parameters:
µ = 0.2, σ = 0.3, θ = 0.2, r = 0.05, cs = 0.001, cb = 0.001.

Theorem 4.1 Under the CIR model, the value function V of (2.2) is given by

V (y) = F (y)W (φ(y)), (4.3)

with F and φ given in (3.2) and (4.1) respectively, and W is the decreasing smallest concave majorant

of H in (4.2).

Proof. We first show that V (y) ≥ F (y)W (φ(y)). Start at any y ∈ [0,+∞), we consider the first

stopping time of Y from an interval [a, b] with 0 ≤ a ≤ y ≤ b ≤ +∞. We compute the corresponding

expected discounted reward

Ey{e
−r(τa∧τb)hs(Yτa∧τb)} = hs(a)Ey{e

−rτa11{τa<τb}}+ hs(b)Ey{e
−rτb11{τa>τb}}

= hs(a)
F (y)G(b) − F (b)G(y)

F (a)G(b) − F (b)G(a)
+ hs(b)

F (a)G(y) − F (y)G(a)

F (a)G(b) − F (b)G(a)

= F (y)

[
hs(a)

F (a)

φ(b)− φ(y)

φ(b)− φ(a)
+

hs(b)

F (b)

φ(y)− φ(a)

φ(b)− φ(a)

]

= F (φ−1(z))

[

H(za)
zb − z

zb − za
+H(zb)

z − za
zb − za

]

,

where za = φ(a), zb = φ(b). Since V (y) ≥ sup{a,b:a≤y≤b} Ey{e
−r(τa∧τb)hs(Yτa∧τb)}, we have

V (φ−1(z))

F (φ−1(z))
≥ sup

{za,zb:za≤z≤zb}

[

H(za)
zb − z

zb − za
+H(zb)

z − za
zb − za

]

, (4.4)
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which implies that V (φ−1(z))/F (φ−1(z)) dominates the concave majorant of H.

Under the CIR model, the class of interval-type strategies does not include all single threshold-

type strategies. In particular, the minimum value that a can take is 0. If 2µθ < σ2, then Y can

reach level 0 and reflects. The interval-type strategy with a = 0 implies stopping the process Y at

level 0, even though it could be optimal to wait and let Y evolve.

Hence, we must also consider separately the candidate strategy of waiting for Y to reach an

upper level b ≥ y without a lower stopping level. The well-known supermartingale property of

(e−rtV (Yt))t≥0 (see Appendix D of Karatzas and Shreve (1998)) implies that V (y) ≥ Ey{e
−rτV (Yτ )}

for τ ∈ T . Then, taking τ = τb, we have

V (y) ≥ Ey{e
−rτbV (Yτb)} = V (b)

F (y)

F (b)
,

or equivalently,

V (φ−1(z))

F (φ−1(z))
=

V (y)

F (y)
≥

V (b)

F (b)
=

V (φ−1(zb))

F (φ−1(zb))
, (4.5)

which indicates that V (φ−1(z))/F (φ−1(z)) is decreasing. By (4.4) and (4.5), we now see that

V (y) ≥ F (y)W (φ(y)), where W is the decreasing smallest concave majorant of H.

For the reverse inequality, we first show that

F (y)W (φ(y)) ≥ Ey{e
−r(t∧τ)F (Yt∧τ )W (φ(Yt∧τ ))}, (4.6)

for y ∈ [0,+∞), τ ∈ T and t ≥ 0. If the initial value y = 0, then the decreasing property of W

implies the inequality

E0{e
−r(t∧τ )F (Yt∧τ )W (φ(Yt∧τ ))} ≤ E0{e

−r(t∧τ)F (Yt∧τ )}W (φ(0)) = F (0)W (φ(0)),

where the equality follows from the martingale property of (e−rtF (Yt))t≥0.

When y > 0, the concavity of W implies that, for any fixed z, there exists an affine function

Lz(α) := mzα + cz such that Lz(α) ≥ W (α) for α ≥ φ(0) and Lz(z) = W (z) at α = z, with

constants mz and cz. In turn, this yields the inequality

Ey{e
−r(τ0∧t∧τ)F (Yτ0∧t∧τ )W (φ(Yτ0∧t∧τ ))} (4.7)

≤ Ey{e
−r(τ0∧t∧τ)F (Yτ0∧t∧τ )Lφ(y)(φ(Yτ0∧t∧τ ))}

= mφ(y)Ey{e
−r(τ0∧t∧τ)F (Yτ0∧t∧τ )φ(Yτ0∧t∧τ )}+ cφ(y)Ey{e

−r(τ0∧t∧τ)F (Yτ0∧t∧τ )}

= −mφ(y)Ey{e
−r(τ0∧t∧τ)G(Yτ0∧t∧τ )}+ cφ(y)Ey{e

−r(τ0∧t∧τ)F (Yτ0∧t∧τ )}

= −mφ(y)G(y) + cφ(y)F (y) (4.8)

= F (y)Lφ(y)(φ(y))

= F (y)W (φ(y)), (4.9)
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where (4.8) follows from the martingale property of (e−rtF (Yt))t≥0 and (e−rtG(Yt))t≥0. If 2µθ ≥ σ2,

then τ0 = +∞ for y > 0. This immediately reduces (4.7)-(4.9) to the desired inequality (4.6).

On the other hand, if 2µθ < σ2, then we decompose (4.7) into two terms:

Ey{e
−r(τ0∧t∧τ)F (Yτ0∧t∧τ )W (φ(Yτ0∧t∧τ ))}

= Ey{e
−r(t∧τ)F (Yt∧τ )W (φ(Yt∧τ ))11{t∧τ≤τ0}}

︸ ︷︷ ︸

(I)

+Ey{e
−rτ0F (Yτ0)W (φ(Yτ0))11{t∧τ>τ0}}

︸ ︷︷ ︸

(II)

.

By the optional sampling theorem and decreasing property of W , the second term satisfies

(II) = W (φ(0))Ey{e
−rτ0F (Yτ0)11{t∧τ>τ0}}

≥ W (φ(0))Ey{e
−r(t∧τ)F (Yt∧τ )11{t∧τ>τ0}}

≥ Ey{e
−r(t∧τ)F (Yt∧τ )W (φ(Yt∧τ ))11{t∧τ>τ0}} =: (II’). (4.10)

Combining (4.10) with (4.9), we arrive at

F (y)W (φ(y)) ≥ (I) + (II’) = Ey{e
−r(t∧τ)F (Yt∧τ )W (φ(Yt∧τ ))},

for all y > 0. In all, inequality (4.6) holds for all y ∈ [0,+∞), τ ∈ T and t ≥ 0. From (4.6) and the

fact that W majorizes H, it follows that

F (y)W (φ(y)) ≥ Ey{e
−r(t∧τ)F (Yt∧τ )W (φ(Yt∧τ ))}

≥ Ey{e
−r(t∧τ)F (Yt∧τ )H(φ(Yt∧τ ))} ≥ Ey{e

−r(t∧τ)hs(Yt∧τ )}. (4.11)

Maximizing (4.11) over all τ ∈ T and t ≥ 0 yields the reverse inequality F (y)W (φ(y)) ≥ V (y).

In summary, we have found an expression for the value function V (y) in (4.3), and proved that

it is sufficient to consider only candidate stopping times described by the first time Y reaches a

single upper threshold or exits an interval. To determine the optimal timing strategy, we need to

understand the properties of H and its smallest concave majorant W . To this end, we have the

following lemma.

Lemma 4.2 The function H is continuous on [φ(0), 0], twice differentiable on (φ(0), 0) and pos-

sesses the following properties:

(i) H(0) = 0, and

H(z)







< 0 if z ∈ [φ(0), φ(cs)),

> 0 if z ∈ (φ(cs), 0).
(4.12)

(ii) H(z) is strictly increasing for z ∈ (φ(0), φ(cs) ∨ φ(ys)).
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(iii)

H(z) is







convex if z ∈ (φ(0), φ(ys)],

concave if z ∈ [φ(ys), 0).

In Figure 3, we see that H is first increasing then decreasing, and first convex then concave.

Using these properties, we now derive the optimal stopping timing.

0−∞

H

W

z∗ = φ(b∗)φ(ys)

φ(cs)φ(0)

(a) 2µθ < σ2

0−∞

H

W

z∗ = φ(b∗)φ(ys)

φ(cs)

(b) 2µθ ≥ σ2

Figure 3: Sketches of H and W . The function W is equal to the constant H(z∗) on (φ(0), z∗), and coincides
with H on [z∗, 0]. Note that −∞<φ(0)<0 if 2µθ < σ2, and φ(0)=−∞ if 2µθ ≥ σ2.

Proof of Theorem 3.1 We determine the value function in the form: V (y) = F (y)W (φ(y)),

where W is the decreasing smallest concave majorant of H. By Lemma 4.2 and Figure 3, H peaks

at z∗ > φ(cs) ∨ φ(ys) so that

H ′(z∗) = 0. (4.13)

In turn, the decreasing smallest concave majorant admits the form:

W (z) =







H(z∗) if z < z∗,

H(z) if z ≥ z∗.
(4.14)

Substituting b∗ = φ−1(z∗) into (4.13), we have

H ′(z∗) =
F (φ−1(z∗))− (φ−1(z∗)− cs)F

′(φ−1(z∗))

F ′(φ−1(z∗))G(φ−1(z∗))− F (φ−1(z∗))G′(φ−1(z∗))

=
F (b∗)− (b∗ − cs)F

′(b∗)

F ′(b∗)G(b∗)− F (b∗)G′(b∗)
,

which can be further simplified to (3.5). We can express H(z∗) in terms of b∗:

H(z∗) =
b∗ − cs
F (b∗)

. (4.15)
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Applying (4.15) to (4.14), we get

W (φ(y)) =







H(z∗) = b∗−cs
F (b∗) if y < b∗,

H(φ(y)) = y−cs
F (y) if y ≥ b∗.

Finally, substituting this into the value function V (y) = F (y)W (φ(y)), we conclude.

4.1.2 Optimal Starting Timing

We now turn to the optimal starting problem. Our methodology in Section 4.1.1 applies to general

payoff functions, and thus can be applied to the optimal starting problem (2.3) as well. To this end,

we apply the same transformation (4.1) and define the function

Ĥ(z) :=







ĥ
F
◦ φ−1(z) if z < 0,

lim
y→+∞

(ĥ(y))+

F (y) if z = 0,

where ĥ is given in (3.6). We then follow Theorem 3.1 to determine the value function J . This

amounts to finding the decreasing smallest concave majorant Ŵ of Ĥ. Indeed, we can replace H

and W with Ĥ and Ŵ in Theorem 3.1 and its proof. As a result, the value function of the optimal

starting timing problem must take the form

J(y) = F (y)Ŵ (φ(y)).

To solve the optimal starting timing problem, we need to understand the properties of Ĥ.

Lemma 4.3 The function Ĥ is continuous on [φ(0), 0], differentiable on (φ(0), 0), and twice differ-

entiable on (φ(0), φ(b∗)) ∪ (φ(b∗), 0), and possesses the following properties:

(i) Ĥ(0) = 0. Let d̄ denote the unique solution to ĥ(y) = 0, then d̄ < b∗ and

Ĥ(z)







> 0 if z ∈ [φ(0), φ(d̄)),

< 0 if z ∈ (φ(d̄), 0).

(ii) Ĥ(z) is strictly increasing for z > φ(b∗) and limz→φ(0) Ĥ
′
(z) = 0.

(iii)

Ĥ(z) is







concave if z ∈ (φ(0), φ(yb)),

convex if z ∈ (φ(yb), 0).

By Lemma 4.3, we sketch Ĥ in Figure 4.
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0−∞

Ĥ

Ŵ

ẑ = φ̂(d∗)

φ̂(d̄)

φ̂(b∗)φ̂(yb)

φ̂(0)

(a) 2µθ < σ2

0−∞

Ĥ

Ŵ

ẑ = φ̂(d∗)

φ̂(d̄)

φ̂(b∗)φ̂(yb)

(b) 2µθ ≥ σ2

Figure 4: Sketches of Ĥ and Ŵ . The function Ŵ coincides with Ĥ on [φ(0), ẑ] and is a straight line tangent
to Ĥ at ẑ on (ẑ, 0]. Note that −∞<φ(0)<0 if 2µθ < σ2, and φ(0)=−∞ if 2µθ ≥ σ2.

Proof of Theorem 3.2 To determine the value function in the form: J(y) = F (y)Ŵ (φ(y)), we

analyze the decreasing smallest concave majorant, Ŵ , of Ĥ. By Lemma 4.3 and Figure 3, we have

Ĥ
′
(z) → 0 as z → φ(0). Therefore, there exists a unique number ẑ ∈ (φ(0), φ(b∗)) such that

Ĥ(ẑ)

ẑ
= Ĥ

′

(ẑ). (4.16)

In turn, the decreasing smallest concave majorant admits the form:

Ŵ (z) =







Ĥ(z) if z ≤ ẑ,

z Ĥ(ẑ)
ẑ

if z > ẑ.
(4.17)

Substituting d∗ = φ−1(ẑ) into (4.16), we have

Ĥ(ẑ)

ẑ
=

Ĥ(φ(d∗)

φ(d∗)
= −

V (d∗)− d∗ − cb
G(d∗)

, (4.18)

and

Ĥ
′

(ẑ) =
F (d∗)(V ′(d∗)− 1)− F

′
(d∗)(V (d∗)− (d∗ + cb))

F ′(d∗)G(d∗)− F (d∗)G′(d∗)
.

Equivalently, we can express condition (4.16) in terms of d∗:

−
V (d∗)− (d∗ + cb)

G(d∗)
=

F (d∗)(V ′(d∗)− 1)− F
′
(d∗)(V (d∗)− (d∗ + cb))

F ′(d∗)G(d∗)− F (d∗)G′(d∗)
,

which shows d∗ satisfies (3.8) after simplification.

Applying (4.18) to (4.17), we get

W (φ(y)) =







Ĥ(φ(y)) = V (y)−(y+cb)
F (y) if y ∈ [0, d∗],

φ(y) Ĥ(ẑ)
ẑ

= V (d∗)−(d∗+cb)
G(d∗)

G(y)
F (y) if y ∈ (d∗,+∞).
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From this, we obtain the value function.

4.2 Optimal Switching Problem

Proofs of Theorems 3.3 and 3.4 Zervos et al. (2013) have studied a similar problem of trading

a mean-reverting asset with fixed transaction costs, and provided detailed proofs using a variational

inequalities approach. In particular, we observe that yb and ys in (3.3) play the same roles as xb and

xs in Assumption 4 in Zervos et al. (2013), respectively. However, Assumption 4 in Zervos et al.

(2013) requires that 0 ≤ xb, this is not necessarily true for yb in our problem. We have checked and

realized that this assumption is not necessary for Theorem 3.3, and that yb < 0 simply implies that

there is no optimal starting level, i.e. it is never optimal to start.

In addition, Zervos et al. (2013) assume (in their Assumption 1) that the hitting time of level 0 is

infinite with probability 1. In comparison, we consider not only the CIR case where 0 is inaccessible,

but also when the CIR process has a reflecting boundary at 0. In fact, we find that the proofs in

Zervos et al. (2013) apply to both cases under the CIR model. Therefore, apart from relaxation of

the aforementioned assumptions, the proofs of our Theorems 3.3 and 3.4 are the same as that of

Lemmas 1 and 2 in Zervos et al. (2013) respectively.

A Appendix

A.4 Proof of Lemma 4.2 (Properties of H). (i) First, we compute

H(0) = lim
y→+∞

(hs(y))
+

F (y)
= lim

y→+∞

y − cs
F (x)

= lim
y→+∞

1

F ′(y)
= 0.

Using the facts that F (y) > 0 and φ(y) is a strictly increasing function, (4.12) follows.

(ii) We look at the first derivative of H:

H ′(z) =
1

φ′(y)
(
hs
F

)′(y) =
1

φ′(y)

F (y)− (y − cs)F
′(y)

F 2(y)
, z = φ(y).

Since both φ′(y) and F 2(y) are positive, it remains to determine the sign of F (y) − (y − cs)F
′(y).

Since F ′(y) > 0, we can equivalently check the sign of v(y) := F (y)
F ′(y) − (y − cs). Note that v′(y) =

−F (y)F ′′(y)
(F ′(y))2 < 0. Therefore, v(y) is a strictly decreasing function. Also, it is clear that v(cs) > 0

and v(ys) > 0. Consequently, v(y) > 0 if y < (cs ∨ ys) and hence, H(z) is strictly increasing if

z ∈ (φ(0), φ(cs) ∨ φ(ys)).

(iii) By differentiation, we have

H
′′

(z) =
2

σ2F (y)(φ′(y))2
(L − r)hs(y), z = φ(y).
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Since σ2, F (y) and (φ′(y))2 are all positive, the convexity/concavity of H
′′
depends on the sign of

(L − r)hs(y) = µ(θ − y)− r(y − cs) = (µθ + rcs)− (µ+ r)y







≥ 0 if y ∈ [0, ys],

≤ 0 if y ∈ [ys,+∞),

which implies property (iii). �

A.5 Proof of Lemma 4.3 (Properties of Ĥ). It is straightforward to check that V (y) is

continuous and differentiable everywhere, and twice differentiable everywhere except at y = b∗, and

all these holds for ĥ(y) = V (y) − (y + cb). Both F and φ are twice differentiable. In turn, the

continuity and differentiability of Ĥ on (φ(0), 0) and twice differentiability of Ĥ on (φ(0), φ(b∗)) ∪

(φ(b∗), 0) follow.

To show the continuity of Ĥ at 0, we note that

Ĥ(0) = lim
y→+∞

(ĥ(y))+

F (y)
= lim

y→+∞

0

F (y)
= 0, and

lim
z→0

Ĥ(z) = lim
y→+∞

ĥ

F
(y) = lim

y→+∞

−(cs + cb)

F (y)
= 0.

From this, we conclude that Ĥ is also continuous at 0.

(i) First, for y ∈ [b∗,+∞), ĥ(y) ≡ −(cs + cb). For y ∈ (0, b∗), we compute

V ′(y) =
b∗ − cs
F (b∗)

F ′(y) =
F ′(y)

F ′(b∗)
, by (3.5).

Recall that F ′(y) is a strictly increasing function and ĥ(y) = V (y)− y − cb. Differentiation yields

ĥ
′

(y) = V ′(y)− 1 =
F ′(y)

F ′(b∗)
− 1 <

F ′(b∗)

F ′(b∗)
− 1 = 0, y ∈ (0, b∗),

which implies that ĥ(y) is strictly decreasing for y ∈ (0, b∗). On the other hand, ĥ(0) > 0 as we are

considering the non-trivial case. Therefore, there exists a unique solution d̄ < b∗ to ĥ(y) = 0, such

that ĥ(y) > 0 for y ∈ [0, d̄), and ĥ(y) < 0 for y ∈ (d̄,+∞). With Ĥ(z) = (ĥ/F ) ◦ φ−1(z), the above

properties of ĥ, along with the facts that φ(y) is strictly increasing and F (y) > 0, imply property

(i).

(ii)With z = φ(y), for y > b∗, Ĥ(z) is strictly increasing since

Ĥ
′

(z) =
1

φ′(y)
(
ĥ

F
)′(y) =

1

φ′(y)
(
−(cs + cb)

F (y)
)′ =

1

φ′(y)

(cs + cb)F
′
(y)

Fχ2(y)
> 0.

When y → 0, because ( ĥ(y)
F (y))

′ is finite, but φ′(y) → +∞, we have limz→φ(0) Ĥ
′
(z) = 0.
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(iii) Consider the second derivative:

Ĥ
′′

(z) =
2

σ2F (y)(φ′(y))2
(L − r)ĥ(y).

The positivities of σ2, F (y) and (φ′(y))2 suggest that we inspect the sign of (L − r)ĥ(y):

(L − r)ĥ(y) =
1

2
σ2xV ′′(y) + µ(θ − y)V ′(y)− µ(θ − y)− r(V (y)− (y + cb))

=







(µ+ r)y − µθ + rcb if y < b∗,

r(cs + cb) > 0 if y > b∗.

Since µ, r > 0 by assumption, (L − r)ĥ(y) is strictly increasing on (0, b∗). Next, we show that

0<yb<ys<b∗. By the fact that F ′(0) = r
µθ

and the assumption that V (0) = b∗−cs
F (b∗) > cb, we have

V ′(0) =
b∗ − cs
F (b∗)

F ′(0) =
b∗ − cs
F (b∗)

r

µθ
>

rcb
µθ

.

In addition, by the convexity of V and V ′(b∗) = 1, it follows that

rcb
µθ

< V ′(0) < V ′(b∗) = 1,

which implies µθ > rcb and hence yb > 0. By simply comparing the definitions of yb and ys, it is

clear that yb < ys. Therefore, by observing that (L − r)ĥ(yb) = 0, we conclude (L − r)ĥ(y) < 0 if

y ∈ [0, yb), and (L − r)ĥ(y) > 0 if y ∈ (yb,+∞). This suggests the concavity and convexity of Ĥ as

desired. �
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Göing-Jaeschke, A. and Yor, M. (2003). A survey and some generalizations of Bessel processes.
Bernoulli, 9(2):313–349.

Heston, S. L. (1993). A closed form solution for options with stochastic volatility with applications
to bond and currency options. review of financial studies, 6:327–343.

Karatzas, I. and Shreve, S. (1998). Methods of Mathematical Finance. Springer, New York.

Karlin, S. and Taylor, H. M. (1981). A Second Course in Stochastic Processes, volume 2. Academic
Press.

Karpowicz, A. and Szajowski, K. (2007). Double optimal stopping of a risk process. Stochastics:
An International Journal of Probability and Stochastics Processes, 79(1-2):155–167.

Lebedev, N. (1972). Special Functions & Their Applications. Dover Publications.

Leung, T. and Li, X. (2014). Optimal mean reversion trading with transaction cost and stop-loss
exit. Working paper, Columbia University.

Leung, T., Li, X., and Wang, Z. (2014). Optimal multiple trading times under the exponential OU
model with transaction costs. Working paper, Columbia University.

Leung, T. and Liu, P. (2012). Risk premia and optimal liquidation of credit derivatives. International
Journal of Theoretical & Applied Finance, 15(8).

Menaldi, J., Robin, M., and Sun, M. (1996). Optimal starting-stopping problems for Markov-Feller
processes. Stochastics: An International Journal of Probability and Stochastic Processes, 56(1-
2):17–32.

Øksendal, B. (2003). Stochastic Differential Equations: an Introduction with Applications. Springer.

Ribeiro, D. R. and Hodges, S. D. (2004). A two-factor model for commodity prices and futures
valuation. Working paper, University of Warwick.

Shiryaev, A., Xu, Z., and Zhou, X. (2008). Thou shalt buy and hold. Quantitative Finance,
8(8):765–776.

Sun, M. (1992). Nested variational inequalities and related optimal starting-stopping problems.
Journal of Applied Probability, 29(1):104–115.

Tanaka, T. (1993). On two-parameter discrete time optimal starting-stopping problems. Nihonkai
Mathematical Journal, 4(1):17–34.

Zervos, M., Johnson, T., and Alazemi, F. (2013). Buy-low and sell-high investment strategies.
Mathematical Finance, 23(3):560–578.

20


	1 Introduction
	2 Problem Overview
	2.1 Optimal Starting-Stopping Problem
	2.2 Optimal Switching Problem

	3 Summary of Analytical Results
	3.1 Optimal Starting-Stopping Problem
	3.2 Optimal Switching Problem
	3.3 Numerical Examples

	4 Methods of Solution and Proofs
	4.1 Optimal Starting-Stopping Problem
	4.1.1 Optimal Stopping Timing
	4.1.2 Optimal Starting Timing

	4.2 Optimal Switching Problem

	A Appendix

