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2008–2009 will be remembered as an era where
extreme events have come on their own, ex-ante ig-
nored, but factual and painful ex-post. Ex ante we have
a tendency to ignore rare events, seeking comfort in
numbers we can point out to and ignoring the others
(Paul Samuelson). For example, insurance firms con-
centrate on aggregate risks, avoiding the existence of
outliers and non-quantifiable rare events. Yet, risks –
true risks, are outliers! Jean Pierre Landau (Vice Gov-
ernor of the Bank of France), points out that modern
finance is based in practice if not in theory on an “im-
plied” ignorance of extreme risks (and implied com-
plexity, my addition) of financial markets. There is thus
an overall weakness when confronted with the theoret-
ical implications of rare and extreme events. History
and cemeteries are filled with their consequences, how-
ever, that have for many reasons and conveniently been
forgotten (both due to our inability to confront these
events and our own “finiteness” – presuming that it
will not happen to us!). Extreme risks are increasingly
common and recurring, however. On the one hand cli-
matic changes, population and concentrations growths
are causing previously “unthinkable” disasters to be re-
current. Extreme weather is now a TV show while Ter-
ror is ever present and everywhere. Extreme and Rare
risks, are now at the center stage of our working prob-
ability distributions. Yet, they are not always appreci-
ated at their just importance.

Financial mathematics for example, presumes both
the “predictability” of future prices, interest rates as
well as other and related time series emphasizing that
“financial uncertainty” is a Martingale, fair and expect-
edly constant. Such processes have been presumed by
Bachelier already in 1900 and underlie the Random
Walk Hypothesis (and the Brownian motion) in finance

(Cootner, 1964) and in physics (Einstein, 1906). These
processes have special characteristics and consist of
independent increments, independently and identically
distributed Gaussian (thin tail) random variables, con-
tributing to our continued fixation on linearly grow-
ing variance (as a measure of uncertainty) over time.
This facet of “the growth of uncertainty” has been
severely criticized and numerous statistical tests have
been based on it to demonstrate that the underlying
process need not be Brownian motion.

Empirical evidence has shown that financial series
are not “well behaved” and cannot be always pre-
dicted. They may exhibit unpredictable and “chaotic
behavior” which underscores “nonlinear science” ap-
proaches to finance. Rather, in many cases, it is
observed that data can behave “unpredictably” at
time and at others, it may exhibit regular variations.
“Bursts” of activity, “feedback volatility” and broadly
varying behaviors by stock market agents, “memory”
(both long and short, exhibiting persistent behaviors)
etc. are characteristics that contribute to the “nonlin-
earity of uncertainty growth” and thereby to challeng-
ing fundamental finance. Further, even aggregation of
time series that are mildly auto-regressive can turn out
to have long run memory and thereby to serious con-
tentions regarding the assumptions of fundamental fi-
nance. By the same token, Vallois and myself [42,43]
have indicated that persistence in pure random walks
has a short memory and lead to a nonlinear evolution
of the process volatility.

The study of real time series have motivated a num-
ber of approaches falling under a number of themes
spanning: fat tails, Leptokurtic distributions, Pareto–
Levy stable distributions, long run memory – fractional
Brownian models, dependence, persistent processes,
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Chaotic analysis, Lyapunov stability analysis; Com-
plexity analysis; R/S analysis etc. (see [29] and [26],
for example).

Both theoretical and practical reasons underlie the
importance of research dealing with departure of the
“random walk hypothesis” or “linear stochastic model-
ing” and in developing the required mathematical and
statistical apparatus needed to detect when and extreme
events arise. While models are always a simplified of
some part of a presumed or desired reality, our greatest
mistakes will be to believe in closed-ended models –
economic or not. While models are extremely useful,
and needed, models will always be also a source of
grief – realities are far more complex and always sur-
prising. The challenges for risk analysis and financial
and economic assessments are thus always challenged
and challenging.

The purpose of this special issue is to focus some
attention to alternative modeling and the mathemat-
ical treatment of “uncommon risks” and address in
part some of the issues to focus their attention. There
are many approaches to dealing with these problems
however. For example, there are many forms and ap-
proaches to defining what is “Chaos”. For some, chaos
expresses a “stochastic like behavior” of determinis-
tic systems. Typically, a dynamic system may have a
number of “types of attractors”. These may include
equilibrium points, periodic orbits or cycles, quasi-
periodic orbits as well as chaotic or “strange attrac-
tors”. In a financial framework, a chaotic process is a
process which is not predictable. In other words, even
though a process may be well defined in the sense that
its equations are well specified, all variables are endo-
geneous, its’ actual and long run behaviors are hardly
predictable. Such processes, even when they are well
specified, provide always “new” information that re-
define the steady state of such processes. Chaos is of-
ten used to characterize a-periodic and non-explosive
dynamical systems that are completely (deterministic
and) determined but unpredictable! In the statistical
study of time series, chaos is also used to express a
number of properties summarized by nonlinearity and
unpredictable volatility; long term or strong depen-
dence; “fat tails” distribution (or Pareto–Levy stable
distributions with an exponent other than 2) and com-
plexity [5,13,34].

If a process is dependent on the initial condition,
and the state of equilibrium determined in terms of
the initial condition, then perturbation in this state
will perturb the “equilibrium” state which renders such
a process unpredictable. In this sense, even though

a process may be deterministic, it can exhibit a “sto-
chastic like behavior” (since a change in a process state
will alter its initial condition and therefore, can lead in
some cases, to multiple long term equilibria).

The presence of long run memory or persistence has
important implications for many of the paradigms used
in modern risk assessment, economics and finance. For
example, optimal consumption-savings and portfolio
decisions may become extremely sensitive to the in-
vestment horizon if stock returns were long term de-
pendent. Problems also arise in the pricing of options
and futures since the class of models used are incom-
patible with long term memory. Traditional tests of the
capital asset pricing model and the Arbitrage Pricing
Theory are no longer valid since the usual forms of sta-
tistical inference do not apply to time series exhibit-
ing such persistence. Conclusions of more recent tests
of “efficient” markets hypotheses or stock market ra-
tionality also hang precariously on the presence or ab-
sence of long term memory [25]. Further, if speculative
prices exhibit dependency then the existence of such
dependency would be inconsistent with rational expec-
tations and would thus make a strong case for technical
forecasting on stock prices. In other words, the Mar-
tingale approach to finance will be of little use. Em-
pirically, it is well documented that interest rates and
future prices can have long term memory [5,11,12,14,
17–20,25,36].

The commonality of “uncommon risks” calls for a
concerted effort to increase our awareness that such
risks exist and motivate the attention they deserve. This
special issue is one step in this direction.

This special issue is focused on a number of papers,
each approaching another aspect of extreme and rare
risk mathematics.

Tyrone Duncan, provides a tractable introduction
to fractal Brownian mathematics providing both a
clear understanding of what they are and how they
may be applied. Fractional Brownian motion denotes
a family of Gaussian processes whose applicability
has been demonstrated empirically for a wide vari-
ety of physical and financial phenomena. For more
than five decades, these processes have described risky
outcomes or physical uncertainties and in particular
for more than four decades these processes have been
used to model fluctuations in economic data. These
processes have a self-similarity or fractal property in
probability law. They can provide a model for long
range dependence, rare events and “bursting” behavior.
Mandelbrot motivated by his study of fractals studied
fractional Brownian motions to model economic data
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as well as turbulence and coined the name fractional
Brownian motion and attraction attention to Hurst’s in-
dex. The empirical evidence for models with a frac-
tional Brownian motion has continued in hydrology,
finance and turbulence. More recently the empirical
evidence for the use of fractional Brownian motions
(FBMs) as random models broadened to internet, traf-
fic medicine and cognition (see Duncan’s paper). The
particular contribution of this paper is in its introduc-
tion of the essential mathematical properties and in
particular the definition of a stochastic calculus with
stochastic differential equations with fractal Brownian.

The second paper is devoted to “Power-Law Distri-
butions: Beyond Paretian Fractality” by Iddo Eliazar
and Joseph Klafter. In their paper, the notion of frac-
tality, in the context of positive-valued probability dis-
tributions, is conventionally associated with the class
of Paretian probability laws. In their research, they
show that the Paretian class is merely one out of six
classes of probability laws, all equally entitled to be
ordained fractal, all possessing a characteristic power-
law structure, and all being the unique fixed points of
renormalizations acting on the space of positive-valued
probability distributions. These six fractal classes are
further shown to be one-dimensional functional projec-
tions of underlying fractal Poisson processes governed
by: (i) a common elemental power-law structure; and,
(ii) an intrinsic scale which can be either linear, har-
monic, log-linear, or log-harmonic. This research pro-
vides a panoramic and comprehensive view of fractal
distributions, backed by a unified theory of their under-
lying Poissonian fractals.

The third paper is by Yaniv Dover, Sonia Moulet,
Sorin Solomon and Gur Yaari, members of a joint
Israeli and Italian research team, “Do all economies
grow equally fast?” uses a generalized Lotka–Volterra
approach to the study of interactions between eco-
nomic sectors, countries and blocks. The theory they
used predicts robustly in a very wide range of condi-
tions systematic regularities in the growth rates evolu-
tion of various subsystems. They describe the ‘Growth
Alignment Effect’ (GAE), it’s theoretical basis and
demonstrate it empirically for numerous cases in the
international and intra-national economies. The GAE
is the concept that in steady state the growth rates of
the GDP per capita of the various system components
align. The particular importance of their research is in
the intensity of their use of a theoretical framework
imbedded in large amounts of data and the manner they
are able to overcome the complexity of economic in-
terdependent systems. Such complexity, studied from

a microstructural (atomic) viewpoint is revealing and
provides a useful realization that there are after all
“aggregate patterns” that arise from basic and simple
“atomic”-interactions.

Finally, the paper of Philip Maymin provides a dif-
ferent and psychological approach to the “creation” of
“uncommon risks” based on Prospect Theory. Explic-
itly, Maymin considers a behavioral representative in-
vestor who evaluates a single risky asset and shows that
such an investor will often induce high kurtosis, neg-
ative skewness, and persistent autocorrelation into the
distribution of market returns. This would be the case
even if the asset payoffs are merely a sequence of in-
dependent coin tosses and the investor is simply loss
averse.

This special issue does not cover all the issues and
alternative modeling approaches to “uncommon risks”
but seeks simply to emphasize that a in a world as
global as it is today, as dangerous as it has become,
risk and decision analysis are confronted with unusual
challenges that require unusual approaches and solu-
tions.
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