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Abstract. Risk assessment is relevant only if it has predictive relevance. In this sense, the anticipatory perspective has yet to
contribute to more adequate predictions. For purely physics-based phenomena, predictions are as good as the science describ-
ing such phenomena. For the dynamics of the living, the physics of the matter making up the living is only a partial descrip-
tion of their change over time. The space of possibilities is the missing component, complementary to physics and its associ-
ated predictions based on probabilistic methods. The inverse modeling problem, and moreover the reverse computation model
guide anticipatory-based predictive methodologies. An experimental setting for the quantification of anticipation is advanced and
structural measurement is suggested as a possible mathematics for anticipation-based risk assessment.
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1. Statement of goals

Successful anticipation mitigates risk. This rela-
tively innocuous statement, which somehow promises
a world of reduced risk on account of effective anti-
cipation, is of little use unless we define our terms. In-
deed, although risk considerations go back as far as re-
flections on danger and chance in the ancient world,
and anticipation, in some way, is acknowledged in an-
tiquity, neither of them are defined and used in a con-
sistent manner. There is a lot of accumulated evidence
in respect to how people conduct their affairs under-
standing the implication of associated risk, or in re-
spect to anticipating the consequences of their actions.
But in the final analysis, the conceptual foundation for
both risk and anticipation is at best preliminary. In re-
spect to risk,1 the many specializations – in mathemat-
ics (with a focus on probability and prediction), engi-
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1In the first known elaborations (in both Western and Eastern
civilizations), forces beyond human understanding (e.g., the gods,
the mystical), there is no measure of risk. Change comes from the
deities. The number system and the expansion of trade open av-
enues to evaluating risk. Luca Pacioli, the Franciscan monk who be-
friended Leonardo da Vinci, wrote not only the celebrated Summa de

neering, statistics, law, insurance and investment, for
example – resulted in a variety of understandings. In
addition, the psychology of risk (and the associated
decision theory), the ethics, the politics, and the eco-
nomics of risk have given rise to quite a bit of theoretic
and applied work, but without a conceptual consensus
on the meaning of risk.

Anticipation2 is less well understood. Since Rosen’s

Arithmetica, Geometrica, Proportioni et Proportionalitate (1494),
but also De viribus quantitatis (On the power of numbers, sometime
between 1496 and 1508). In the Summa, there are elements of games
of chance, while the book on numbers describes puzzles and tricks.
These are precursors to the mathematical considerations on probabil-
ity resulting from the correspondence, inspired by Pacioli, between
Pascal and Fermat. Jacob Bernoulli (Ars Conjectandi, 1703) focused
on probabilities calculated after the fact, while Abraham de Moivre
(The Doctrine of Chances, 1730) dealt with the Law of Averages.
These pointers in time lead further to Daniel Bernoulli’s elements
of decision theory (Specimen Theoriae Novae de Mensura Sortis,
1738), Thomas Bayes uncertainty (Essay Towards Solving a Prob-
lem in the Doctrine of Chances, 1750) and G.F. Gauss’ derivation
from the mean (1865).

2The history is far less rich: Epicurus (ca 310 BCE) – quoted by
Diogenes Laertius (Lives of the Philosophers), Clement of Alexan-
dria (Miscellanies), Cicero (On the Nature of Gods) and Plutarch –
advanced prolepsis as a form of knowledge inborn in the mind (cf.
A.J. Festugiere, Epicure et ses Dieux, Paris: PUF, 1946). Kant (Cri-
tique of Pure Reason, 1781) discussed the concept, bringing us closer
to a logical understanding of anticipation. However, the first system-
atic attempts at discussing anticipation have been made by Robert
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[29] and Nadin’s [19] foundational work – one ground-
ed in a structural view of the living, the latter on brain
science – the major contributions have focused on cog-
nitive aspects and on the possibility of somehow com-
puting anticipation (see, for example, Computing An-
ticipatory Systems, CASYS, headquartered in Liège,
which publishes the proceedings of its international
conferences held every two years). As far as the rela-
tion between risk assessment and anticipation is con-
cerned, we are practically in virgin territory. Therefore,
we need to develop the conceptual framework, clarify
language, and suggest ways to apply available knowl-
edge, in full awareness of the need to develop, at the
same time, criteria for evaluation.

It is the intention of this study to address these ob-
jectives. We shall proceed by defining the expectations
of prediction as the ultimate goal. In further addressing
the epistemological condition of the concepts of risk
and anticipation, we shall be in the position to distin-
guish classes of risk, and to see at which juncture an-
ticipation and risk can be meaningfully examined as
somehow linked. We will have to extend the analysis
to the context in which our description of reality makes
possible and necessary the understanding of risk and,
subsequently, of anticipation. The distinction between
nomothetic – as it pertains to generality and law – and
idiographtic – as it pertains to event sequences and to
individuality – in other words, between science and
history, will draw our attention because risk and antic-
ipation share in their mixed epistemological condition.
Only this fundamental understanding can help us ex-
plain why probability-driven risk models remain par-
tial as long as the possibilistic perspective is only mar-
ginally accepted. Anticipation studies, still in search
of a consubstantial mathematical representation, are in
the same situation.

Finally, in order to provide the expected predictive
performance, we need to address the expectation of
expressing risk and anticipation in ways that quantify
both their qualitative and structural aspects. The in-
verse problem perspective and the associated reverse
computing model are an attempt to suggest practical
solutions. The Anticipatory Profile™, which is also
a risk profile, is an implementation that has afforded
good experimental results.

I am aware that this statement of goals practically
suggests a book. It might well be that this study is the
first step towards that end.

Rosen (Anticipatory Systems, 1985) and Mihai Nadin (Mind – An-
ticipation and Chaos, 1991).

2. Prediction and complexity

Science is rewarding in many ways. From the mul-
titude of values it returns, predictions are the most im-
portant. This is true regardless of the scientific method:
start with observations and build upon them until a the-
ory results that can predict future observations; or start
at the highest level of generality (abstract theory) and
see how observations confirm it, thus making possi-
ble informed actions based on such a theory. As we
advance in our understanding of change (dynamics, as
change is also called), and as we improve methods
of observation and their perspective, we notice that at
times a wrong prediction falsifies a theory [26], and
we need to start over. The history of science would be
discouraging if we were to take the immense number
of falsified instances as its main outcome. Actually, as
yet another proof of the progress made over time in un-
derstanding the world we belong to, and ourselves in
interaction with each other, the discarded is not a junk
pile, but fertile ground for new inquiry.

We shall not, however, deal with science in general,
but rather with anticipation – a characteristic of the liv-
ing – and with risk – associated with human action to-
ward a desired outcome. More precisely, we shall fo-
cus on successful predictions pertinent to anticipatory
processes and risk assessment. We want to see how
our understanding of anticipation and risk begs for bet-
ter theories, which in turn might inform better predic-
tions. Given the economics associated with risk assess-
ment, risk management, and, in a broad sense, anticipa-
tion, predictions are enormously important. However,
the expectation of prediction cannot be the only driving
force of science. Rather, as we advance in unknown
territories, where chances and risks reach a scale never
encountered before, prediction becomes at best tenta-
tive, if not impossible. Almost all predictions – eu-
phoric or utopian proclamations of chances, or de-
pressing warnings of unbearable consequences – that
have accompanied scientific breakthroughs in the last
100–150 years, proved undeserving of the attention
they received from the public or from scientists. One
can suspect that the famed Chinese proverb – “It is dif-
ficult to predict, especially the future” – is nothing but
an expression of self-irony (sounding very much like
one of Yogi Berra’s famous predicaments).

2.1. The forward problem and the inverse problem

Using a theory, complete or partial, for predicting
the results of observations corresponds to addressing
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the so-called forward modeling problem. Alternatively,
we can start out from measurements in order to infer
the values of the variables representing the system we
are examining. This possibility, called the inverse mod-
eling problem in mathematics, is very attractive, since
over time data has accumulated from instances of risk
expression or from successful anticipations.

Let O (i.e., the organism we are trying to describe)
be the living system. The methodology we suggest is
rather straightforward:

1. Parameterization of O, that is, submitting a min-
imal set of model parameters whose value char-
acterizes the organism from the perspective pur-
sued (for instance, neurological disorders or as-
sessment of adaptive capabilities). This step is
always based on prior knowledge, i.e., induc-
tions. If the focus is on anticipation, the vari-
ables correspond to proactive components of ac-
tion and interaction.

2. Forward modeling, that is, submitting hypotheses
in the form of rules for the organism’s function-
ing such that for given values of the parameters,
we can make predictions about the measurement
results of some of the observable parameters. In
a way, this is the same as establishing the linkage
of quantified parameters. Therefore, it is also an
inductive process.

3. Inverse modeling, that is, processing of inference
from measurement results to current values of
the parameters. This is, by necessity, a deductive
process.

The living, by many orders of magnitude more
complex than the physical, evinces the strong inter-
determination of these methodological steps. (Feed-
back is but one of the processes through which they in-
fluence each other.) Let’s take note of the fact that the
choice of parameters is neither unique nor complete.
We can compare two parameterizations to find out if
they are partially or completely equivalent. This is the
case if their relation is through a bijection (one-to-
one mapping). Furthermore, we can generalize a space
of many models through a manifold. The set of ex-
perimental procedures that facilitate the measurement
of the quantifiables characterizing the organism is the
result of applying a quantifying (measurement) algo-
rithm.

Finally, let us be aware that the number of parame-
ters needed to describe a fairly complex organism is,
for all practical purposes, infinite. However, in many
cases, a limitation is introduced such that the conti-

nuity aspect of the living is substituted (or approxi-
mated) through a discrete set of parameters. Moreover,
even such parameters can take continuous values (map-
ping to quantities expressed through real numbers) or
discrete values (integer numbers). Further distinctions
arise in respect to the linearity of the model space (the
consequence affects the rules for model composition,
such as the sum of two models, multiplication, etc.).

2.2. Causality

The procedure described above can be applied to any
system, but our focus on the organism (the living) cor-
responds to the fact that anticipation is a characteristic
of the living.

Since the time Descartes set forth his reductionist-
deterministic perspective, physics has claimed to be
the theory of all there is, living or not. Causality,
in Descartes’ understanding, is based on our experi-
ence with the physical world. The cause-and-effect se-
quence characteristic of the reductionist-deterministic
understanding of causality ensures that the forward
problem has a unique solution. This guarantees the
ability to make predictions regarding the dynamics of
such phenomena. Obviously, this does not apply to
quantum phenomena. If, however, causality itself is
subjected to refinement – as in quantum mechanics,
but not only – even the forward problem no longer re-
sults in a unique solution. Predictions become difficult;
therefore, risk considerations are at best tentative.

Direct problem formulations are a description of the
effect connected to a cause. In the inverse problem, the
situation is reversed. We look for the existence, unique-
ness, and stability of the answer to the problem that
describes a physical phenomenon defined as an effect
of something we want to uncover as its possible cause.
The inverse problem, even with causality restrictions
in place, has a plurality of solutions; that is, different
models predict similar results. Or, if the data is not con-
sistent – which often happens in the realm of the liv-
ing – there is no solution at all.

With all these considerations in mind, it is easy to
notice that the reductionist-deterministic description
corresponds to a modeling of the world in a manner
that allows us to infer from a lower complexity (that of
the model) to a higher complexity (that of real phenom-
ena). This kind of mapping is quite handy for a vast
number of applications. We can state, as a general prin-
ciple – in opposition to reductionism – that the higher
the complexity of a system, the more reduced our
chances to map it to a low-complexity model. Conse-
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quently, the predictive performance of modeling high-
complexity phenomena through models of lower com-
plexity is reduced. As a human endeavor of implicit
epistemological optimism, science cannot take this sit-
uation as a curse and ignore the reality of high com-
plexity. This is the challenge: to increase predictive
performance relevant to complex entities by a more ad-
equate understanding of their condition.

3. How do we acquire knowledge of risk? How do
we understand anticipation?

With these thoughts regarding prediction in mind,
we shall examine the epistemological condition of an-
ticipation and of risk, as well as their interrelation-
ship. Based on such an attempt to advance some co-
herent theories, we shall return to the concrete aspects
of the inverse problem as it concerns anticipation and
risk. Eventually, we shall generalize it in regard to re-
verse computation – which embodies the inverse prob-
lem in computational form – and pose the question
of whether alternative descriptions, not grounded in
the exclusive representation of quantity-based observa-
tions, are a better way to examine anticipation and risk.
One particular aspect – the Anticipatory Profile – will
guide us towards predictive models of the individual.
The risk associated with the change in the Anticipa-
tory Profile (e.g., neurodegenerative disease, drug ad-
diction, aging) will be specifically addressed as an il-
lustration of the perspective advanced.

Anticipation is usually associated with successful
actions – high performance (in sports, military oper-
ations, education, marketing) – or avoidance of neg-
ative outcome (in the market, in preventing accidents
and injuries). Successful choices (related to tactical de-
cisions, art and design, diagnostics) are always risky
choices. For a starter, this is how anticipation and risk
are related. As such, anticipation is an underlying fac-
tor of evolution, expressed in the ability to cope with
the extreme dynamics of the natural world and of soci-
ety. Resilience3 [33] cannot be ignored; but in the long
run, what wins is the successful adaptive capability of
individuals and of species, which is the expression of

3Resilience is defined in a variety of ways. Fundamentally, re-
silience describes the rate at which a system returns to a steady state
following a perturbation. When the system (such as the living in gen-
eral) can reorganize, it will shift from one stability domain to an-
other. The disruption is measured by what it takes to switch from
one type of mutually reinforcing processes to a different set (while
maintaining or changing its structure).

anticipation. Biological processes that inform the liv-
ing about how to cope with change before change oc-
curs is a good description of what makes anticipation
possible.

Resilience is about coping with change (in weather
conditions, in service delivery, in a variety of situations
affecting the market, among many more examples).
Anticipation is about succeeding in a world of change.
The tennis champion does not return equally success-
fully all the fast serves from the opponent; the ski
champion does not always make it down steep slopes
in the shortest time (sometimes not at all); we some-
times stumble as we walk over less than flat terrain, or
as we come down the stairs; we land on a chair not al-
ways softly, but in a manner that hurts (or even affects
the chair’s physical integrity). As we see, anticipation
is not always successful, or, to use a mathematical de-
scription, it is not monotonic. Resilience is reactive:
the information prompting the reaction is available in
its entirety, or at least to a significant degree. Anticipa-
tion is guided by information processes that take place
in a context of incomplete information and uncertainty.
Its success or failure is indicative of the ability of the
living to “fill in” the “missing” data, or to “define” the
information, even when such a “definition” is not ap-
propriate, i.e., does not correspond to the context. We
fill in missing data more often than we are aware of:
crossing the street (no car in view); lifting an object
from a hot stove (no thermometer informs how hot the
cast-iron pot might be); catching an object we have not
seen falling. In some cases, when the reference to re-
ality is lost or disconnected, the anticipation can be-
come delusional: the dynamics of superstition and the
associated risk evaluation (e.g., black cats, the num-
ber 13, the act of naming someone in order to endow
the person with a desired attribute). In a perfectly de-
terministic world, anticipation is reduced to an evalua-
tion of the difference between the intended and the ac-
tual outcome. If risk is defined as the chance that an
action will not succeed (in part or in its entirety) and
the loss attached to the failed action, then in a deter-
ministic world, there is no risk. This informs us again
about the fact that a fully deterministic world does not
accept the notion of chance. The dynamics of such a
world unfolds in a fully predictable manner. If indeed
the deterministic reduction executed by Descartes re-
sults in equating all there is to a machine, anticipation
within such a system is not possible. The only risk as-
sociated with such a description is the breakdown of
the deterministic rule(s).
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3.1. Taking a chance

The need to examine the relation between risk and
anticipation, from the perspective of the outcome of the
process considered, should afford us the understanding
of the role of chance. Risk involves taking a chance,
a concept we anchor within an information-based per-
spective in which the future is modeled on account of
the past. Anticipation, as we shall see, means reduc-
ing risk to a minimum. What guides our future actions
is just as well an information process in which past,
present and future are co-related. Certainly, this first
stab at terminological differentiation provides only a
preliminary assessment. More should become possible
as we take a closer look at how both risk and antici-
pation inform human activity. For the segment of real-
ity for which our deterministic descriptions are, if not
complete, at least adequate, we do not so much need
a notion of risk as we need one of that establishes the
adequacy of the description, i.e., its context-dependent
relevance (for which activity is a given description ac-
ceptable).

Indeed, the physical laws of gravity are adequate
for all actions that are based on them. A gravity pump
will never fail on account of discontinued gravity. (Un-
like an electric engine, which depends on the avail-
ability of electricity, gravity is permanent.) The grav-
ity pump fails because its components (ducts, valves,
pipes, etc.) are subject to wear and tear. Light-based
communication (from the lighthouses of the past, with
their intricate Fresnel lenses to laser-based links be-
tween a space-craft and instruments on Earth) does not
fail on account of light’s ceasing to function. Our de-
scriptions of light as the unity of wave and particle
might not be perfect, but they indicate that what might
affect communication is the failure of the elements in-
volved (the source of light in a lighthouse, the switches
between the laser emitter and the receiver, etc.) to per-
form as defined. The same holds true for many other
artifacts conceived around descriptions (such as those
of the electron, of protons, of quanti) that make up our
scientific understanding of the world. Indeed, in such
descriptions – what we call science – we express our
understanding of (relative) permanence, and even of
causality, which is the ultimate underpinning of risk.
The risk that gravity might cease, or that electrons will
no longer follow the path described through electrody-
namics, or that light might behave other than in the de-
scriptions known as the laws of light propagation, is at
best equal to zero.

The interesting thing happens once the human be-
ing (as part of the larger reality defining the living)
comes into the picture. Indeed, the description of grav-
ity, not unlike the description of anti-gravity, goes back
to the observer and makes possible actions guided by
the knowledge expressed in such descriptions. Life on
a space station, for example, no longer corresponds to
the deterministic path implicit in the gravitational de-
scription on earth. Other descriptions, of a more com-
plex situation, become apparent not only when objects
and astronauts float in space, but also when the cog-
nitive model of the scientists involved, associated with
gravity on earth, is challenged by a behavior – their
own and that of the objects they use – that contradicts
the expected. Suffice it to say that similar observations
can be associated with the science expressed in super-
conductivity, or for experiments with light under cir-
cumstances leading to confirmation of light bending in
the vicinity of massive bodies (black holes, in particu-
lar).

3.2. Classes of risk

The examples mentioned so far have been brought
up for a very simple reason: to suggest the relation be-
tween what we know and the corresponding notion of
risk. There is no risk involved in assuming that objects
fall down; there is a lot of risk involved in operating un-
der circumstances where this description can no longer
be taken for granted once human activity created new
circumstances and unleashed new realities.

Based on these rather sketchy observations, we sug-
gest that risk research can benefit from defining at least
three directions:

Class A: Risk associated with the dynamics of the
physical world, such as extreme events
(volcano eruptions, earthquakes, hurri-
canes, tornadoes, etc.), but also less drastic
changes (soil erosion, excessive load, wa-
ter infiltration);

Class B: Risk associated with the dynamics of the
living (disease, human behavior, interac-
tion);

Class C: Risk associated with the artificial, i.e., the
physical synthesized and produced by hu-
man beings, such as drugs, orthoscopic de-
vices, buildings, computers, robots, intelli-
gent machines, artificial life artifacts. Such
entities are more and more endowed with
life-like properties.
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The reason for this initial distinction among risk
classes is clear: knowledge pertinent to understand-
ing the physical world is fundamentally different from
knowledge of the living. And, again, the knowledge
synthesized by the living and expressed in the artificial
(including artificial intelligence as yet another way to
gain knowledge about the world) has a different nature,
and a different implicit understanding of risk. The three
classes mentioned have an ascending degree of risk.
There is an immediate benefit to this attempt to classify
risk. We can focus on the knowledge pertinent to the
dynamics of the physical world and derive from here
methods for assessing the risk associated with it. This
is not the same as predicting the event (time and space
coordinates), but rather defining its impact in terms
of affecting human life and activity. The deterministic
knowledge we can derive from our scientific descrip-
tions of the physical world can, in turn, be expressed
in operational terms. That means that we can automate
processes for risk mitigation in Class A. Several net-
works of risk-based automated observation stations are
actually emerging as we all recognize that while we
cannot stop earthquakes or tornados from taking place,
we can prepare so as to diminish loss of life and of
assets important to people.

There is a relation between the quality of prediction
(e.g., how much in advance, how comprehensive the
forecast) and the impact of physical phenomena result-
ing in risk for the human being. An earthquake or tor-
nado affecting a scarcely populated area at a time of a
dynamic low (little or no traffic, people away on vaca-
tion, etc.) will have an impact different from an event
affecting a densely populated area surprised in a dy-
namic high (heavy traffic, concentrations of people, in-
tense interactions). The prediction and the risk associ-
ated with the event – i.e., loss potential – speak in favor
of a context-based information system. Class B- and
Class C-defined risk are less easy to describe compre-
hensively, and are not really subject to automation, un-
less their dynamics and that of the automated system
are of the same order of complexity.

As a matter of fact, given the dynamics of the living,
we are in the situation that prompted Gödel’s incom-
pleteness theorem [13]; that is, we need to consider to
which extent limitations intrinsic to high-complexity
entities affect our ability to know them (completely
and consistently). Gödel stated that “. . . any effec-
tively generated theory capable of expressing elemen-
tary arithmetic cannot be both consistent and com-
plete”. This is, of course, mathematical logic knowl-
edge pertinent to formal systems, i.e., pertinent to our

descriptions of reality. If we take only the fundamen-
tal thought as a preliminary for examining the living,
instead of formal systems for describing it, we realize
that completeness and consistency of descriptions of
the living cannot be achieved simultaneously. There-
fore, to define risk associated to the living – in its par-
ticular forms of existence, or in respect to its own ac-
tions – implies that we consider partial aspects. For the
chosen subset (the risk of slipping on a wet floor, or the
risk of developing an infection), we can reach consis-
tency and completeness, but the epistemological price
is the same as that prompted by Cartesian reductionism
(i.e., local validity).

As far as artificial reality is concerned, we deal not
only with the consequences of Gödel’s discovery, but
also with the difficulties resulting from generating dy-
namic systems endowed with self-organization charac-
teristics. The risk that robots and other artificial “crea-
tures” might outperform the human being is better dis-
cussed in science fiction than here. But not to address
the variety of new interactions between the living and
the artificial would mean to ignore new forms of risk
and the potential of their rapid propagation in forms
we cannot yet account for. We know that we cannot
avoid the consequences of the logical principle accord-
ing to which completeness and consistency exclude
each other. But this should not dissuade the attempt to
understand interactions even when we do not fully un-
derstand the interacting entities.

3.3. The nature of risk assessment

By its nature, risk is relative. Consequently, risk
should be approached as a measure of variance in re-
lation to its defining value of reference: a devastating
earthquake is risk-free for those who fully insure their
property and make sure that their physical integrity will
not be affected. (“Away for gambling over the earth-
quake” could read the ironic note they would leave for
those who might knock on their door, if any door re-
mained intact.)

The risk of surviving one’s death is zero. However,
the risks associated with cloning are by no means to
be ignored. As a measure of variance in relation to
a chance outcome, risk pertains to love, procreation,
diet, exercise, medical care. While the past is informa-
tive regarding variance in the physical realm, when it
comes to the living, statistics are, only in a limited way,
the premise for evaluating the risk. Finally, in the ar-
tificial realm, we might transfer risk experience from
the physical (when creating a new material, for exam-
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ple), but we have only limited means for inferring to
new circumstances of existence (chip implants, genet-
ically modified seed, interaction with nanoparticles).
Even when living characteristics are only imitated, we
cannot fully account for their future dynamics.

For the artificial world, the probability description is
a place to start from:

risk = probability of breakdown

× losses through breakdown.

A hard disk, completely backed up is, in the final
analysis, a small risk, involving breakdown replace-
ment value and associated costs (formatting, time, data
transfer, etc.). A hard disk not backed up might cost
close to nothing to replace, but the data might be irre-
placeable. The risk expressed through the probability
of a breakdown is relevant in respect to the possibility
that the disk was or was not backed up. The cost of
backing up (time, labor, energy, etc.) vs. the assumed
risk of facing a disk breakdown is in no relation to the
possible loss. Things get more complicated when the
process is affected by the variability of the outcome.
The implant (heart, liver, cochlea, knee, shoulder, etc.)
and the various risk factors it brings up, is of a differ-
ent order of complexity than the breakdown of a hard
disk. And genetically modified seed and genetically
engineered products are of yet another scale of risk as-
sessment. Actually, they are all chances we take – in
many cases, very daring chances. In other cases, they
are somehow less than responsible. (Remember the ar-
tificial hearts of the 1970s associated with a nuclear
pacemaker, or the idea of having artificial hearts ac-
tivated through a nuclear battery?) Risk is, it seems,
the price we are willing to pay for a certain outcome
(winning the lottery, improved health through surgery,
landing on the moon).

Without entering into details, we can submit that the
three classes of risk so far defined correspond to:

Class A: Risk relevant to deterministic processes
characteristic of the physical;

Class B: Risk relevant to non-deterministic proces-
ses characteristic of the living;

Class C: Risk relevant to hybrid processes – the ar-
tificial is the meeting point of determinism
and non-determinism.

The variability of outcome for the risk relevant to the
living and the artificial is illustrative of expectations
not characteristic of deterministic processes. However,
in conceiving the artificial, the human being is ded-

icated to facilitating a predictive dynamics, even if
sometimes this is very difficult. Deeper forms of de-
terminism (in the sense discussed in dynamic systems
theory) are engineered, under the assumption – charac-
teristic of Goethe’s Faust model – that we can handle
and control them.

4. Is risk nomothetic? Is anticipation idiographic?

There is yet one more aspect pertinent to the
classes of risk suggested so far. Wilhelm Windel-
band, in his inaugural address [34] as Rektor (not re-
ally the same thing as president) of the University
of Strassburg (when Alsace was part of Germany),
brought up the distinction between natural sciences –
Naturwissenschaften – and the sciences of the mind –
Geisteswissenschaften (traditionally translated as hu-
manities). Research in anticipation and in risk is the
object of the inquiry specific to natural sciences, but
also to the mind sciences. They provide the description
of the dynamics of the physical world, based on which
our cognitive elaborations eventually result in defining
the notion of risk, along with the means and methods
of coping with it. Moreover, it is in the mind sciences
that risk is defined as implicit in successful human ac-
tion. In other words, as we generate opportunities, we
generate the associated possibility of failure (total or
partial).

The unfortunate distinction between the two types of
science proves more resilient than Windelband thought
it would be. His suggestion that we’d better look into
the “formal character of the sought-after knowledge”
remained almost ignored. Windelband observed that
the natural sciences seek general laws; mind sciences
are focused on the particular. The goal of science is
“the general, apodictic pronouncement”; the goal of
mind sciences is “singular, assertory sentences”. In
effect, we are back at the ancient conflict between
the Platonic notion of kind (Gattungsbegriffen) and
the Aristotelian individual being (Einzelwesen). They
are expressed in sciences of law – the nomothetic, as
Windelband called them – and sciences of events – or
idiographic. Thus natural science, of law, is contra-
posed to history, science of events, but only in terms
of “the method, not the content of knowledge itself”.
Therefore, “same subjects can serve as the object of
nomothetic and of idiographic investigation”. Windel-
band names physiology, geology and astronomy as
good examples of the unity between the generality,
expressed in laws, and the specific and unique, ex-
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pressed in the record of change over time. Evolution
is his preferred example of how the general law and
the individual, irreducible instance need to be under-
stood together. He went on to point out that “the in-
terest of logic has tended far more toward the nomo-
thetic than toward the idiographic”. And he expressed
the hope that logical forms pertaining to irreducible
single facts or events would emerge as historical in-
quiry evolved. Laws and forms are the never-to-be dis-
connected poles. In the first (laws), “thought pushes
from the identification of the particular to the grasp-
ing of general relationships”; in the second (forms),
“the painstaking characterization of the particular”.
The tendency towards abstractness vs. the tendency to-
wards making things visible (Anschaulichkeit) defines
the “opposition between these two kinds of empirical
science”.

But let’s get back to risk by once again quoting
Windelband: the cause of an explosion is, according
to one meaning – the nomothetic – in the nature of
the explosive material, which we express as chemico-
physical laws. According to the other meaning – the
idiographic – it is a spark, a disturbance or something
of the sort. They are not the consequence of each other,
and there is no “world formula out of which the partic-
ularity of an isolated point in time can be developed.
[. . . ] The law and the event remain to exist alongside
one another as the final incommensurable forms of our
notions about the world”. An airplane flies into a build-
ing – law and event. Two airplanes fly into the Twin
Towers; three airplanes are supposed to fly into the
Twin Towers and the White House; four airplanes to hit
the Twin Towers, the White House and the Pentagon.
By now we are in a domain where the choreography
of the intended event (the design of the terrorist act),
the outcome, our ability to effectively anticipate (the
event, immediate and long-term consequences, etc.),
moreover, the ability to prevent it appear as incommen-
surable.

Now let us consider the intricate operations of
the world markets, the many dependencies resulting
from the globalized functioning of the economy, the
breakdown of political systems, the global warming
scenarios, the oft predicted Internet breakdown, and
much more of the same scale. We are confronted
with a dynamics that we might attempt to describe in
its reductionist-deterministic models – the nomothetic
generalizations. But these are also singular events that,
after they occur, seem to belong to a sequence in time
(history), but do not seem to be the expression of sci-
entific laws. The science behind the events is subject

to testing, albeit we have no way to test their historic
grounding. Interestingly enough, the deductive mech-
anism we associate with gaining knowledge from gen-
erality (or law) does not guarantee the success of an-
ticipation. Moreover, the incomplete inductive mecha-
nisms associated with particular events along the axis
past–present–future are too weak for guiding any ef-
fective learning. It is at this juncture that we realize the
need for a different perspective altogether if we want
to derive practical consequences based on the relation
between anticipation and risk.

5. The probability perspective

One dictionary definition of risk is suggestive of
what we are going after: the possibility of suffering
harm or loss; danger. From the outset, let us clarify
the following: although the generality of risk is em-
bodied in the concept – a nomothetic entity – in real-
ity we never face an abstract risk, but rather a specific
form. The risk of loss to an insurer is different from
the chance of someone’s not paying a debt. The risks
involved in traveling (by car, airplane, ship or bicycle)
are different in nature from risks pertinent to perfor-
mance sports. A tenor risks losing his voice or hearing.
A bartender risks abuse from bar customers, or robbery
after hours; he or she is exposed to the risks of the work
schedule. The risk of working towards a useless college
degree, the risk of building a home in the wrong loca-
tion, the risks involved in gardening, cooking or exer-
cising, etc. are all different. We can categorize them,
generalize the underlying factors, extract the patterns
specific to one or another of those mentioned above;
but after the entire nomothetic effort, we will have to
concede that risk is as idiographic as anticipation.

After all, none of the sciences addresses risk. The
closest we come to associating risk with a nomothetic
concept is in examining the relation between risk and
uncertainty [18], that is, in trying to extend from the
questions of extreme generality characteristic of math-
ematics and logic to specific forms of human activ-
ity. Alternatively, in order to understand how risks
are taken, we can look at the sciences of the mind
and address questions related to cognitive processes
that are related to psychology, ethics, politics, manage-
ment, social action, cultural theory. The pervasive na-
ture of the subject we call risk makes it very difficult
to build what Windelband called a “world formula” –
a theory of any and every form of risk. Nevertheless,
we can keep records of risk-related events: risks fully
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realized, risks avoided (partially or entirely), wrong
risk assumptions, open-ended risks, deterministic risk
sequences, non-deterministic risk sequences. In other
words, especially under the circumstances of modern
data processing (acquisition of information, storage,
efficient processing, data mining, modeling, simula-
tion), we can generate accurate risk histories. Such his-
tories are a good source of knowledge about past risk
situations. Whether they are of any practical signifi-
cance for addressing current and future risks, or for the
design of new activities in which risk and reward are
related, is not so much an open question as it is a mat-
ter of realizing that causality – universally accepted –
is far more complex than assumed so far.

A relatively similar set of observations can be pro-
duced in respect to anticipation. Ante capere, the
etymological root of anticipation, points to a pre-
understanding, a comprehension of a situation before
it occurs. The generality of the notion of anticipation
is even more vexing than that of risk. Anticipation is
often confused with prediction, forecast and expec-
tation. (The distinction among these terms preoccu-
pied me and I dealt with them in [21].) Let me give
one example of a situation in which conceptual dis-
cipline could help: “Managed futures trading advisors
can take advantage of price trends. They can buy fu-
tures position in anticipation of a rising market or sell
futures positions if they anticipate a falling market” (cf.
www.futures.com). In reality, the action (buying, sell-
ing, with the associated risks involved) is not guided
by anticipation, but by expectation. The variables on
which the price of futures depends include observ-
ables (prices, deadlines, etc.) and unobservables, in this
case, market volatility. There are ways – based mainly
on probability evaluation – to determine the volatility
level, but not exactly a calculus of anticipation.

It bears repeating here that all these notions integrate
a probabilistic model generated on the basis of statisti-
cal data. The past justifies the forecast (certain repeti-
tive patterns serve as a reference, whether the forecast
relates to weather, the unemployment rate or fashion
trends). The past, together with a well-defined target,
defines predictions (regarding health, economic per-
formance, crops). It is the future, in association with
the past and the present, that comes to expression in
anticipation-guided action: the way we proceed in a
world of many variables; the way we perform in sports,
in dancing, in resting, in a military campaign; the way
we adapt to slow or fast change; the way we risk in or-
der to achieve higher performance. Each anticipation
is based on faster-than-real-time modeling, whose re-

turn modulates the real-time action. One basic obser-
vation needs to be made here: one can risk something
(two dollars on lottery tickets), but one cannot anti-
cipate. Anticipation is not a deliberate action. It is an
autonomic holistic expression of the living.

In another context [20], I brought forth arguments
regarding anticipation as a characteristic of the living.
But unlike risk, which is a construct associated with
the dangers assumed or inherent in human action, an-
ticipation is what the living, in all its known forms
(from elementary to high complexity organisms) car-
ries out in order to cope with change. As opposed to
risk, anticipation is not triggered as a definite action
or process. Rather, we are in anticipation of danger,
opportunity, love, death, the next step, the next posi-
tion of the body. The possibility that we shall even-
tually die is one hundred percent; the probability that
we shall eventually die is likewise one hundred per-
cent. But the possibility of dying in a certain context
(e.g., while sleeping, climbing the Himalayas, picking
a flower, during surgery, driving a car, while on vaca-
tion) is not the same as the probability attached to the
particular context. A “world formula”, that is, an an-
ticipation theory of any and every form of anticipation,
would be as good a formula for describing what the
living is – probably an epistemological impossibility.

5.1. Probability and statistics

Historic records of events are informative in respect
to risk. In respect to anticipation, they are documen-
taries of a particular anticipation in a given context. In-
deed, all we get through the examination of the record
of anticipation – successful downhill skiing, return of a
tennis serve, fast car racing – is pertinent to a particular
information process, never to be identically repeated,
so intimately connected to the individuals in action that
it is, in the final analysis, an expression of their identity
expressed in the action. There is nothing to generalize
from this statistical record, no nomothetic form of ex-
pression to be expected. The individual in action and
the action constitute an irreproducible instantiation of
anticipation, one among others.

The risk of falling while downhill skiing is different
for the skier and for an insurance company. For the lat-
ter, it is well quantified in actuarial tables translating
probabilities extracted from statistics and extended to
new conditions. These tables inform insurance compa-
nies in writing policies that will limit their own risk of
loss more than the risks related to an accident. For the
skier, falling, while a possibility, never translates into
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probabilities, but rather into all the anticipatory and
reactive actions leading to successful performance –
sometimes simply to make it downhill without an ac-
cident; other times, to make it in shorter time than the
competitors; yet other times, to provide spectacular,
high-priced footage without endangering one’s exis-
tence. As we know it, possibility theory is an uncer-
tainty theory pertinent to contexts of incomplete in-
formation. Probability, in its many expressions, never
accounts for a lack of knowledge regarding the past.
Randomness supplants ignorance. Each occurrence is
viewed as equally plausible because no evidence favors
one or another. Probability is based on such (and other)
prior assumptions. How likely something will happen
(or not) within a defined system is expressed through a
quantitative assessment of the outcome. Given a num-
ber of n possible outcomes (to win the lottery, to return
a tennis serve, to have a tornado hit your house) in a
sample space s, the probability of an event x is denoted
as P (x) = n(x)/n(s) – that is, how many times event
x occurs, i.e., n(x) in relation to all events in the sam-
ple space n(s). Very simple rules guide us in dealing
with probabilities:

1. The numbers expressing probability are positive
and their maximum value is 1.

2. If p is the probability of an occurrence, then 1−p,
its complement, is the probability that the event
will not take place.

3. For two different events (tornado hitting a house,
winning the lottery), the usual set theory rules ap-
ply.

5.2. Possibility and probability

Possibility theory makes no prior assumptions of
any kind. It encodes quality; therefore it is not a chal-
lenging data processing method. It is focused on only
two set functions: the possibility measure (Π) and the
certainty, or necessity measure (N ). Early on, as Zadeh
[36,37] founded possibility theory, he claimed that an
event must be possible before being probable. This is
the possibility/probability consistency principle [35].

A probability distribution p and a possibility distrib-
ution Π are ascertained to be non-contradictory if and
only if (iff) p ∈ P (Π). Despite informational differ-
ences between possibility and probability measures, it
seems intuitive to select the result of transforming a
possibility measure Π into a probability measure p in
the set P (Π) and to define the possibility distribution Π
obtained from a probability distribution p in such a way

that p ∈ P (Π). Let us recall that a possibility mea-
sure Π on the set X is characterized by a possibility
distribution.

π : X → [0, 1] and is defined by

∀A ⊆ X , Π(A) = sup{π(x), x ∈ A}.

On finite sets, the supreme (sup) is a maximum:

∀A ⊆ X , Π(A) = max{π(x), x ∈ A}.

Possibility leads to qualitative inferences: if π(x) >
π(x′), we can consider that a certain value of a vari-
able V is more plausibly related to x(V = x) than to
x′(V = x′); or, better yet, π is more specific than π!
Evidently, for π(x) = 0, x is an impossible value for
the variable V to which the possibility π is attached.
For π(x) = 1, x is the most plausible value for V .

The possibility of an event x ∈ E, E ⊆ U is de-
noted by Π(x ∈ E) = supμ min(πx(u)), μ ∈ (u) =
supμ ∈ Eπx(μ). Events of possibility 1, πx(u) = 1 for
all u ∈ U , are possible, but not necessary. This defines
the state of ignorance. Two different possibility distri-
butions π and π′ are one less informative than the other
when π′ > π because the set of possible values of the
variable V according to π′ (π is included in π′). Hav-
ing a possibility equal to zero, the event under consid-
eration will not happen.

The necessity of an event x ∈ E is:

N (x ∈ E) = inf
u

max
(
c(πx(u)), μE(u)

)
= inf

u/∈E
(c(πx(u))) = 1 − Π(x ∈ EC ),

in which c is the order-reversing map such that c(p) =
1 − p and EC is the complement of E in U . When it
is certain that x ∈ E, we have N (x ∈ E) = 1. To
the contrary, if the necessity N = 0, the event is not
necessary, but it is not altogether excluded. It is clear
that N (x ∈ E) = 0 iff Π(x ∈ EC ) = 1 (cf. [25]).
The reason for using possibility descriptions is easy to
grasp: we want to acknowledge uncertainties while in-
tegrating preferences (usually expressed in fuzzy for-
mulations) in the evaluation of risk preferences. At this
moment, from a mathematical perspective we have al-
most all it takes in order to see how transformation
from probability (with more information) to possibility
measures can be performed. Converse transformations,
from possibility (of incomplete, uncertain knowledge)
to probability would require additional information,
and would result in more than one value.
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6. Measurement vs. estimation

The reason for the whole exercise presented above
is our suggestion that, between risk and anticipation,
there is a structured relation that mirrors the one be-
tween probability and possibility measures. The ac-
tion of measuring is behind probability; the action
of estimating lies behind possibility. Both probability
and possibility involve objective and subjective com-
ponents. Given the role that measurement plays in as-
sessing probabilities, and the relation between proba-
bility and possibility, it is intriguing here to consider
the act of measurement as such. In the physical realm,
measurements return values in the R set of real num-
bers. Goldfarb et al. [14,16] dealt with the many im-
plications of this foundation in his new ETS (evolving
transformational system) model. We shall return to this
as the analysis makes clear that we need an alternative
framework for understanding the relation between risk
and anticipation.

We know quite a bit about inverse problems: they
are a particular type of description of physical sys-
tems. The observed data – pertinent to, let’s say, astron-
omy, geophysics, oceanography, or human-made phys-
ical artifacts (the artificial world, cf. Class C risk), the
functioning of a bridge, the operation of a computer,
the performance of a chair over time – can guide us in
finding out the still unknown parameters of phenom-
ena within the domains mentioned above or of similar
entities. Obviously, some of them are more complex
than others, which means that some are more difficult
to measure than others. In addition, the integrity of the
observed data is not necessarily guaranteed. It is defi-
nitely easier to observe the functioning of a chair, and
even of a bridge, than to quantify astronomic phenom-
ena or geophysical systems. Noise plays an important
role, too; so does the linkage among measured parame-
ters. Provided that linkage is obvious or already estab-
lished, we can handle it. But many times, correlations
of all kinds run the gamut from the subtle and still dis-
cernible to the more subtle and almost impossible to
distinguish. (We shall return to the notion of linkage
shortly.)

All our observations and measurements involve
means and methods for performing them. Therefore,
in addition to noise, measuring procedures affect the
system under observation. And, as we’ve already no-
ticed, to make things even more difficult, observations
are not always independent of each other. The major
assumption presented so far is that the dynamics of
physical entities is expressed in a nomothetic descrip-

tion, i.e., law. Newtonian gravity or fluid dynamics, or
thermodynamics are such laws. They guide us in the
modeling effort – how the bridge behaves; what the
model describing a black hole in astronomy is; how a
tsunami starts. Some models are further used for simu-
lations: a computer falling; the numerical simulation of
the 1992 Flores tsunami; simulation of fluid dynamics.
Associated with observations over time (idiographic
aspects), the models are continuously refined. This is
known as the fitting of data effort.

6.1. An example: Global warming and the associated
risks

In our days, one of the most prominent examples
of reverse modeling is expressed in the predictions of
global warming. The observed data has hardly been
questioned. The unknown parameters, which cannot be
measured directly, are fitted to the model. The infer-
ence that, in addition to known factors affecting the
meteorological condition, human-based patterns of be-
havior resulting in high carbon dioxide emissions af-
fect global warming is the result of an inverse problem
resolution (far from meeting unanimous endorsement
in the world of science). This example illustrates the
difficulties associated with the inverse modeling ap-
proach. If we consider the associated risks, i.e., the va-
riety of risks related to global warming, we easily re-
alize that the degree of mathematical confidence in in-
verse modeling is reflected in the confidence of risk
management methods. The evaluation of probabilities,
associated with physical processes to the estimates of
risks corresponding to such probabilities, propagates
uncertainty. Global warming, in respect to which many
risk aspects end up as headlines in the mass media or
become the subject of political controversy, is a good
example of an inverse problem approach (and of its
inherent limitations). We shall not take sides in the
heated debate – although risk research should always
be prepared to debunk end-of-humankind scare tactics.
The example is strictly illustrative.

Central to the scenario of the dangers that global
warming entails is the role played by “greenhouse” gas
emissions. The model was conceived over a long time,
and there is a lot of data that can be used to describe the
short-term behavior of the system. For the long term,
the mathematics of the inverse problem comes in quite
handy. Those who practice it examine the responsive-
ness of the energy markets to economic controls made
necessary by international agreements with the goal of
reducing greenhouse gases. Since the forward problem
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is not even well defined, scientists proceed with gener-
ating data that is supposed to drive the model in such
a way as to fit the current situation. Given the non-
linearity of phenomena in the knowledge domain to
which global warming is but one of many components,
it is easy to understand why some scientists predict the
melting of arctic icebergs, and others, a possible ice
age, each capable of triggering a cascade of increased
risk events. The intricate nature of the scientific argu-
ments should not affect the awareness to ecological as-
pects that was prompted by researchers who applied in-
verse problem methodology to confirm predictions of
global warming originating from outside scientific dis-
course. A variety of statistics, regarding land use, af-
forestation, etc., provide yet other data for the inverse
problem.

6.2. Risk and monotonicity; anticipation

Any fact derived from the examined aspect may
be extended, provided that additional assumptions are
made. If our description of a risk-entailing action is
modified along the line of adding new conditions, the
new description remains valid. Paying for a lottery
ticket using one’s own dollar bill, or a borrowed dollar
bill, or four quarters is equally risky. (The act of bor-
rowing adds risk, but not to the act of buying a lottery
ticket.) The outcome-based understanding of risk and
the understanding of anticipation as expressed in suc-
cessful action make us aware of the fact that Class B
(i.e., concerning the living) risk mitigation involves an-
ticipation as a decisive factor. The tsunami of Decem-
ber 2004 was indicative of how certain segments of
the living system coped with the fatal danger by proac-
tively avoiding it: animals sought refuge at higher el-
evations. That some people actually went to the de-
serted beaches, now enlarged through ocean retraction,
and played soccer in that eerie atmosphere preceding
the wall of water that crushed them is an eloquent
example of anticipation that failed due to the de-
naturalization peculiar to societies that found their new
“nature” in the artificial world. As an autonomic func-
tion, anticipation is not automatically successful; that
is, monotonicity cannot be taken for granted. There-
fore, risk assessment and automation need to compen-
sate for the possibility of anticipatory failure. The sen-
sor network, which is part of the tsunami alert system,
was completed and improved shortly after the disaster.
It added to the artificial environment yet another net-
work of sensors and data analysis tools that effectively
replaces the natural.

Unless an agent (person or program) examines the
observations from the perspective of assessing the
monotonicity of a system’s dynamics, there is no rea-
son to introduce the notion of risk. Only when, for
some reason implicit in the system, or external to it,
monotonicity is interpreted as prejudiced – for exam-
ple, the last time the ocean earthquake did not result in
a tsunami – do we have a risk perspective.

Each interpretive agent has to be able to distinguish
between information independent of the observations,
called a priori information; and a posteriori, i.e., re-
sulting from inferences we make from the observations
and the a priori information. Since nearly all data is
subject to some uncertainty, our inferences will always
be in some ways statistical. Three fundamental ques-
tions will have to be addressed:

1. The data is less than accurate: Do we know the
consequence of this condition of data when we fit
the data?

2. Since the model used and the system’s response
are related, how good is the model?

3. What do we know about the system independent
of the data? In other words, do we know how to
find the models that might fit the data but are ac-
tually unreasonable?

This last question is important since every inverse op-
eration returns many models from among which only
some are acceptable.

As already pointed out, the science of global warm-
ing has already returned a variety of models that are
neither a complete description of what might happen
nor a consistent description. And since we do not have
effective ways to discern between the acceptable (not
for public consumption or political purposes) and the
arbitrary, we shall continue to work, in this and other
areas of concern, guided by intuition rather than by an-
alytical rigor.

In a more systematic analysis, we face, initially,
the forward problem: define a model, i.e., an embod-
ied theory that predicts the results of observations (cf.
Fig. 1). It all looks relatively simple: a reductionist pro-
gression from the complexity of what we call reality
to the lower complexity of high-level causal descrip-
tion of a certain aspect of reality (e.g., gravity), to data
collected from an experiment, for example: dropping
equivalent quantities of feathers, water, and metal from
the same height and determining how long it takes for
each to reach the level zero of reference. Intuition, for
example, would have said that the feathers will take
longest.
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Fig. 1. The predictive model.

Fig. 2. In the inverse procedure, the same data can generate many models.

The degrees of freedom of the variables in the world
are higher than the degree of freedom of the variables
in the model. Still, even for the simplest aspects of re-
ality, and even assuming a continuous function of the
space variables, it is difficult to imagine how one would
proceed from the finite space of the data (correspond-
ing to a finite number of measurements) to a model of
space variables with infinitely many degrees of free-
dom (cf. Fig. 2).

The fact that from the same data many models can
be generated – that is, we face the problem of lack
of uniqueness – is further compounded by the noise
implicit in the observations (i.e., measurements). As-
suming that somehow we can choose from among the
models that result through the inverse procedure, given
the non-linearity of the procedure, data fitting is, ev-
idently, non-trivial. But these considerations, relevant
more for drawing our attention to the difficulties in-
herent in the procedure, are of relevance to evaluating
risk as it pertains to the limited aspect of the world –
the physical and the artificial. If, however, pursuing the
path of distinguishing risk associated with the living as
different from risk limited to the physical world (again,
earthquakes, tsunamis, volcano eruptions, hurricanes,
floods, etc.), we soon realize that we need to account
for the specific ways in which information processes
affect the dynamics of the living. Indeed, in the phys-
ical realm, the flux of information corresponds to the
descriptions of thermodynamic principles.

6.3. A model of models

The living, while fully subject to the laws of physics,
receives information, but also generates information
[20, p. 101]. In dealing with the relevance of the Sec-
ond Law of Thermodynamics for biology, Walter El-

sasser [6] remarked: “Every piece of evidence to the
effect that inheritance of acquired properties does not
exist makes it harder to understand why deterioration
of genetic material according to Shannon’s law is not
observed” [6, p. 138]. He concluded: “It becomes in-
dispensable to introduce the observed stability of or-
ganic form and function, over many millions of years in
some cases, as a basic postulate of biology, so power-
ful that it can override other theoretical requirements”
[6, p. 139].

Rosen [27,28] tried to avoid the quandary of the
problems we face as we consider the inverse procedure.
He advanced the modelling relation (Fig. 3). It is clear
that our focus on the inverse function pertains to the
Formal System, i.e., the encoding of knowledge about
the natural system in some formalism (mathematical,
logical, structural, etc.). Encoding is, for all practical
reasons, the forward function: observe the natural sys-
tem and describe it. Descriptions are representations:
they stand for the represented. Such descriptions are
symbolic expressions (i.e., conventional in nature). Af-
ter they are processed in the Formal System, we can
proceed with the inverse, here defined as decoding. It
means: if we change something in the representation,
how will such a change be reflected in the present? Ge-
netic engineering, with its risk space, is the best ex-
ample of this. By design we change elements of the
genetic code and see how such changes affect the real
object – the cell, the organ, the organism, the species.
The risk involved in the inverse operation is rarely fully
understood. What needs to be clarified here is that an-
ticipation is intrinsic to the natural system (the “real
thing”) and, in Rosen’s view, takes the form of en-
tailment. The risk aspect is evidently connected with
the Formal System and returns, through decoding, in-
formation related to the outcome of the dynamics of
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Fig. 3. Rosen’s “modeling relation” in relation to the forward and inverse problems.

the natural system. In addressing the processes through
which the living observes the world and itself, Fischler
and Firschein state: “. . . the senses can only provide a
subset of the needed information; the organism must
correct the measured values and guess at the needed
missing ones” [9, p. 233].

With the understanding made possible by Rosen’s
model and the realization that the living takes an active
role in processing data – corrects some of it, guesses
what is missing, drops the less relevant – we realize
that in every inverse procedure we need to introduce
estimation procedures. Indeed, guesses at missing data
are estimations, and so are corrections of data (some-
times data is “cleaned”, i.e., made noise-free, or un-
certainties are lifted) or omissions. No estimation is
unique; usually there are quite a few acceptable mod-
els that correspond to a data set. Moreover, even when
the forward problem, from the physical system to its
formal description, is linear – and this is the case most
of the time – estimations leading to an approximate
model may be non-linear. In the domain of the liv-
ing, linearity is almost the exception. Experience in ad-
vancing estimated models shows that the expectation –
what it means to be an acceptable model – affects the
procedure. Between the model and the estimated (ap-
proximated) model lie differences expressed in terms
of errors. Some are deterministic; the majority, corre-
sponding to uncertainty, is statistical. All this has direct
consequences for our attempt to define the risk implicit
in the majority of our endeavors. Among the few avail-
able conceptual tools we can utilize are those devel-
oped within fuzzy logic and the Bayesian probability
theory. This theory describes the degree of belief (or
credence) upon which probabilities (of events, risks,
etc.) are defined. It stands in contrast to frequency (or
statistical) probability derived from observed events.

Since inverse problems are solved for practical pur-
poses (pragmatic condition), the estimation is guided
by the activity’s outcome. A physician examining a pa-
tient proceeds along an inversion: blood test values as
a basis for a diagnosis. The geologist proceeds from
seismic data to the decision whether it makes sense to

drill (Is there an oil reserve? How big? How deep? How
difficult to access?). The investment advisor might use
a model derived from an inversion of financial data
(Where would you like to be in 20 years from a fi-
nancial viewpoint?) as a basis for formulating a cus-
tomized strategy. As it becomes evident, the estimated
model (for a medical diagnosis, for geological assess-
ment, for investing) is associated with other data re-
flecting the professional’s expertise and the context for
the risk decision. Uncertainty shadows the process. In
the final analysis, the outcome of the process is not the
inverse function, but rather the pragmatic condition.
Since we are what we do, the outcome is predicated by
the actions guided by the inverse function assessment:
The doctor will recommend a change of diet and will
define the risks resulting from not observing it. The ge-
ologist will argue in favor of more exploratory data, or
for a pilot exploration before investing in a large oper-
ation. The geologist will quantify the risk for each pro-
cedure suggested, against an alternative course of ac-
tion. The investment advisor will spell out means and
methods for increasing a person’s wealth, while defin-
ing the variety of risks faced as world markets experi-
ence their periodical ups and downs.

The diagram (Fig. 4) makes clear that data is sub-
ject to error and uncertainty. The arrow from the data,
including the arrow relating the estimated model to
the variety of models generated, is the conduit for er-
ror propagation. Probability descriptions (of data) af-
fect the entire inverse process (Fig. 5). However, the
decision is based on explicit or implicit risk assess-
ment (What will the outcome be?) rather than on prob-
ability (What are the chances of being wrong?). The
risk of misdiagnosis is mitigated by the nature of the
process: more data can be generated, better estimates
can be made, the approach can involve alternative in-
terpretations. The economic risk associated with the
decision to drill, together with the associated envi-
ronmental risk, makes it clear that the probability (of
loss or profit) is part of the decision process. Models
are uncertain; decision-making compensates for uncer-
tainty. In the investment model, probability extends to
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Fig. 4. Expanded inverse problem procedure.

Fig. 5. Probability and the inverse problem.

a changing context, i.e., to a very complex mapping
from the present to evolving probabilities. Estimation
plays a huge role, and it is unclear whether in such a
case (as in many others) it is advisable to work on an
estimated model or on defining the model’s character-
istics, that is, a range consistent with the data.

There is a definite difference between the estimation
and the inference paths. In the estimated model, fre-
quencies count (as in defining information based on a
coin toss), informed by the distribution of trials (best
example, playing the lottery). In the inference model, it
is not the repeated outcome of random trial, but the in-
formation (or lack of it) that informs our expectations:
“20% chances of rain” means different things in dif-
ferent places (compare weather prediction in Northeast
Texas to weather prediction in England, France or Ger-

many). In the end, it means that we have a prior proba-
bility model that we combine with observed meteoro-
logical aspects (wind, clouds, barometer, etc.). It is not
at all clear that more data (from more stations), or more
and better data (acquired with improved instruments)
can lead to better predictions (in the sense of improved
understanding of causality). The prior probability, i.e.,
the deterministic inference path, is no less relevant than
the data, but much more difficult to improve upon.

6.4. Prior knowledge (subjective or objective)

As a matter of fact, the newly observed parame-
ters influence the prior information so that a condi-
tional model (based on observed conditions) results.
Nevertheless, the method simply says that our percep-
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tion is influenced by prior knowledge, subjective or
objective: “If I hadn’t considered it (intuition, belief,
guess), I would not have seen it”. Many pragmatic in-
stances are the result of not considering what, after the
action, proves more significant than usually assumed.
Risks are often taken not in defense of data, but rather
because the weight attached to some aspect of it is
way off in respect to its significance. Correcting data,
guessing [9] takes place in this context. Prior informa-
tion, i.e., probabilities, is related to prior experience,
to mental and emotional states, prejudices, or biases –
experience, in one word. If the reverse function sought
implies some practical activity (such as panning for
gold, searching for diamonds in areas known to contain
them), one can perform an empirical probability analy-
sis in a sequence proceeding from initial data (e.g.,
how much dirt or sediment can one process in pre-
liminary panning?) to the next steps (such as “found
a diamond”), while the final outcome remains open.
The metaphor of “tunnel vision” describes the risks in-
volved in pursuing prior knowledge or discarding it.

The estimation path and the inference path (usually
involving Bayesian probabilities) are better pursued in
parallel. What is essential and unavoidable is that in
any inverse problem attempt, one begins by realizing
what the uncertainties are in the data to be considered.
Specifying prior information is what distinguishes the
individual approach. Together with the choice of the
model, this constitutes the art of inverse problem solv-
ing. Indeed, it is an art; it is an idiographic opera-
tion with no guaranteed outcome, and therefore, a risky
operation. Geophysicists examining the surface of the
planet with the hope of thus gaining knowledge about
what lies beneath pushed the understanding of the in-
verse problem into the public domain. Some of them
[31] noticed that the data recorded by seismometers
located on a volcano’s slopes and the data predicted
by volcano models are “hopelessly different”. More-
over, they also had problems with the non-uniqueness
of the path from data to a model: “there are infinitely
many possible models of mass density inside a planet
that can exactly fit any number of observations of the
gravity field outside or at the surface of the planet”
[31, p. 493]. The non-uniqueness of the path from data
to the model explains the large variety of hypothe-
ses entertained by those involved in the inverse prob-
lem approach. Imagine a work of art: painting, sym-
phony, architectural work. And think about tracing it
back to the rich multi-dimensional matrix of all fac-
tors involved in its making. There is no unique, back-
traceable, reverse engineering way to get to the initial

circumstances and to the many choices, some possi-
bilistic in nature, some probabilistic, some determinis-
tic and some non-deterministic, that were made as the
work emerged.

Imagine now that the subject of the inverse prob-
lem is nothing other than a living entity, in particular
the human being. The reason for even formulating the
problem is at hand: if anticipation is expressed in ac-
tion, what are the risks associated with human actions?
Moreover, can we fit the data pertinent to an individual
to the model characterizing anticipatory expression?

7. The anticipatory profile

Can we measure or otherwise describe anticipation?
Can we measure or otherwise describe risk? We have
argued at length (cf. [20], and in this article) for the
simultaneous consideration of probabilities and possi-
bilities associated with an event. In this final part of
the paper, the focus will be more on various aspects
of measurements, as a necessary step towards the real-
ization of a different form of mathematics for eventu-
ally describing anticipation. The entire endeavor is in-
formed by intensive research that involved human sub-
jects evaluated in a setting propitious to the expression
of anticipation and to its partial quantification.

But before we describe the measurement procedure,
here are some preliminary considerations. First and
foremost: Anticipation is a holistic expression of the
organism as part of a dynamic environment. The qual-
ifier holistic begs explanation. For reasons of brevity,
we will adopt here Elsasser’s careful ascertainment:
“. . . an organism is a source (. . . ) of causal chains
which cannot be traced beyond a terminal point be-
cause they are lost in the unfathomable complexity
of the organism” ([6], p. 37). Therefore, no reduc-
tionist approach can help defining the many interwo-
ven processes, from the molecular level to the entirety
of the organism in the environment. Interaction with
the environment eventually results in anticipatory ac-
tion. Anticipation is a necessary condition of the liv-
ing. Second: Anticipation is an autonomic function of
the living. Third: The dynamics of the living organ-
ism is reflected in the change over time of its anti-
cipatory characteristics. Newly formed organisms ac-
quire anticipation; each individual organism has its
own anticipation-related performance within the evo-
lutionary cycle; aging entails decreased anticipation;
death returns the organism to the physical reality of
its embodiment (Fig. 6). For more details on anticipa-



M. Nadin / Anticipation and risk – From the inverse problem to reverse computation 129

Fig. 6. Anticipatory abilities change over the lifespan.

tion, the reader is encouraged to read Rosen (Life It-
self: A Comprehensive Inquiry into The Nature, Ori-
gin, and Fabrication Of Life and Essays on Life Itself )
and Nadin (Mind – Anticipation and Chaos and Antic-
ipation – The End Is Where We Start From).

Against the background of the attempt to quantify
the change in anticipatory characteristics in the aging,
I revisited some of the examples accumulated in the
rather modest literature that acknowledges anticipation
as a research subject. Early on, Gahery [10] was in-
trigued by Leonardo da Vinci’s sentence: “. . . when a
man stands motionless upon his feet, if he extends his
arm in front of his chest, he must move backwards
a natural weight equal to that both natural and acci-
dental which he moves towards the front”. Leonardo
made this observation by 1498 (Trattato della Pit-
tura), prompted by his study of motoric aspects of hu-
man behavior. Five hundred years later, biologists and
biophysicists addressing postural adjustment (Gahery
cites Belenkii, Gurfinkel, Paltzer, 1967) proved that
the compensation that Leonardo noticed – the muscles
from the gluteus to the soleus tighten as a person raises
his arm – slightly precedes the beginning of the arm’s
motion. In short, the compensation occurred in antici-
pation of the action.

After learning about Leonardo’s observation, at
the seminar on Anticipation and Motoric Activity –
A Meeting of Experts (December 2003, Delmenhorst,
Germany), I contacted Gahery and we exchanged some
ideas concerning preliminary actions in a variety of
motoric activities (gait initiation, posture). Since those
days, I have considered ways to translate Leonardo’s
qualitative observation of more than 500 years ago
into some quantitative description. Gahery observed
that quite a number of human actions involve prepara-
tory sequences. But he did not measure either the tim-

ing of such actions or their specific cognitive and mo-
toric components. Let us examine Leonardo’s example
(Fig. 7). This representation can inform a model – from
the mental representation of the action to the sequence
of muscular activity depicted in the diagram – and fi-
nally to the lifting of the arms. The challenge is to cre-
ate a record of events, some following a sequence, oth-
ers taking place simultaneously (parallel processes).

At the current state of technology, researchers can-
not obtain detailed information on the brain activity of
a subject in action. We know that damage to the hu-
man prefrontal cortex (cf. The Iowa Gambling Task
[2]) can result in insensitivity to future consequences.
But it is not possible to check this in a situation where
one can drop a ball without realizing what that entails.
The best we can do is to consider EKG sensors ap-
plied to the skull. As of the day of this writing, such
sensors, integrated in a skull cap, serve as an inter-
face to a new category of games driven by the “think-
ing” of the persons playing those games [5]. The author
refers to the companies Emotiv (USA/Australia) and
Guger Technologies (Germany). The sensors can, in
principle, “read our minds”. (The science of this skill is
still quite preliminary, even though experiments started
well over ten years ago.) But they cannot show us how
the brain works. We can, however, monitor muscle ac-
tivity. In this sense, EMG sensors can be placed in such
a way as to inform us about particular muscle group
activity (time information, intensity of muscle engage-
ment). Finally, we can integrate such information with
the precise description of movements resulting from
motion capture. This is now a relatively mature tech-
nology that provides a high-resolution representation
of human movement, plus the data associated with the
movement. The matrix representation of body move-
ment corresponds to an integrated description from sin-
gular points (corresponding to the joints and to other
parts characteristic of the body in action) to the contin-
uum of movement. If we synchronize it with the sen-
sor information, we can know exactly when raising the
arms is preceded by tightening of the back leg muscles.
With all this in mind, we have a situation in which we
can carry out the forward function – deriving data from
the model – and inverse function – generate, from the
data, the model that fits the action, i.e., figure out the
sequence of cognitive and motor activities that allow
the person to maintain his or her balance. Even a situa-
tion as simple as the one described above ends up chal-
lenging currently available computation resources, and
even more our ability to integrate data streams of vari-
ous time scales. Given the complexity of the situation,
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Fig. 7. Compensation occurs in anticipation of an action.

Fig. 8. EMG sensors are placed so as to inform about particular mus-
cle group activity.

we have so far implemented the integration of motion
capture and EMG sensor information (Fig. 8).

From the experiments carried out so far, we have
been able to gather synchronized data (Fig. 9).

7.1. Examples (Class B and Class C risk)

While this is not the place to go into more details re-
garding the expression of anticipation, we need to con-
nect the dots to risk analysis. We will first suggest a

Class C risk, concerning the artificial, i.e., a human-
made artifact with endowed dynamic characteristics
that emulate the living; and Class B, concerning the
living. If instead of an organism we had a crane – an
artificial construct designed for the purpose of lifting
heavy materials on construction sites or in other con-
texts – we could proceed in the classic manner. First we
would define the exposure: in other words, the known
parameters at which the machine functions (spelled out
in detail in the technical documentation) and the un-
certainty associated with operating the crane (correct
identification of every object through its weight, the
margin of error, the factors that might affect the opera-
tion, etc.). The risk associated with the “breakdown” of
the “machine” – lost stability, breakdown of a part, ca-
ble, trolley, errors in operating the crane, etc. – can be
easily calculated on account of the additive properties
of probability expression.

A crane, no matter what type, is based on what is
called mechanical advantage: using the principle of the
lever, a heavy load attached to the shorter end is lifted
as a smaller force, applied in the opposite direction, is
applied to the longer end. The pulley affords the me-
chanical advantage as the free end is pulled (by hand
or through some machine) and the load, attached to the
other end, is moved by a force equal to that applied,
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Fig. 9. Motion capture integrated with sensors yields synchronized data.

multiplied by the number of lengths of cable passing
between the fixed block attached to the weight. Every
crane is defined by the maximum weight it can lift un-
der the assumption of stability. To achieve stability, the
sum of all moments about any point, such as the crane’s
base, must be zero. In order to reduce risk, cranes oper-
ate at a fraction (75–85%) of the maximum load. Tower
cranes, truck-mounted cranes, crawler cranes, gantry
cranes, and a variety of others conceived, produced,
operated, and maintained according to their respective
risk maps (e.g., structural failure, collapse, contact or
collision with other structures, falling objects). Proce-
dures for lowering the risk associated with crane oper-
ations (inspection, tests, required maintenance, repair
specifications, training, etc.) are possibilistic maps of
what can go wrong. Probabilistic considerations trans-
late into norms regarding crane production and opera-
tion, as well as maintenance requirements.

The risk associated with human beings’ lifting their
arms is zero for most of our lives. Short of having
rotator cuff problems or some other shoulder condi-
tion that can be aggravated by lifting the arms, the
movement poses no risk. But as humans age, stabil-
ity becomes questionable; thus, older subjects avoid
movements that can result in instability (and eventual
falling). Others, afflicted with arthritis or spurs, will
not risk more pain.

We are now specifically at the intersection of the
space of possibilities – what a person can perform –
and of probabilities – what consequences there might
be. Beyond this example of quantifying anticipation,
we have the possibility to further collect all kinds of
data related to human action. Such data pertains to how
we breathe, to heart activity, to galvanic response, to
tympanic temperature (informing us about brain in-
volvement in certain actions). Indeed, if anticipation is
a holistic expression, we want to capture as many de-

tails of the whole as possible. Let us consider such a
description, still partial, and let us discuss some aspects
of the potential data.

Sensors translate functional properties at the physio-
logical level into signals. We understand measurement,
in its most general definition, as an interaction between
what is measured (quantifiable) and what we use for
measuring, i.e., a quantifier (e.g., a stick, a counter-
weight, light reflection, electric measurement device,
etc.). As such, sensors are quantifiers. The dynamics of
interest to us – that of the whole body in its very high
complexity – is sampled via sensors. The dynamics in-
duced into these sensors from the observed biologi-
cal elements (skin characteristics, saliva, temperature,
etc.) is expressed through entities, such as signals (and
their characteristics – amplitude, frequency, etc.) and
states. That each biological component functions at a
different time-scale (has its own clock, in other words)
makes the issue of integrating sequences of informa-
tion pertinent to dynamics extremely difficult. Just for
the sake of illustrating the breadth of the time-scale
(important for the bandwidth of the channels used for
integration), let us notice that we are covering a dy-
namics extending from milliseconds to minutes and
hours (Fig. 10).

Given the various biological rhythms – at the ge-
netic, molecular, neuronal, organ levels – one aspect
begs our immediate attention: synchronization. The
models of a centralized mechanism for synchroniza-
tion (“the conductor” in the “concert” we call living)
or of distributed, interlaced processes, come up as hy-
potheses to be pursued as we gain better knowledge
of how anticipation is expressed and risk is assumed.
After all, the functioning of the whole we call organ-
ism and the holistic expression we identify as anticipa-
tion are themselves not risk free. The possibility that
something might go wrong (not perform as expected
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Fig. 10. Time-scale in the human being.

or break down) was translated over long evolution
cycles into many embedded redundancies. Therefore,
the risk of having no anticipation expression or the
wrong anticipation is low, but by no means zero. Given
the fact that anticipatory processes are ultimately non-
deterministic, we could define risk as non-successful
anticipation (of not returning a fast tennis serve, of los-
ing balance, of not realizing the center of gravity, as
in Parkinson’s disease). In other words, anticipation
translates into successful adaptive performance. Risk
pertains to all that might make it unsuccessful. This
systemic definition of risk, as applied to Class B risk
(the living), can be further generalized. What for an
engineer working on the crane problem appears as:

risk = probability of an accident

× loss per accident

for the organism would be

risk = possibility of an unsuccessful anticipation

× consequences of unsuccessful action.

But, as opposed to the functioning of an airplane,
the launching of a rocket or satellite, the meltdown of
a nuclear power plant, the organism has a memory,
can learn and adapts. Artificial entities currently pro-
duced are conceived and built with memory and can
partially learn and even adapt (albeit to a limited num-

ber of situations). This makes the focus on Class B risk
even more important. Therefore, consequences are to
be seen within the broad evolution cycles, rather than
exclusively related to the particular organism or to a
particular “life-like” artifact. We also better understand
why, in generating an artificial reality, human beings
project, as much as possible, from their own character-
istics onto the new artifacts they design and produce.
Within the same evolutionary cycle, it becomes clear
that the living is, across species, risk seeking. It is in
this function that anticipation appears as the underly-
ing informational process that pushes towards higher
performance at the peril of circumstantial or even sys-
tematic risk-taking. At a certain level of the living,
there is the explicit awareness of risk-taking, along
with the related psychology of regret when risk was not
assumed, or when risk-taking returned less than the an-
ticipated outcome. In his Commentary, Albert Taran-
tola, the Sorbonne geophysicist, referring to what he
calls the “Darwinian adaptation of animals” notes: [an-
imals] “do not spend too much time understanding the
uncertainties; one model of the world must be adopted
(a predator is approaching) and adequate action must
be taken (Run!)” [31, p. 493]. But when this survival
pressure does not exist, we can consider computing the
maximum of imaginable models (computation is get-
ting cheaper by the day). After that, we compare empir-
ical observations to our predictions. Since uncertainty
in observations (quantification) as well as in the theory
guiding us in modeling cannot be excluded, we need to
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account for the consequences. The result is a smaller
set, which can effectively guide us in understanding
how the delicate balance between anticipation and risk
is maintained in the dynamics of the living.

7.2. Model and quantifiables

The AnticipationScope™ is a quantifying platform
that ultimately can help us characterize how anticipa-
tion and risk are correlated. To understand the corre-
lation process, let us take a closer look at the intricate
nature of our measurements. To quantify is, after all, to
extract, i.e., to mine, a characteristic or several, based
on which nomothetic and idiographic aspects of an or-
ganism can be described. Given the complexity of the
living, it is obvious that there is no unique quantifier.
As a matter of fact, in daily life many measuring units,
some more adequate than others (in respect to a certain
context), are deployed. Our goal is to advance a coher-
ent and consistent quantification method. This consists
of a model and of quantifiables (Fig. 11).

The complex organism called the individual is part
of the broader real world. This belongingness is em-
bodied at many levels – metabolism, self-repair, in-
teraction. Fundamentally, at the pragmatic level – be-
sides all other labels (name, gender, blood type, race,
age, social role, etc.), individuals are what they do. In
the AnticipationScope, they can perform a large vari-
ety of physical and mental tasks. They can also inter-
act. Given the above-mentioned statement that antici-
pation is expressed in action, and that risk is the possi-

bility that an action might go wrong – the action can be
jumping, or initiating a stock market transaction, catch-
ing a ball or misinterpreting a cue – the Anticipation-
Scope quantifies action in terms pertinent to a descrip-
tion of physical movement; quantification of cognitive
processes; and quantification of associated motoric ac-
tivity.

7.2.1. Model, quantifiables, states, intervals
The model is that of an organism receiving senso-

rial information, but also generating information. The
model also ascertains its open nature, as well as the
interconnection of many processes, each taking place
on its own time-scale, though not even necessarily a
uniform scale. The state of the organism is described
within the quantification convention adopted: it can be
that a quantum description more than a discrete repre-
sentation will eventually be more adequate even if not
necessarily easier to handle.

The quantifiables, i.e., features we want to charac-
terize, are also mapped from the AnticipationScope to
numbers or quantum representations. It should be clear
that the state of an organism at any moment in time t,
denoted as state of an organism X at t, S(X)ti = si,
for short, q(si), will be represented by S (S(X)t), i.e.,
state of the quantifier as induced by State(X)t of the
quantified at time t.

State means nothing else but what the organism is
doing at a particular instant in time. The quantifiables
are no more than a mapping from states of the organ-
ism to states of the quantifier (in particular, sensors).
These, in turn, can be discrete number representations

Fig. 11. Model and quantifiables.
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or quantum descriptions (such as “it is in state Ā and
non-A”). The specification of a quantifiable on a state
S(X)t takes place through sensors. Each sensor has a
predefined reference. If q(si), the state of the quantifier
corresponding to the state si of the quantified depends
only upon si, we have the premise for a forward func-
tion that will return meaningful values for our interpre-
tation. If the correspondence is influenced by factors
other than si, inferences from q(si) to si become prob-
lematic. The entire quantification sequence describes a
functional mapping f : set of states {si} → R, either
to numbers in the set R, or to possible structural rep-
resentations, or to quanti. We mention here all of these
possible descriptions, from which only one is usually
performed. The functional mapping is the pointing to
classes: Class A, Class B, Class C. Every quantifier –
again, only one description is usually performed, such
as sensors, in our case – defines an observable; recip-
rocally, we assume that for equally quantifiable aspects
of the organism, there exists a sensor in whose specific
output it can be described.

All this leads to a statement of principle: the living
is the unity between a physical substratum (subject to
the laws of physics) and associated anticipatory char-
acteristics. This being the case, we can quantify de-
scriptions of the living as the unity of its physicality
and its own dynamics of anticipation, as subsets of
the whole making up the organism. This procedure is
actually the consequence of the generalized principle
of complementarity already introduced in this paper.
Moreover: while the physical accepts synchronic de-
scriptions – sections (or “photographs”) at a given time
of measurement – the living can be meaningfully de-
scribed only by considering intervals, the diachronic
record (the “film” of life):

observed interval ti → tj

⊇ history of the organism, diachronic record.

If a quantifiable affects the organism’s functioning over
its entire history (from birth to death), such a quan-
tifiable is identified as essential. If a quantifiable af-
fects the functioning of the organism over some in-
tervals – during a certain defined action, or during a
specific life function such as giving birth, or during
free fall – it is called significant. If a quantifiable does
not affect the functioning of the organism, it is called
non-significant. A person’s hair color is probably non-
significant in respect to physical performance. How-
ever, it is difficult to give examples of non-significant
quantifiables, because everything that is part of the

holistic entity we call an organism affects and is af-
fected by its functioning.

We can generate a map of quantifiables related to liv-
ing events (actions) and attach weights to them (from 0
for non-significant, to 1 for significant) and establish
a precise action sequence. Some quantifiables can be
discounted due to their low significance. In some ways,
that would mean to anticipate as we quantify. Since
the description of an organism implies multiple observ-
ables, we would have to address the many aspects of
deploying a large variety of sensors and of integrating
their output in the synthetic representation called the
Anticipatory Profile (Fig. 12):

f1, f2, f3, . . . , fi :

organism →
{ R

structural representation
quanti

In other words, the functions f1, f2, f3, . . . , fi describe
observables over a state si in the organism in indepen-
dent ways: f1(si), f2(si), . . . , fi(si). In view of this, we
have to address questions such as:

1. Are the quantifiables independent of each other?
2. Are there any links to be expected or established

after the quantification?
3. Can we establish relations among the quantifi-

ables (one-to-one, one-to-some subset, between
two subsets, among several subsets)?

The space defining the state si is multidimensional.
The coordinates f1(si), f2(si), . . . , fi(si) are said to be
unlinked when and only when

(a) the numeric representation Rf , or
(b) the structural representation, or
(c) the quantum representation

are independent. Each descriptor R(f1), R(f2), etc.
mines a different aspect, let’s say a numeric descrip-
tion of the state (si). The level of distinction between
such descriptions can itself be quantified. However, in
some cases there are links – some that we identify as
a priori knowledge; others that might constitute post-
experience knowledge. We can consider the possibil-
ity that R(f1), R(f2), etc. are linked, or the probabil-
ity that they are linked. In any case, when such a link
between two quantifiers is established, one becomes a
function of the other.

Interestingly enough, many times our approach to
the living is to accept the intrinsic linkage, even if
such a linkage is weak – think about how blood tests
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Fig. 12. Sensors and quantifiable data.

are linked to a variety of conditions, from infections
to early references to cancer cells – or very discrete.
The reason for accepting a larger state space – and
thus the challenge of processing the data – is very sim-
ple: linkage is a good means for some limited pre-
diction. Indeed, if f1 and f2 (for example) are linked
within the state we are trying to describe, then we can
mine information about f2 by determining f1 (a par-
ticular case of the inverse problem). This reveals that
linked quantifiables do not have to be “sensed” indi-
vidually. We could, in principle, compute them if the
nature of the link is known, and the relation trans-
lates into a computable function. After all, to quan-
tify means to deal with the result of the interaction be-
tween the organism subject to quantification and the
sensors (defined as quantifiers). When the information
from the sensors proves to be linked, we can substi-
tute the process of measurement with one of compu-
tation. Richard Feynman, famous for his deep under-
standing of computation [7,8], would probably have
claimed that quantum computation would be the ade-
quate processing. Inspired by him, I claim that actu-
ally, anticipatory computation would be the only form
acceptable for quantifying processes that accept, to-
gether with the deterministic sequential model of the
von Neumann machine, the vector of time from the fu-
ture to the present.

An anticipatory computation, expressed as living
computation, is characterized by the fact that each of
its successive current states depends on a previous
state, the current state and possible future states. In ad-

dition, an anticipatory computation is reversible.4 The
suggestion we make henceforth is to complete the fam-
ily of known forms of living computation (Fig. 13).

The six families of bio-computing have some sim-
ilarities, but also fundamental differences. If we are
trying to answer the question that guides the effort of
quantifying anticipation – how do quantifiables relate
to a change in the state of the organism? – we soon
realize that for a number of the variables considered,
we obtain a good image of the deterministic processes
involved in anticipation. For others, we end up with
an acceptable characterization of the non-deterministic
processes. And after all, we realize that state descrip-
tions, which are the goal of our attempt, are not com-
plete. How does an organism change over time (re-
duced to interval, and thus to numbers t ∈ R) brings
up the quantum perspective, in the sense that we can
no longer define the outcome of a complex process.
Again, in Elsasser’s words: “The experimental method
itself has a strong built-in bias in favor of stable re-
sults” [6, p. 143]. Therefore, we need to find ways to
reflect the nomothetic dimension of the living through
generalizations based on limiting assumptions (such as
continuity), as well as the idiographic dimension of
the organism (accounting for discreteness). The An-
ticipationScope is an attempt to reconcile the two by
adding interactions to states and observables. This cor-
responds to the fact that anticipation is fundamentally
expressed in interactions corresponding to adaptive dy-
namics. But while we know a lot about the interac-

4Reversible as applied to computation refers to a data processing
implementation that is time-invertible.
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Fig. 13. Living computation.

tion of particles, we know very little about interactions
characteristic of the living. Therefore, the Anticipa-
tionScope needs to evolve as a quantifying platform of
interacting organisms (of individuals, in particular). At
that level, risk emerges as related to interactions.

To interact means that the entities involved in the in-
teraction evaluate observables on each other. It is not
a reciprocal (or multi-) measurement, but rather an ex-
traction of features based on which patterns are nat-
urally recognized. In interactions, the interacting enti-
ties (cells, organs, organisms) “look” at each other in
totally different ways than an observer looks at each
and at their interaction. The complex behavior in the
realm of the living is the outcome of interactions. In
respect to the human being, this is almost a truism. But
interactions evince also forms of risk that are simply
not detectable at the level of the individual.

In recent months (February 2007, Pioneer Award
Application), I suggested that the anticipation perspec-
tive opens an avenue towards risk evaluation in the ex-
tremely sensitive area of neurological disorders. As al-
ready pointed out, the AnticipationScope produces a
record of how anticipatory characteristics underlying
our adaptive capabilities change over time – the Antic-
ipatory Profile™. Variations in the Anticipatory Profile
are indicative of the individual’s adaptive capabilities.
Disease or aging can affect the values. Accordingly,
the AnticipationScope could help us identify the ear-
liest onset of conditions that today are diagnosed only

when they become symptomatic – usually years later
(in the case of Parkinson’s disease, six years later). De-
layed diagnosis (even of autism, despite its early on-
set) has negative consequences on the ability to assist
those affected in a timely and effective manner. We
probably also miss important information that might
guide us in becoming proactive, as well as in finding a
cure in some cases. To return to the example of Parkin-
son’s disease: festination (loss of the center of gravity
adaptive performance, eventually resulting in “running
steps”) could be revealed early through the Anticipa-
tion Scope. Using data gathered from one sensor at a
time – such as practiced in describing, incompletely,
ataxia, hemiparesis, dyskinesia, etc. – is a reductionist
approach, useful but incomplete. Opposed to this is the
integration of data from multiple sensors and from
the motion capture that describes movements. This is
the only way to capture the integrated nature of antic-
ipation. In addition to specialized knowledge, we gain
a holistic understanding of the affected human being.
The human being is a relational entity – while each
component is relevant, the outcome is not reducible to
the function of one or another part of our body, but
rather to their interrelationship, how they synchronize.

8. Structural measurement process

Actually, the basic premise of the entire design of
the Anticipation Scope is derived from the knowledge
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gained in recent years through single-neuron record-
ings [12] on the unity between action and perception.
Brain activity is specific to the task embodied in the
goal, not to the particular effectors. When an object is
grasped, neurons are activated regardless of the hand
(left or right) or of the toes (left or right foot) that might
be used, or even if the mouth is used. Purpose drives
the action. Anticipation is always purpose related.
Gallese [11] brings this observation to a clear point:
“the object representation is integrated with the action
simulation”. This broad understanding of the unity of
perception, activation processes, control mechanisms,
and the motoric will guide the realization of the An-
ticipationScope as a space of interaction between the
subject of inquiry and objects associated with actions.
Measurement within the AnticipationScope is goal re-
lated, since anticipations are always in respect to the
outcome of an action. It has already been discussed
herein that anticipation is not prediction, i.e., not a
probabilistic process, but rather one driven by the eval-
uation of possibilities. The congenial perspective of
the vast amounts of data collected (a variety of inter-
actively selectable time correlated streams) is that of
structural measurement process. The biologically in-
spired Evolving Transformation System (ETS) is the
mathematical foundation for the structural measure-
ment process [15]. ETS is a dynamic record of the in-
teraction of elements involved in the functioning of a
system, better yet in its self-organization. Each time
we are involved in an action, learning takes place. The
result is what we call experience.

8.1. Patterns of risk. Patterns of anticipation

The classes of risk pertinent to the physical
(Class A), the living (Class B), and the artificial
(Class C) are in some way connected to risk pat-
terns (deterministic path, non-deterministic path, hy-
brid path). Pattern recognition, as a distinct mathemati-
cal representation, and its computational form are very
efficient in respect to Class A risk. At the foundation of
such pattern recognition processes, we certainly recog-
nize inductive learning and the associated representa-
tion. As we know, it all boils down to defining a func-
tion g(x) : Rd{1, 2, . . . , M}, which represents one’s
guess (some give it fancier names) of y given x. The
problem at hand is how we arrive at a good description
of g, either in natural language, or in some other forms
of expression preferable in mathematical descriptions
that are computable. The mapping is called a classifier,
which guides those in the business of assessing risk

(engineers, insurance experts, etc.) in their decisions.
For Class B risk, things are a bit more complicated.
The risk associated with returning a fast tennis serve,
for example, can affect the game’s outcome and the
player’s reputation (read: lucrative endorsement con-
tracts). The risk of falling during an Olympic or inter-
national downhill ski competition encapsulates many
components: injury, lost victory, a blot on the skier’s
record, etc. In this pattern description of risk, we tend
to regard those who perform well – tennis players,
skiers, chess players, as well as physicians and me-
teorologists – as having built-in classifiers. Given the
enormous size of the space x, classifiers end up be-
ing anything but perfect. For those who play tennis and
those who ski guided by reaction, i.e., below the an-
ticipation threshold, where reaction defines interaction,
pattern recognition is a very powerful method for guid-
ing them towards higher performance. This is the type
of machine simulation of the real event that can reach
good predictive performance.

However, if the interaction between the living sys-
tems described above is over the threshold of reaction,
we will probably have to work with dynamic pattern
recognition. Let us shortly observe that dynamic is a
relative qualifier. Some will define probabilistic-driven
pattern recognition [4] as dynamic. The observation in
such systems ends up being a d-dimensional vector x;
the unknown nature of the observation is called class;
and what stands as a substitute for inductive learn-
ing is the frequency of encountering some pairs of x
and y in a relation that can be formalized. For the dy-
namic pattern recognition, experts no longer work on
producing classifiers. They bring history (or ontolo-
gies) to the AI programmers – data from the past that
evinces some pattern. That this is not formative history,
which is Goldfarb’s subject, is obvious. Bayes classi-
fiers work like that. Statistical pattern recognition be-
longs to the same perspective (one can use, as we know,
Hidden Markov Models, which are a particular case
of a stochastic finite state automaton). In other cases,
such as when evolutionary natural objects were con-
sidered [32], fuzzy Petri Nets were used. I brought up
these examples of what the pattern recognition com-
munity calls dynamic pattern recognition in order to
make clear the dynamics referred to is well understood
as pertaining to the deterministic domain. Risk assess-
ment within such a domain is a relatively successful
activity. That Class B risk is approached using means
of analysis characteristic of Class A is, in fact, a reduc-
tionist approach.

Goldfarb, who wants to transcend the limitations
of measurement expressed through numbers, is fully
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aware of these dynamic models. He is also inclined
to integrate in his representation knowledge resulting
from a stochastic perspective (ultimately, also captive
to numbers). Without suggesting that the epistemologi-
cal view promoted by Goldfarb is wrong or inadequate,
I would like to suggest that, in addition to the induc-
tive process, abductions, or hypothesis-driven learning,
would have to be considered. There is no reason to
doubt that Goldfarb can accommodate the need to ac-
count for abduction. Up to 1865, the common under-
standing in logic was that the so-called class of deduc-
tive arguments (also known as necessary inference),
and the inductive arguments (probable inferences) cov-
ered the entire gamut. With Peirce [24], the class of
probable inferences was further distinguished as in-
ductive and abductive inferences (which he called hy-
potheses and retroductive inferences).

The suggestion I make at this time might prove ben-
eficial for maintaining the goal of a unified representa-
tional system, which is Goldfarb’s goal. What abduc-
tion might supplant is the specific information that dis-
tinguishes the physical from the living, and both from
the artificial endowed with characteristics of the liv-
ing, without denying the implicit realization of the bio-
logical in the material substratum. Goldfarb might find
his own ways to account for the distinction, not to say
for associating to pattern recognition, in its classical
formulation, a complementary focus: dynamic recog-
nition driven by data that associates probability and
possibility. Or, in another formulation, the complemen-
tary focus on risk (chanced outcome) and anticipation
(outcome-driven action).

8.2. Dynamics of anticipation

We can examine anticipatory expression from the
perspective of pattern recognition, or of dynamic sys-
tems – where anticipation looks like an attractor. We
can consider anticipation as reverse computation –
since in the living, the laws of thermodynamics need to
be understood according to the condition of the living
as an open system (metabolism dictates that energy be
continuously taken in). We can think of anticipation as
an expression of entanglement, though not at a quan-
tum scale. What we cannot do is avoid considering the
dynamics of anticipation, how it changes over time. In
other words, can it be that we are born with it, or is an-
ticipation the product of nurture, i.e., of learning? The
dynamics of anticipation is the record of its evolution-
ary and developmental change. Both dimensions are of
interest to a structural representation. The change in

anticipatory characteristics over the life of the living
entity under consideration is part of its coming into be-
ing and its eventual death. In many ways, it is the for-
mative history of such an entity, and in this sense, ETS
is not only a good candidate in providing a representa-
tion, but a test case for our ability to gain knowledge
about anticipation. Such knowledge will eventually in-
form much of the science and technology of our age.
We have already learned a lot about the brain activity
of the young during their “explosive” hormonal phase;
and we have learned quite a deal about how aging af-
fects adults, that is, our anticipation. Adaptive capabil-
ities being the result of anticipation at work, the fail-
ure to adapt is a risk resulting from inadequate antici-
pation.

Awareness of anticipation dates probably way back
to questions asked about some individuals outperform-
ing others in a context of “all things being equal”.
I would prefer not to speculate on how this aware-
ness is reflected in all kinds of descriptions. Sur-
vival implies anticipation, without excluding risk (as
challenge). Let me succinctly point to two aspects:
pregnancy, for instance, triggers increased anticipation
[30], expressed in increased activity in the cingulated
cortex. Recent data [17] documents that pregnant rats
are more effective, by a factor of 6, than virgin rats in
navigating mazes and in capturing prey. Pregnancy is
risky (even under the best of circumstances), but the
wager is against survival of the species, not individual
performance. In contrast to pregnancy as an expression
of enhanced anticipation, aging results in diminished
anticipation (see Fig. 6). There is learning, inductive
and abductive in nature, and loss of anticipation, each
to be properly represented. As anticipation decreases,
the risks associated with living increase (cf. [22,23]).

For example, the anticipatory baroreflex decreases
[3]. Older individuals get dizzy when getting up (even
from a chair), and when the atmospheric pressure
changes [1]. This very often leads to a predisposition
to stay in bed or to sit for longer periods of time, to pas-
sive habits (such as watching TV), and to avoid mov-
ing around. In such cases, activity is erroneously asso-
ciated with dizziness, and a vicious, downward cycle
begins. This is where we want to introduce forms of
activity that will target the Anticipatory Profile. More
precisely, we want to build upon brain plasticity in or-
der to stimulate the cognitive “rejuvenation” of aging
individuals. This is the project of the antÉ– Institute for
Research in Anticipatory Systems entitled Seneludens
(from Latin senex, to grow old; ludens, playful), best
described as an attempt to minimize the various risks
that arise from aging.
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