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SOME SYSTEMIC RISK INDICATORS

YASSINE EL QALLI AND KHALIL SAID

Abstract. This paper aims to introduce novel systemic risk indicators based on risk allocation
methods employed in actuarial science. We present diverse general approaches for constructing
these indicators and utilize them to derive indicators based on commonly used risk measures such
as Value at Risk, Tail Value at Risk, and Expectiles. Furthermore, we analyze the influence of
the dependence structure on the behavior of these indicators using a range of copula models. To
support our findings, we provide numerical illustrations.

Introduction

Since the last global financial crisis, the concept of systemic risk has become extremely impor-
tant in finance. The subprime financial crisis highlighted the need to improve understanding and
modeling of systemic risk. Financial institutions are considered systemically dangerous if their
bankruptcy situations have the potential to damage the entire financial system. The bankruptcy
of Lehman Brothers on September 15, 2018, and its impact on the world financial system serve as
a perfect illustration of the danger of systemic risk, emphasizing the importance of its modeling
and management.

Several systemic risk measures have been proposed in the literature since the last financial crisis.
The marginal expected shortfall, denoted as MES, is a systemic risk measure introduced by
Acharya et al. (2010) [3], and another approach toMES was presented by Acharya et al. (2012) [2].
It is defined for two random variables X and Y as follows:

MESα(Y | X) = E[Y | X ≥ V aRα(X)].
We recall the definition of the Value at Risk (V aR) as a risk measure of a random variable X at
the confidence level α:

V aRα(X) = F−1
X (α) := inf{x ∈ R|FX(x) ≥ α},

where FX is the distribution function of X.

Another measure of systemic risk,∆CoV aR, was introduced by Adrian and Brunnermeier (2011) [4].
Mainik and Schaanning (2014) [24] provided explicit formulas for ∆CoV aR in particular cases and
presented a new approach to this risk measure that takes into account the dependence between
risks. Its definition is given by:

∆CoV aRα,β(Y | X) = CoV aR=
α,β(Y | X)− V aRβ(Y ),

where
CoV aR=

α,β(Y | X) = V aRβ(Y | X = V aRα(X)).
This measure was also studied in Löffler and Raupach (2013) [23] and Castro and Ferrari (2014) [12].
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Similarly, Mainik and Schaanning (2014) [24] defined the Conditional Expected Shortfall (CoES),
based on the definition of the Expected Shortfall risk measure:

ESα(X) = 1
1− α

∫ 1

α
V aRu(X)du.

The CoES is defined as:

CoES=
α,β(Y | X) = 1

1− β

∫ 1

β
CoV aR=

α,u(X)du.

A second version is given by:

CoESα,β(Y | X) = 1
1− β

∫ 1

β
CoV aRα,u(X)du,

where
CoV aRα,β(Y | X) = V aRβ(Y | X ≥ V aRα(X)).

Other measures based on financial constructions have been introduced in the literature. For ex-
ample, the tail risk gamma, presented by Knaup and Wagner (2012) [22], utilizes the sensitivity
of an institution’s equity return to changes in put options on system prices.

In actuarial science, the issue of capital allocation is well known and studied. Once the solvency
capital requirement is calculated using risk aggregation methodologies, it must be distributed
among different branches or business lines. Capital allocation is then an exercise of redistributing
capital based on marginal risk levels measured using a top-down approach.

The starting point of this paper is the remarkable similarity between measuring systemic risk
in a financial context and allocating economic capital in insurance. The goal of this work is to
introduce general forms of systemic risk indicators. Several indicators can then be derived from
these forms using different risk measures.

This paper is organized as follows: in the first section, we explain the methodology used to
construct our indicators, utilizing various capital allocation methods. In section 2, we derive
systemic risk indicators using the Euler method and common risk measures such as VaR, TVaR,
and Expectiles. Section 3 presents the expressions for the obtained systemic risk indicators in
dependence models based on copulas. Finally, section 4 is dedicated to numerical illustrations.

1. Modeling systemic risk using capital allocation methods

In the insurance industry, capital allocation plays a crucial role for multi-branch companies.
Once the solvency capital requirement is calculated using risk aggregation methodologies, the
task at hand is to determine the actual contribution of each branch to the overall risk level.
This essentially involves distributing the benefits of diversification among different business lines,
taking into account the marginal distribution and dependence structure. Similarly, in the context of
systemic risk, the ultimate goal remains the same: quantifying the impact of individual components
on the overall risk level of the system. This is why we believe that capital allocation methods can
be utilized as effective tools for modeling systemic risk.

1.1. Methodology. We assume that our financial system consists of d institutions. Let X =
(X1, . . . , Xd) be a random vector, where Xi represents the risk associated with the ith financial
institution, such as the P&L (Profit and Loss). From a risk perspective, we consider the random
variables Xi to be positive in the case of losses and negative in the case of profits. The aggregate
risk, denoted by S, is defined as the sum of all individual risks: ∑d

k=1Xk, representing the overall
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risk of the system.
In general, we can express the aggregate risk as ∑d

k=1 αkXk, where αi represents the marginal
weight assigned to each individual risk in the aggregate risk calculation.

From a local perspective, it is possible to select a univariate risk measure to quantify each risk
independently of the rest of the financial system. In this case, the contribution of a risk Xi can be
assessed using the following quantity:

ωloci = ρ(Xi)∑d
k=1 ρ(Xk)

,

where ρ represents the chosen univariate risk measure.
This approach overlooks the interdependence among the system’s components and assumes, for
the purpose of risk aggregation, that they are comonotonic. Comonotonic risks refer to cases of
perfect dependence and have been studied by Hoeffding (1940) [19] and Fréchet (1951) [17]. The
definition of comonotonic risks as first introduced in actuarial literature by Borch (1962) [11] is
adopted here.
A vector of random variables (X1, X2, . . . , Xn) is considered comonotonic if and only if there exists
a random variable Y and non-decreasing functions ϕ1, . . . , ϕn such that:

(X1, . . . , Xn) d= (ϕ1(Y ), . . . , ϕn(Y )).
When the risks X1, . . . , Xd are comonotonic, there exists a uniform random variable U such that
Xi = F−1

Xi
(U) for all i ∈ 1, . . . , d, and S = ∑d

i=1 F
−1
Xi

(U) = ϕ(U), where ϕ(t) = ∑d
i=1 F

−1
Xi

(t) and ϕ
is a non-decreasing function.
When the chosen risk measure ρ satisfies the property of additive-comonotonicity, we have:

ρ(S) =
d∑
i=1

ρ(Xi).

In this case, ωloci represents the marginal contribution of Xi to the aggregated risk.

Now, by adopting a multivariate approach and utilizing capital allocation methods, we can obtain
a more comprehensive understanding of the risk associated with each component of the financial
system, considering their dependence interactions. Let ρ(Xi|

∑d
k=1Xk) represent the allocation of

risk Xi within a capital allocation framework based on the amount ρ(∑d
k=1Xk). In this context,

the actual contribution of Xi to the system’s overall risk can be expressed as:

ωsysi = ρ(Xi|
∑d
k=1Xk)

ρ(∑d
k=1Xk)

= ρ(Xi|S)
ρ(S) .

This ratio, ωsysi , quantifies the relative significance of Xi with respect to the aggregated risk of the
system, taking into account the dependence structure.

In this paper, our objective is to quantitatively assess the systemic risk associated with each
component of a financial system using the following quantity:

SRIρ(Xi|S) = ωloci − ω
sys
i = ρ(Xi)∑d

k=1 ρ(Xk)
− ρ(Xi|S)

ρ(S) .

It is important to note that the measures chosen for ωloci and ωsysi can be different. In such cases,
the systemic risk indicator is defined as follows:

(1.1) SRIρ,Π(Xi|S) = ρ(Xi)∑d
k=1 ρ(Xk)

− Π(Xi|S)
Π(S) .
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The systemic risk is measured by comparing the weight of the individual risk component as eval-
uated independently within the financial system (locally) to its risk weight considering the depen-
dence structure within the system (systemically).

When the SRI value is negative, it indicates that the branch is systemic, and its systemic risk
level is underestimated. Conversely, when the SRI value is positive, it indicates an overestimation
of systemic risk. The systemic risk level is inversely related to the SRI indicator, meaning that as
the SRI value increases, the systemic risk decreases.

In the case where we choose to use the same risk measure (ρ = Π), the resulting risk indicator
may inherit certain properties of the selected risk measure. It is worth noting that for full alloca-
tion principles (allocations that satisfy ρ(S) = ∑d

i=1 ρ(Xi|S)), the sum of marginal systemic risk
indicators is indeed zero. This means that the system as a whole is not inherently risky. Instead,
it is the interactions and interdependencies among its components that give rise to systemic risk.

1.2. Incremental indicator. The incremental allocation method is grounded in measuring the
marginal impact of each individual risk on the overall risk. Utilizing this fundamental actuarial
technique, we define the following risk indicator:

Definition 1.1 (The incremental systemic risk indicator). Let X = (X1, . . . , Xd) be a non-negative
random vector in Rd, and ρ be a risk measure. The incremental systemic risk indicator of Xi with
respect to ρ is given by:

SRIIncρ (Xi|S) = ρ(Xi)
d∑
`=1

ρ (X`)
− ρ(S)− ρ(S −Xi)

d∑
`=1

ρ(S)− ρ(S −X`)
,

where S = ∑d
i=1Xi.

The main drawback of the incremental method is that it does not account for the dependence
structure among the risks Xi,i=1,...,d or between each risk and a subset of the others. It solely relies
on the marginal contribution of each risk to the overall sum of risks.

1.3. Shapley’s indicator. In this method, the Systemic Risk (SR) index is derived using the
Shapley capital allocation approach. We begin by revisiting the principle of the Shapley method
for capital allocation and subsequently introduce a Shapley indicator for measuring systemic risk.

The Shapley allocation method finds its roots in cooperative game theory and a detailed description
can be found in the paper by Micheal Denault [13]. The Shapley value was originally introduced
by Shapley (1953) [30] and has been studied by various researchers, such as Aumann and Myerson
(1988) [5] and Winter (2002) [36]. While initially used to allocate total costs in cooperative games,
this method can be effectively adapted to address capital allocation problems within a multivariate
context. In this context, we consider risks as players within the framework of a cooperative game.
The chosen univariate risk measure, denoted as ρ, serves as its characteristic function, which is
defined for any coalition Z ⊂ {1, . . . , d} as ρ (∑i∈Z Xi).

The Shapley method provides us with the contribution of each risk Xi to the overall risk, given by
the Shapley value:

ωi(ρ) =
∑
Z⊂D
i∈Z

(d− z)! (z − 1)!
d!

ρ
∑
j∈Z

Xj

− ρ
 ∑
j∈Z\{i}

Xj

 ,
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where D = {1, . . . , d} and z = card(Z). It is important to note that, for any choice of risk
measure ρ, the Shapley allocation constitutes a full allocation, satisfying ∑n

i=1 ωi = Π (∑n
i=1Xi).

This property arises from the Pareto optimality axiom fulfilled by the Shapley value.
Definition 1.2 presents the systemic risk indicator derived from the Shapley risk allocation

method.
Definition 1.2 (Shapley’s systemic risk indicator). Let X = (X1, . . . , Xd) be a non-negative
random vector in Rd, and ρ be a risk measure. The Shapley’s systemic risk indicator of Xi

according to ρ is given by:

SRIShapleyρ (Xi|S) = ρ(Xi)
d∑
`=1

ρ (X`)
−
∑
Z⊂D
i∈Z

(d− z)! (z − 1)!
d!

ρ

∑
`∈Z

X`

− ρ
 ∑
`∈Z\{i}

X`


ρ

(
d∑
`=1

X`

) ,

where D = {1, . . . , d} and z = card(Z).
The Shapley indicator can be considered an improvement over the incremental method as it not
only considers the marginal impact of each risk Xi on the overall risk but also incorporates its
marginal impact on the risk of all subsets containing it. However, the primary drawback of this
indicator is its computational cost, which grows exponentially with the number of components,
approximately on the order of 2d.

1.4. Euler’s indicator. The Euler’s capital allocation method has been extensively studied in
the works of Tasche (2007) [33] and Tasche (2008) [34]. This technique is based on the concept of
allocating capital according to the infinitesimal marginal impact of each risk, which represents the
decrease in overall risk achieved by an infinitely small decrement in risk Xi. It assumes that risks
can be infinitely divided.

Given an initial vector x = (x1, . . . , xd) ∈ Rd, we consider a portfolio with a value of X(x) =∑d
i=1 xiXi. For a univariate risk measure ρ, we define the function fρ(x) = ρ(X(x)), assuming

that fρ is continuously differentiable. We denote by ρ(Xi|S) the contribution of risk Xi to the
overall risk. This contribution can be obtained using Euler’s principle:

ρ(Xi|S) = lim
h→0

ρ(S)− ρ(S − hXi)
h

= ∂fρ
∂xi

(1, . . . , 1).

If the risk measure ρ is positively homogeneous, Euler’s theorem states:

fρ(x) =
d∑
i=1

xi
∂fρ
∂xi

(x),

which ensures that capital allocation based on Euler’s principle becomes a full allocation by con-
struction:

ρ(S) = ρ

(
d∑
i=1

Xi

)
= fρ(1, ..., 1) =

d∑
i=1

∂fρ
∂xi

(1, ..., 1) =
d∑
i=1

ρ(Xi|S).

Euler’s method has been extensively studied in the allocation literature, examining its proper-
ties such as coherence and compatibility with Return on Risk-Adjusted Capital (RORAC), under
different assumptions. Notable works include Balog (2011) [6], Tasche (2000) [31], and Tasche
(2004) [32]. The economic interpretation of Euler’s method makes it a relevant approach to capi-
tal allocation and explains its popularity as an actuarial practice.

Utilizing Euler’s principle, we define a systemic risk indicator as follows:
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Definition 1.3 (Euler’s systemic risk indicator). Let X = (X1, . . . , Xd) be a non-negative random
vector in Rd, and ρ be a positively homogeneous risk measure. The Euler’s systemic risk indicator
of Xi according to ρ is given by:

(1.2) SRIEulerρ (Xi|S) = ρ(Xi)
d∑
`=1

ρ (X`)
− lim

h→0

ρ

(
d∑
`=1

X`

)
− ρ

(
d∑
`=1

X` − hXi

)

ρ

(
d∑
`=1

X`

)
h

.

Starting from the upcoming section, our focus will be solely on examining indicators constructed
using the Euler method.

1.5. Other constructions. We can define additional measures of systemic risk based on various
capital allocation methods found in the actuarial literature. For example, we mention the optimal
allocation method presented by Dhaene et al. (2012) [14] and studied by Maume-Deschamps et
al. (2016) [26]. In this case, the systemic risk (SR) index is obtained as follows:

SRIopt = ρ(Xi)
d∑
`=1

ρ (X`)
− < x, ei >

ρ

(
d∑
`=1

X`

) ,

where < x, ei > denotes the ith coordinate of x, and

x ∈ arg inf
v∈Udu

E [S (X, v)] ,

with S : R+d × R+d → R+ being a scoring function, and Udu = {v ∈ [0, u]d,∑d
i=1 vi = u} where

u = ρ
(∑d

`=1X`

)
.

Other systemic risk measures can be constructed using the concept of cointegration, which was
introduced by Engel and Granger (1983) as a measure of dependence between time series (see
Engle and Granger (1987) [16]). The adjustment coefficient defined in ruin probabilities can also
be utilized to quantify systemic risk.

The indicators constructed using these methods can be utilized in either static or dynamic
form, depending on specific requirements. They can serve as valuable decision support tools for
risk control authorities, enabling them to establish tolerance thresholds for the systemic level
of a component within the financial system and take appropriate actions when these thresholds
are exceeded. For instance, these authorities may request capital increases in the form of safety
margins. When the objective is to minimize marginal systemic risk, the precise systemic safety
margin can be determined by solving the following equation:

SRIρ(Xi + a|S + a) = 0.

The choice of risk measures utilized for constructing these indicators is of utmost importance.
It allows for the modeling of systemic risk aversion and provides an economic interpretation of the
resulting indicators. Standard risk measures are typically the preferred choices for these purposes.
In the following section, we will focus on indicators derived from such measures.
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2. Systemic risk indicators using usual risk measures

In this section, our focus is on the Euler’s systemic risk indicator defined in 1.3. For the
incremental and Shapley’s indicators, we only need the expression of the chosen risk measure since
these indicators are composed of aggregated risk measures. However, in the case of Euler’s version,
the expression is not straightforward. The objective of this section is to provide the expressions
of the Euler’s systemic risk indicator for common risk measures such as Value-at-Risk, Tail Value-
at-Risk, and Expectiles.

2.1. Covariance. A straightforward choice for the allocation risk measure is variance. Lemma 2.1
provides the expression of the covariance-based systemic risk indicator.

Lemma 2.1 (Covariance systemic risk indicator). Let X = (X1, . . . , Xd) be a non-negative random
vector in Rd, and ρ be a risk measure. The covariance systemic risk indicator of Xi is given by:

SRICov(Xi|S) = V ar(Xi)∑d
k=1 V ar(Xk)

− Cov(Xi, S)
V ar(S) .

Proof. In this case,

fV ar(u) = V ar(X(u)) = V ar

(
d∑
i=1

uiXi

)
=

d∑
i=1

u2
iV ar(Xi) + 2

∑
1≤i<j≤d

uiujCov(Xi, Xj).

Using Euler’s method, the risk contribution of Xi is given by:

V ar(Xi|S) = ∂fV ar
∂ui

(1, ..., 1).

Differentiating fV ar with respect to ui, we obtain:

∂fV ar
∂ui

(u) = 2uiV ar(Xi) + 2
d∑

j=1,j 6=i
ujCov(Xi, Xj),

thus,

V ar(Xi|S) = 2V ar(Xi) + 2
d∑

j=1,j 6=i
Cov(Xi, Xj) = 2Cov(Xi, S),

and in order to achieve a full allocation (∑d
i=1 V ar(Xi|S) = V ar(S)), we normalize this expression

to obtain the risk contribution of each Xi as:

V ar(Xi|S) = Cov(Xi, S).

Finally, from Definition 1.3, we deduce the construction of the given covariance systemic risk
indicator:

SRICov(Xi|S) = V ar(Xi)∑d
k=1 V ar(Xk)

− Cov(Xi, S)
V ar(S) .

�

However, it is important to note that variance is not a tail risk measure and not a coherent risk
measure. The use of covariance limits the ability to incorporate dependence beyond linear forms.
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2.2. Wang’s risk measures. Recall the definitions of two commonly used risk measures: Value
at Risk (VaR) and Tail Value at Risk (TVaR). The VaR risk measure at level α is defined for a
random variable X as:

V aRα(X) = inf{x ∈ R : P(X ≤ x) ≥ α} = inf{x ∈ R : F (x) ≥ α} = F−1
X (α),

which represents the quantile of the same level. The TVaR at level α is defined as the mean of the
VaRs exceeding V aRα(X):

TV aRα(X) = 1
1− α

∫ 1

α
V aRµ(X)dµ.

Well-known VaR and TVaR-based allocation rules are examples of methods obtained from this
approach. They are specific cases of capital allocation using Wang’s risk measures introduced
in [35], and can be defined as:

ρ(X) =
∫ 1

0
V aRα(X) dg(α),

where g is an increasing distortion function satisfying g(0) = 0 and g(1) = 1. These measures are
homogeneous, translation-invariant, and monotone.

Lemma 2.2 provides a general expression for the VaR-based systemic risk indicator.

Lemma 2.2 (VaR systemic risk indicator). Let X = (X1, . . . , Xd) be a non-negative random vector
in Rd. The VaR systemic risk indicator of Xi is given by:

(2.1) SRIV aRα(Xi|S) = V aRα(Xi)
d∑
`=1

V aRα (X`)
− E[Xi|S = V aRα(S)]

V aRα(S) .

Proof. Tasche (2000) [31] provides an expression for the derivative of the quantile function, given
by:

∂V aRα

∂xi
(X(x)) = E[Xi|X(x) = V aRα(X(x))], ∀x ∈ Rd.

From this, we directly obtain the expression of ∂fV aRα
∂xi

(x):

∂fV aRα
∂xi

(x) = E [Xi|X(x) = V aRα (X(x))] ,∀x ∈ Rd.

The risk contribution of each risk in the overall one, according to the VaR-based allocation rule,
is given by:

V aRα(Xi|S) = ∂fV aRα
∂xi

(1, ..., 1) = E[Xi|S = V aRα(S)].

Hence, the corresponding systemic risk indicator is:

SRIV aRα(Xi|S) = V aRα(Xi)
d∑
`=1

V aRα (X`)
− E[Xi|S = V aRα(S)]

V aRα(S) .

�

Since Wang’s risk measures are mixtures of VaRs, Lemma 2.2 can be used to find a general
expression for systemic risk indicators derived from Wang’s risk measures.
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Proposition 2.3 (The Wang’s systemic risk indicator). Let X = (X1, . . . , Xd) be a non-negative
random vector in Rd, and ρ be a Wang’s risk measure. The systemic risk indicator corresponding
to a Wang’s risk measure is defined as follows:

(2.2) SRIg(Xi|S) =
∫ 1

0 V aRα(Xi) dg(α)∫ 1
0
∑d
k=1 V aRα(Xk) dg(α)

−
∫ 1

0 E[Xi|S = V aRα(S)]dg(α)∫ 1
0 V aRα(S) dg(α)

,

where g is the distortion function associated with ρ.

Proof. For Wang’s measures, the function fρ takes the following form:

fρ(x) =
∫ 1

0
V aRα (X(x)) dg(α), ∀x ∈ Rd.

Its derivative is then given by
∂fρ
∂xi

(x) = ∂

∂xi

∫ 1

0
V aRα(X(x)) dg(α) =

∫ 1

0

∂

∂xi
V aRα(X(x)) dg(α).(2.3)

Combining (2.3) and (2.1), we deduce that
∂fρ
∂xi

(x) =
∫ 1

0
E[Xi|X(x) = V aRα(X(x))]dg(α), ∀x ∈ Rd,

from which we obtain the expression of risk contributions in an Euler capital allocation with any
Wang’s risk measure:

ρ(Xi|S) =
∫ 1

0
E[Xi|S = V aRα(S)]dg(α),(2.4)

where g is the distortion function associated with ρ. The systemic risk indicator corresponding to
a Wang’s risk measure is then defined as follows:

SRIg(Xi|S) =
∫ 1

0 V aRα(Xi) dg(α)∫ 1
0
∑d
k=1 V aRα(Xk) dg(α)

−
∫ 1

0 E[Xi|S = V aRα(S)]dg(α)∫ 1
0 V aRα(S) dg(α)

,

where g is the distortion function associated with ρ. �

Since TVaR is also a Wang’s risk measure, we can use Proposition 2.3 to obtain the expression
of the TVaR-based systemic risk indicator.

Lemma 2.4 (The TVaR systemic risk indicator). Let X = (X1, . . . , Xd) be a non-negative random
vector in Rd. The TVaR systemic risk indicator for Xi is given by:

(2.5) SRITV aRα(Xi|S) = E[Xi|Xi ≥ V aRα(Xi)]∑d
k=1 E[Xk|Xk ≥ V aRα(Xk)]

− E[Xi|S ≥ V aRα(S)]
E[S|S ≥ V aRα(S)] .

Proof. Since TVaR is a Wang’s risk measure, we can directly deduce the allocation rule associated
with this measure from (2.4). In fact, TV aRα is a Wang’s risk measure associated with the
following distortion function:

gα(x) = x− α
1− α11{x∈[α,1]}.

Note that for a fixed α ∈ [0, 1], gα is the uniform distribution function with support [α, 1]. By
using the expression of the derivative ∂fρ

∂xi
(x) for Wang’s risk measures, we have:

∂fTV aRα
∂xi

(x) =
∫ 1

0
E [Xi|X(x) = V aRu (X(x))] dgα(u).
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By making a simple substitution, t = V aRu(X(x)) = F−1
X(x)(u), and using the analytical expression

for the expectation, we obtain:
∂fTV aRα
∂xi

(x) = E
[
Xi

1
1− α11{X(x)≥V aRX(x)(α)}

]
, ∀x ∈ Rd.

Thus, the risk contribution expression for the case of continuous distributions, using TVaR and
Euler’s method, is given by:

TV aRα (Xi|S) = E[Xi|S ≥ V aRα(S)],
which corresponds exactly to the systemic risk measure MESα(Xi | S) defined by Acharya et al.
(2012) [2]. The expression of the systemic risk indicator derived from TVaR is given by:

SRITV aRα(Xi|S) = E[Xi|Xi ≥ V aRα(Xi)]∑d
k=1 E[Xk|Xk ≥ V aRα(Xk)]

− E[Xi|S ≥ V aRα(S)]
E[S|S ≥ V aRα(S)] .

�

The VaR is not a coherent risk measure since it is not sub-additive. On the other hand, TVaR
is coherent but not an elicitable risk measure. Expectiles are the only risk measures that are
both coherent and elicitable. Therefore, we are also interested in the expectile-based systemic risk
indicator.

2.3. Expectiles. Elicitability is a desirable statistical property for risk measures, and its impor-
tance has been highlighted in recent works on risk theory since Gneiting’s paper [18]. According
to Bellini and Bignozzi (2015) [8], a risk measure ρ is considered elicitable with respect to the class
P if there exists a scoring function S : R2 → R+ such that

ρ(P) = arg min
x∈R

∫
S(x, y)dP(y), ∀P ∈ P .

They demonstrate in the same paper that expectiles are the only risk measures that are both
coherent and elicitable.
Expectiles were initially introduced in the context of statistical regression models by Newey and
Powell (1987) [21]. For a random variable X with a finite second-order moment, the expectile of
level α is defined as
(2.6) eα(X) = arg min

x∈R
E[α(X − x)2

+ + (1− α)(x−X)2
+],

where (x)+ = max(x, 0).
Expectile risk measures are elicitable by construction. They are coherent for all α > 1/2. However,
for α < 1/2, expectiles are super-additive and therefore not coherent. When α = 1/2, the expectile
coincides with the mean. In the rest of this paper, we only consider the case where α > 1/2.
Alternatively, the expectile can be defined for any random variable with a finite first-order moment
as the unique solution of the following equation:
(2.7) αE[(X − x)+] = (1− α)E[(x−X)+].
This equation is obtained as an optimality condition using the strict convexity of the scoring
function. It can also be written as

1− α
α

= E[(X − x)+]
E[(x−X)+] .

From this definition, one can give an economic interpretation to the expectile risk measure as a
threshold that provides a profits/losses ratio of value 1−α

α
, and construct its acceptance set directly

10



as

Aeα :=
{
X

∣∣∣∣∣ E[(X)+]
E[(X)+ −X] ≤

1− α
α

}
,

which characterizes the expectile risk measure as

eα(X) = inf {m|X −m ∈ Aeα} .

The properties of expectile risk measures have been studied in several papers. Interested readers
can refer to [15] and [9] for more information. A multivariate extension of expectiles is proposed
in [27], and their asymptotic behavior is studied in [28].

Lemma 2.5 (The expectile systemic risk indicator). Let X = (X1, . . . , Xd) be a non-negative
random vector in Rd. The expectile systemic risk indicator of Xi is defined as follows:

(2.8) SRIeα(Xi|S) = eα(Xi)∑d
k=1 eα(Xk)

−
αE

[
Xi11{S>eα(S)}

]
+ (1− α)E

[
Xi11{S<eα(S)}

]
αE

[
S11{S>eα(S)}

]
+ (1− α)E

[
S11{S<eα(S)}

] .
Proof. Emmer et al. (2015) [15] showed that the contribution of risk Xi in the sum S = ∑d

`=1X`

is given by

(2.9) eα(Xi|S) =
αE

[
Xi11{S>eα(S)}

]
+ (1− α)E

[
Xi11{S<eα(S)}

]
αP (S > eα(S)) + (1− α)P (S < eα(S)) ,

for α ∈ [1/2, 1[.
We can also express the contribution eα(Xi|S) as

(2.10) eα(Xi|S) =
αE

[
Xi11{S>eα(S)}

]
+ (1− α)E

[
Xi11{S<eα(S)}

]
αE

[
S11{S>eα(S)}

]
+ (1− α)E

[
S11{S<eα(S)}

] eα(S),

since the expectile eα(S) satisfies

eα(S) =
αE

[
S11{S>eα(S)}

]
+ (1− α)E

[
S11{S<eα(S)}

]
αP (S > eα(S)) + (1− α)P (S < eα(S)) .

The allocation percentage eα(Xi|S)/eα(S) can be directly obtained from (2.10). Therefore, the
expectile systemic risk indicator is defined as

SRIeα(Xi|S) = eα(Xi)∑d
k=1 eα(Xk)

−
αE

[
Xi11{S>eα(S)}

]
+ (1− α)E

[
Xi11{S<eα(S)}

]
αE

[
S11{S>eα(S)}

]
+ (1− α)E

[
S11{S<eα(S)}

] .
�

The main difference between the indicator based on TVaR and the one derived from expectiles
is that expectiles take into account not only the participation of a marginal risk in the system risk,
but also its participation in positive scenarios. This means that the expectile systemic risk indi-
cator does not neglect the positive side of dependence when it contributes to financial performance.

Other expressions of systemic risk indicators can be derived in a similar manner for spectral risk
measures, as developed by Acerbi (2002) [1], or for generalized quantiles defined by Bellini et al.
(2014) [10].
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3. The systemic risk indicators in some dependence models

The indicators derived in the previous section can be estimated using statistical methods avail-
able in the literature on risk measures. In the case of a Gaussian distribution, their expressions
become simpler due to the probabilistic stability of a Gaussian vector when conditioning on its
components.
The aim of this section is to investigate the influence of dependence on the behavior of indicators
based on common risk measures such as VaR, TVaR, and Expectiles. To achieve this, we intro-
duce three bivariate risk models. The findings obtained from these models can be extended to
the multivariate case. The selection of these models is motivated by the variation in the nature
of dependence. The first model assumes simple independence, where the diversification gain is
non-zero, leading to non-trivial expressions for the indicators. The second model incorporates a
structure of weak dependence, modeled using an FGM copula. The third model exhibits stronger
dependence, particularly at the asymptotic level.

3.1. Bivariate independent exponential model. We consider a bivariate independent expo-
nential random vector (X1, X2) with Xi ∈ E(βi), where i ∈ {1, 2}. Let S denote the aggregated
sum of risks X1 +X2. In the case where β1 = β2, the systemic risk indicator is trivial and null for
both risks due to symmetry. Without loss of generality, we assume β1 < β2.
Lemmas 3.1, 3.2, and 3.3 provide the expressions for the conventional systemic risk indicators.

Lemma 3.1 (VaR-SRI, EI Model). The VaR systemic risk indicator of Xi is given by:

(3.1) SRIV aRα(Xi|S) =
1
βi

2∑
`=1

1
β`

− γ (s∗, βi, β3−i)
s∗h(s∗, βi, β3−i)

,

where s∗ is the unique solution to the equation:

H̄(s, β1, β2) = 1− α,

and H̄, h, and γ are defined as follows:

H̄(s, β1, β2) =
2∑

k=1

 2∏
`=1,`6=k

β`
β` − βk

 e−βkx,

h(s, β1, β2) =
2∑

k=1

 2∏
`=1,`6=k

β`
β` − βk

 βke−βkx,
and

γ (s, β1, β2) = β1β2

β2 − β1

[
se−β1s + 1

β2 − β1

(
e−β2s − e−β1s

)]
.

Proof. Since Xi ∼ E(βi) for all i ∈ {1, 2}, we have:

V aRα(Xi) = − 1
βi

ln (1− α) .

The conditional expectation E[Xi|S = V aRα(S)] can be expressed as:

E[Xi|S = V aRα(S)] = E[Xi11{S=V aRα(S)}]
fS (V aRα(S)) .
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The unique solution s∗ to the equation H̄(s, β1, β2) = 1− α is determined, where:

H̄(s, β1, β2) = F̄S(s) = β1β2

β2 − β1

(
e−β1s

β1
− e−β2s

β2

)
=

2∑
k=1

 2∏
`=1,`6=k

β`
β` − βk

 e−βkx.

Let

h(s, β1, β2) = fS(s) = β1β2

β2 − β1

(
e−β1s − e−β2s

)
=

2∑
k=1

 2∏
`=1,` 6=k

β`
β` − βk

 βke−βkx.
We can then calculate E[X111{S=s}] as follows:

E
[
X111{S=s}

]
= γ (s, β1, β2)

=
∫ s

0
xfX1,S (x, s) dx =

∫ s

0
xfX1,X2 (x, s− x) dx

= β1β2

β2 − β1

[
se−β1s + 1

β2 − β1

(
e−β2s − e−β1s

)]
.

Thus, the systemic risk indicator can be expressed as:

SRIV aRα(Xi|S) =
1
βi

2∑
`=1

1
β`

− γ (s∗, βi, β3−i)
s∗h(s∗, βi, β3−i)

.

�

Lemma 3.2 (TVaR-SRI, EI Model). The TVaR systemic risk indicator of Xi is given by

(3.2) SRITV aR(Xi|S) =
1
βi

2∑
`=1

1
β`

− ξ (s∗; βi, β3−i)
ζ (s∗; β1, β2) ,

where s∗ = V aRα(S), and ζ and ξ are the functions defined as follows:

ζ (x; β1, β2) =
2∑

k=1

 2∏
`=1,` 6=k

β`
β` − βk

(xe−βkx + e−βkx
βk

)
,

and

ξ (x; βi, βj) =
βje
−βix

(
x+ 1

βi

)
(βj − βi)

−
(

βje
−βix

(βi − βj)2 −
βie
−βjx

(βi − βj)2

)
.

Proof. Since Xi ∼ E(βi) for all i ∈ {1, . . . , d}, we have

TV aRα(Xi) = 1
βi

(1− ln (1− α)) .

Furthermore, we can express

E[Xi|S ≥ V aRα(S)] = 1
1− α

∫ +∞

V aRα(S)
E[Xi11{S=s}]ds,

and
E
[
Xi11{S=s}

]
= γ (s, βi, β3−i) ,
13



where γ is the function defined in Lemma 3.1.
The remaining expressions can be obtained straightforwardly from their definitions using

E
[
S × 11{S≥x}

]
= ζ (x; β1, β2) =

2∑
i=1

 2∏
j=1,j 6=i

βj
βj − βi

(xe−βix + e−βix
βi

)
,

and
E
[
Xi × 11{S≥x}

]
= ξ (x; βi, β3−i) ,

where

ξ (x; β1, β2) =
β2e
−β1x

(
x+ 1

β1

)
(β2 − β1) −

(
β2e
−β1x

(β1 − β2)2 −
β1e
−β2x

(β1 − β2)2

)
.

�

Lemma 3.3 (Expectile-SR, EI Model). For the risk Xi, the Expectile systemic risk indicator is
given by:

SRIeα (Xi|S) = x∗i
x∗i + x∗3−i

− (2α− 1)βiξ (s∗; βi, β3−i) + (1− α)
(2α− 1)H̄ (s∗; β1, β2) + (1− α)

1
s∗βi

,

where x∗i is the unique solution to the following equation:

βix−
2α− 1
1− α e−βix − 1 = 0,

and s∗ is the unique solution to the following equation:

(2α− 1)
[
ζ (s; β1, β2)− sH̄ (s; β1, β2)

]
= (1− α)

[
s− 1

β1
− 1
β2

]
,

where ξ, ζ, and H̄ are the same functions defined in Lemma 3.2.

Proof. From the expectile definition (2.7), eα(S) is the unique solution to the equation:

αE[(S − s)+] = (1− α)E[(s− S)+],

which can be written as:

(2α− 1)E[(S − s)+] = (1− α) (s− E[S]) .

Furthermore, from Equation 2.9, the contribution eα (Xi|S) can be written as:

eα(Xi|S) =
(2α− 1)E

[
Xi11{S>eα(S)}

]
+ (1− α)E [Xi]

(2α− 1)P (S > eα(S)) + (1− α) .

The expressions are obtained straightforwardly from their definitions using the functions H̄ and ξ
defined in Lemma 3.2. �

The case of independence serves as a reference scenario, enabling us to assess the influence of
marginal distributions on risk indicators and facilitating comparisons between different indicators.
This basic model also helps us understand how these indicators behave based on the threshold
parameter α.
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3.2. Bivariate FGM model. Let the joint distribution of (X1, X2) be defined by a Farlie-
Gumbel-Morgenstern (FGM) copula, given as

Cθ (u1, u2) = u1u2 + θu1u2(1− u1)(1− u2), −1 ≤ θ ≤ 1,

(see e.g., Nelsen (2007) [29], Example 3.12, Section 3.2.5). The marginal distributions are expo-
nential with parameters β1 and β2, respectively. This leads to the joint cumulative distribution
function:

FX1,X2 (x1, x2) =
(
1− e−β1x1

) (
1− e−β2x2

)
+ θ

(
1− e−β1x1

) (
1− e−β2x2

)
e−β1x1e−β2x2 .

It is important to note that the FGM construction represents a weak dependence model. The
Pearson correlation coefficient is given by ρP (X1, X2) = θ

4 , which implies ρP (X1, X2) ∈
[
−1

4 ,
1
4

]
.

The Spearman’s correlation coefficient, denoted as ρS, is given by ρS = θ
3 ∈

[
−1

3 ,
1
3

]
. We recall

that Spearman’s rho is a concordance measure defined for continuous bivariate distributions with
copula C as the dependence structure. It can be calculated as:

ρS = 12
∫ ∫

[0,1]2
uvdC(u, v)− 3

= 12
∫ ∫

[0,1]2
C(u, v)dudv − 3.

The FGM construction is also considered an asymptotically independent model since its upper tail
dependence coefficient is λU = 0. We recall the definition of the upper tail dependence coefficient
as presented in Joe (1997) [20] for bivariate random variables (X, Y ) with continuous marginal
distributions:

λU = lim
u→1−

P(Y > F−1
Y (u)|X > F−1

X (u))

= lim
u→1−

1− 2u+ C(u, u)
1− u ,

when the limit exists. The joint density is given by:

(3.3) fX1,X2 (x1, x2) = β1e−β1x1β2e−β2x2 + θ
2∑
i=1

2∑
j=1

(−1)i+j × iβ1e−iβ1x1 × jβ2e−jβ2x2 .

Lemmas 3.4, 3.5, and 3.6 present the expressions of the marginal systemic risk indicators obtained
using VaR, TVaR, and the expectile as risk measures, respectively.

Lemma 3.4 (VaR-SRI, FGM Model). The VaR systemic risk indicator of Xi is given by

(3.4) SRIV aRα(Xi|S) =
1
βi

2∑
`=1

1
β`

−
γ (s∗; βk, β`) + θ

2∑
i=1

2∑
j=1

(−1)i+j γ (s∗; iβk, jβ`)

s∗h (s∗; βk, β`) + θ
2∑
i=1

2∑
j=1

(−1)i+j s∗h (s∗; iβk, jβ`)
,

where s∗ = V aRα(S) is the unique solution to the following equation:

H̄ (s∗; βk, β`) + θ
2∑
i=1

2∑
j=1

(−1)i+j H̄ (s∗; iβk, jβ`) = 1− α,

and H̄, h, and γ are the same functions defined in Lemma 3.1.
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Proof. Using Equation 3.3 and the functions h and γ defined in Lemma 3.1, we can easily calculate
the following expressions:

fS (s) = h (s; β1, β2) + θ
2∑
i=1

2∑
j=1

(−1)i+j h (s; iβ1, jβ2) ,

and

E
[
Xk × 11{S=s}

]
= γ (s; βk, β3−k) + θ

2∑
i=1

2∑
j=1

(−1)i+j γ (s; iβk, jβ3−k) , k = 1, 2.

These expressions are sufficient to derive the expression of the VaR-based systemic risk indicator
as announced in Lemma 2.2. �

Lemma 3.5 (TVaR-SRI, FGM Model). The TVaR systemic risk indicator of Xk is given by

(3.5) SRITV aR(Xk|S) =
1
βi

2∑
`=1

1
β`

−
ξ (s∗; βk, β3−k) + θ

∑2
i=1

∑2
j=1 (−1)i+j ξ (s∗; iβk, jβ3−k)

ζ (s; β1, β2) + θ
∑2
i=1

∑2
j=1 (−1)i+j ζ (s; iβ1, jβ2)

,

where s∗ = V aRα(S), and ζ, ξ are the functions defined in Lemma 3.2.

Proof. For the FGM model, the expressions for the contributions in the TVaR allocation are given
in Bargès et al. (2009) [7]. From those expressions, we can derive the following expressions:

E
[
S × 11{S≥s}

]
= ζ (s; β1, β2) + θ

2∑
i=1

2∑
j=1

(−1)i+j ζ (s; iβ1, jβ2) ,

and

E
[
Xk × 11{S≥s}

]
= ξ (s; βk, β3−k) + θ

2∑
i=1

2∑
j=1

(−1)i+j ξ (s; iβk, jβ3−k) ,

where ζ and ξ are the functions defined in Lemma 3.2. By combining these expressions with
Lemma 2.4, we obtain the expression for the TVaR-based systemic risk indicator. �

Lemma 3.6 (Expectile-SRI, FGM Model). For the risk Xi, the Expectile systemic risk indicator
is given by:

SRIeα (Xi|S) = x∗i
x∗i + x∗3−i

−
(2α− 1)βi

[
ξ (s∗; βi, β3−i) + θ

∑2
k=1

∑2
`=1 (−1)k+` ξ (s∗; kβi, `β3−i)

]
+ 1− α

(2α− 1)
[
H̄ (s∗; β1, β2) + θ

∑2
i=1

∑2
j=1 (−1)i+j H̄ (s∗; iβ1, jβ2)

]
+ 1− α

1
s∗βk

,

where x∗i is the unique solution to the equation:

βix−
2α− 1
1− α e−βix − 1 = 0,

and s∗ is the unique solution to the equation:

(2α− 1)
T (s; β1, β2) + θ

2∑
i=1

2∑
j=1

(−1)i+j T (s; iβ1, jβ2)
 = (1− α)

[
s−

(
1
β1

+ 1
β2

)]
,

and ξ, ζ, and H̄ are the functions defined in Lemma 3.2, and T is the function defined by:
T (s; iβ1, jβ2) = ζ (s; iβ1, jβ2)− sH̄ (s; iβ1, jβ2) , ∀s ∈ R+, ∀(i, j) ∈ {1, 2}2.

Proof. The expectile-based risk indicators are obtained directly using Equation 2.9 and the func-
tions defined in Lemma 3.2. �
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We observe that the FGM model includes the case of independence (θ = 0). However, this de-
pendency structure does not capture tail dependencies (λU = 0). In the next subsection, we study
the systemic risk indicators in a model that specifically incorporates tail dependence, addressing
this limitation.

3.3. Bivariate CommonMixture Model. This approach to constructing multivariate models is
extensively described by Joe (1997) [20]. It involves selecting a random variable Θ with support SΘ
and independent random variables Yi to construct the random variables Xi, which are conditionally
independent given Θ. This construction ensures that the conditional distribution function of Xi

given Θ = θ is given by
F̄Xi|Θ=θ(xi) = (F̄Yi(xi))θ.

By integrating with respect to the distribution of Θ, this construction provides both the marginal
distributions and the joint distribution, as explained in Marceau (2013) [25].
In our study, we focus specifically on a bivariate exponential mixture model. We assume that the
moment-generating function of the random variable Θ, denoted by MΘ, exists. The joint density
function of X1 and X2 is given by the integral:

fX1,X2(x1, x2) =
∫
θ∈SΘ

β1θe
−β1θx1β2θe

−β2θx2dFΘ(θ) = β1β2
d2MΘ(t)
dt2

|t=−(β1x1+β2x2).

We consider a pair of continuous random variables (X1, X2) that follow a mixture of exponential
distributions. Each Xi is exponentially distributed with parameter βiθ, where 0 < β1 < β2. The
random variable θ follows a Gamma distribution with shape parameter γ and scale parameter b,
denoted as θ ∼ Ga(γ, b). As a result, the survival function of Xi is given by:

F̄Xi(x) =
∫ ∞

0
F̄Xi|Θ=θfΘ(θ)dθ =

∫ ∞
0

e−βiθxfΘ(θ)dθ =
(

1 + βix

b

)−γ
.

Consequently, Xi follows a Pareto distribution with parameters
(
γ, b

βi

)
. Importantly, X1 and X2

are conditionally independent. The survival bivariate distribution, denoted as F̄X1,X2(x1, x2), is
given by the expression:

F̄X1,X2(x1, x2) =
(

1
1 + β1

b
x1 + β2

b
x2

)γ
=
(
F̄X1(x1)−1/γ + F̄X1(x1)−1/γ − 1

)−γ
.

This represents the survival Clayton copula with a dependence parameter θ = 1/γ. Consequently,
the upper tail dependence coefficient is given by:

λU = λClaytonL = 2−γ,

where λClaytonL represents the lower tail dependence coefficient of the Clayton copula. This depen-
dence model exhibits upper tail dependence.
The density function of S, denoted as fS(s), is given by:

fS(s) = hCM (s, β1, β2, b, γ) = β1β2γ

(β1 − β2)b

( 1
1 + β2

b
s

)γ+1

−
(

1
1 + β1

b
s

)γ+1
 ,

and its survival function, denoted as F̄S(s), is given by:

F̄S(s) = H̄CM (s, β1, β2, b, γ) = β1

β1 − β2

(
1

1 + β2
b
s

)γ
+ β2

β2 − β1

(
1

1 + β1
b
s

)γ
.
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Lemma 3.7 (VaR-SRI, CM Model). The VaR systemic risk indicator of Xi is given by:

(3.6) SRIV aRα(Xi|S) =
1
βi

2∑
`=1

1
β`

− γCM (s∗, βi, β3−i; b, γ)
s∗hCM (s∗, β1, β2, b, γ) ,

where s∗ = V aRα(S) is the unique solution to the following equation:

β1

β1 − β2

(
1

1 + β2
b
s

)γ
+ β2

β2 − β1

(
1

1 + β1
b
s

)γ
= 1− α,

and γCM is the function defined as:

γCM (s, β1, β2; b, γ) = β1β2γ

(β2 − β1)bs
(

1
1 + β1

b
s

)γ+1

+ β1β2

(β1 − β2)2

[(
1

1 + β2
b
s

)γ
−
(

1
1 + β1

b
s

)γ]
.

Proof. Since Xi follows a Pareto distribution with parameters
(
γ, b

βi

)
, the VaR of Xi is calculated

as:
V aRα(Xi) = b

βi

(
(1− α)−

1
γ − 1

)
.

To compute the VaR-based allocation contribution, we use its definition:

E
[
Xk × 11{S=s}

]
= γCM (s, βk, β3−k; b, γ) ,

where

γCM (s, β1, β2; b, γ) = β1β2γ

(β2 − β1)bs
(

1
1 + β1

b
s

)γ+1

+ β1β2

(β1 − β2)2

[(
1

1 + β2
b
s

)γ
−
(

1
1 + β1

b
s

)γ]
.

These calculations provide us with the expression of the marginal systemic risk indicator. �

Lemma 3.8 (TVaR-SRI, CM Model). The TVaR systemic risk indicator of Xi is given by:

(3.7) SRITV aR(Xi|S) =
1
βi

2∑
`=1

1
β`

− ξCM (s∗, βi, β3−i, γ, b)
ζCM (s, β1, β2; b, γ) ,

where s∗ = V aRα(S) and ζCM , ξCM are defined as:

ζCM (s, β1, β2; b, γ) =
2∑
i=1

β3−i

β3−i − βi

s( 1
1 + βi

b
s

)γ
+ b

(γ − 1)βi

(
1

1 + βi
b
s

)γ−1
 ,

ξCM (s∗, βi, β3−i, γ, b) = β3−ib

(β3−i − βi)βi(γ − 1)

(
1

1 + βi
b
s

)γ (
1 + γ

βi
b
s

)

+ 1
(βi − β3−i)2(γ − 1)

βib
 1

1 + β3−i
b
s

γ−1

− β3−ib

(
1

1 + βi
b
s

)γ−1
 .

Proof. Since Xi follows a Pareto distribution with parameters
(
γ, b

βi

)
and γ > 1, the TVaR of Xi

is calculated as:

TV aRα(Xi) = b

βi

(
γ

γ − 1(1− α)−
1
γ − 1

)
.
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To compute the sum TVaR, we use its definition:

E
[
S × 11{S≥s}

]
=

2∑
i=1

β3−i

β3−i − βi

s( 1
1 + βi

b
s

)γ
+ b

(γ − 1)βi

(
1

1 + βi
b
s

)γ−1
 .

By using the expression for the truncated expectation:

E
[
X1 × 11{S≥s}

]
= β2b

(β2 − β1)β1(γ − 1)

(
1

1 + β1
b
s

)γ (
1 + γ

β1

b
s

)

+ 1
(β1 − β2)2(γ − 1)

β1b

(
1

1 + β2
b
s

)γ−1

− β2b

(
1

1 + β1
b
s

)γ−1
 .

By combining all the obtained expressions, we obtain the systemic risk indicator as stated. �

Lemma 3.9 (Expectile-SRI, CM Model). Let (X1, X2) follow a bivariate common Gamma mixture
model. The Expectile systemic risk indicator of Xi, i = 1, 2 is given by:

SRIeα (Xi|S) = x∗i
x∗i + x∗3−i

− (2α− 1)(γ − 1)βiξCM (s∗, βi, β3−i, γ, b) + (1− α)b
(2α− 1)H̄CM (s∗, β1, β2, γ, b) + (1− α)

1
(γ − 1)βis∗

,

where ξCM is defined in Lemma 3.8, x∗i is the unique solution to the following equation:

βi
b

(γ − 1)x− 2α− 1
1− α

(
1

1 + βi
b
x

)γ−1

− 1 = 0,

and s∗ is the unique solution to the following equation:

(2α− 1)
 β1/β2

(β1 − β2)

(
1

1 + β2
b
s

)γ−1

+ β2/β1

(β2 − β1)

(
1

1 + β1
b
s

)γ−1
 = (1− α)

[
s

b
(γ − 1)− 1

β1
− 1
β1

]
.

Proof. Since Xi follows a Pareto distribution with parameters
(
γ, b

βi

)
and γ > 1, the univariate

expectile eα(Xi) is obtained as the unique solution to the following equation:

βi
b

(γ − 1)x− 2α− 1
1− α

(
1

1 + βi
b
x

)γ−1

− 1 = 0.

Using the expression F̄CM , we calculate the stop-loss function:

E[(S − s)+] =
β1
β2
b

(β1 − β2)(γ − 1)

(
1

1 + β2
b
s

)γ−1

+
β2
β1
b

(β2 − β1)(γ − 1)

(
1

1 + β1
b
s

)γ−1

.

Thus, the expectile eα(S) is the unique solution to the following equation:

(2α− 1)
 β1/β2

(β1 − β2)

(
1

1 + β2
b
s

)γ−1

+ β2/β1

(β2 − β1)

(
1

1 + β1
b
s

)γ−1
 = (1− α)

[
s

b
(γ − 1)− 1

β1
− 1
β1

]
.

By using the expressions of the Expectile-based allocation contributions given in Equation 3.3,
and the function ξCM defined in Lemma 3.8, we obtain the systemic risk indicators based on the
expectile as a risk measure. �

The common mixture model is particularly useful when dealing with risks that exhibit significant
asymptotic behavior. The Pareto marginal distribution, known for its heavy-tailed nature, provides
an effective representation of extreme events. The models presented in this section will serve as
the basis for numerical illustrations in the subsequent section.
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4. Numerical illustrations

In this section, we present some numerical illustrations based on the bivariate models studied
in Section 3. Our aim is to analyze the behavior of the TVaR and Expectile derived systemic risk
indicators. We also want to highlight the impact of dependence on these indicators. Recall that
in the bivariate case, the systemic risk indicators are symmetric between the two risks composing
the system.

4.1. Independence case. For this first example, we are considering two independent exponential
random variables, namely X1 ∼ E(β1) and X2 ∼ E(β2), where β1 < β2. This implies, in terms
of stochastic order, that X1 is riskier than X2. The theoretical expressions of the indicators in
this case are presented in Sub-section 3.1. Figure 1 illustrates the variation of the indicators
with respect to the threshold α. As α increases, representing higher risk aversion, the more risky
component is considered more systemic.

Figure 1. SRITV aRα(Xi|S) and SRIeα(Xi|S) - Independence case
(Left: X1 ∼ E(β1 = 0.10), Right: X2 ∼ E(β2 = 0.25))

Both indicators show levels above 10% for the asymptotic levels of α. The values obtained for
SRIeα are consistently lower than those obtained by SRITV aRα , which can be attributed to the
construction of the expectile measure that considers both tails of the distribution.

4.2. FGM copula. Now, let’s examine the impact of dependence on the behavior of the two indi-
cators SRITV aRα and SRIeα . To do this, we consider the FGM model, and the theoretical results
for this model are presented in Sub-section 3.2. By setting the parameter of the FGM copula to
θ = 1, representing the maximum level of positive dependence captured by this copula, we observe
a decrease in the values of both indicators compared to the case of independence (θ = 0), as shown
in Figure 1. Positive dependence increases the responsibility of the less risky component (in this
case, X2) in overall risk, thus increasing its systemic level and decreasing that of X1.

To examine the impact of dependence on the behavior of the indicators according to its nature,
we present in Figure 3 the evolution of the two indicators: SRITV aRα (on the left) and SRIeα (on
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Figure 2. SRITV aRα(X1|S) and SRIeα(X1|S) - FGM Model θ = 1
(X1 ∼ E(β1 = 0.10) and X2 ∼ E(β2 = 0.25))

Figure 3. FGM Model (X1 ∼ E(β1 = 0.10) and X2 ∼ E(β2 = 0.25)), θ = −1, 0, 1
Left: SRITV aRα(X1|S) - Right: SRIeα(X1|S)

the right), for three values of the parameter θ = −1, 0,+1. Figure 3 shows that the systemic level
of the riskier component increases in the presence of negative dependence. A significant portion of
the overall risk is attributed to this component, resulting in a higher absolute value of the systemic
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Figure 4. SRITV aR99%(X1|S) and SRI99%(X1|S) - FGM Model θ ∈ [−1, 1]
(X1 ∼ E(β1 = 0.10) and X2 ∼ E(β2 = 0.25))

risk indicator.

To closely examine this impact of dependence, we present in Figure 4 the values obtained for
the two indicators for all possible values of θ, with the threshold α fixed at 99%. We observe a
considerable difference between the values obtained depending on θ. This confirms the idea that
the nature of dependence can have a significant impact on the systemic level of a component in
the system.

4.3. Survival Clayton copula. The FGM copula represents a weak dependence structure that
cannot capture all levels of dependence. Therefore, we consider the case of a Clayton survival
copula constructed by common mixing, as presented in Sub-section 3.3. This structure models
positive dependence and has the ability to capture asymptotic dependence. We set the parameter
b to 1 and vary the parameter γ, which represents a copula parameter, to observe the impact of
dependence.

Figure 5 illustrates the variation of the indicators SRITV aRα(X1|S) and SRIeα(X1|S) as a func-
tion of the level α in the case of γ = 1. The impact of the dependence structure is evident in the
asymptotic behavior of these indicators, which differs from that observed in Figure 2. This differ-
ence arises because the considered copula has λU > 0, while this measure of extreme dependence
is zero for the FGM copula. In Figure 6, we explore the cases of γ = 1.01, γ = 1.5, and γ = 2. It is
important to note that in this model, we assume γ > 1. As the dependence increases by decreasing
the parameter γ, the values of the indicators decrease due to positive dependence. By decreasing
the parameter γ, we approach the case of perfect dependence, which nullifies diversification and,
consequently, the systemic risk indicators. This effect is particularly noticeable for γ = 1.01.
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Figure 5. SRITV aRα(X1|S) and SRIeα(X1|S) - Survival Clayton Model
(b = 1,γ = 2, X1 ∼ E(β1 = 0.10) and X2 ∼ E(β2 = 0.25))

Figure 6. Survival Clayton Model: (X1 ∼ E(β1 = 0.10) and X2 ∼ E(β2 = 0.25))
Left: SRITV aRα(X1|S) - Right: SRIeα(X1|S)
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To examine the asymptotic behavior of the indicators, we present in Figure 7 their variation as
a function of the parameter γ for α = 99%.

Figure 7. SRITV aR99%(X1|S) and SRIe99%(X1|S) - Survival Clayton Model
(X1 ∼ E(β1 = 0.10) and X2 ∼ E(β2 = 0.25))

As extreme dependence increases with decreasing γ, the systemic risk level of X1 decreases
more rapidly compared to FGM case presented in Figure 4. Hence, the nature of the dependence
structure significantly affects the asymptotic behavior of these indicators.

Conclusion

In this article, our aim was to propose a construction of systemic risk indicators based on risk
allocation methods commonly used in actuarial science. These indicators can be derived from var-
ious risk measures depending on the desired level of risk aversion. Their economic interpretation
is straightforward, and their estimation follows the chosen risk measures.

Furthermore, we demonstrated the impact of dependence on the behavior of these indicators,
which were derived from well-known measures such as TVaR (Value at Risk) and expectile, using a
few examples of bivariate copulas. As a future perspective for this research, it would be interesting
to apply these indicators to a financial system in order to identify components that represent
significant systemic risk. Subsequently, it would be possible to develop a decision support tool
aimed at mitigating this risk, such as by recommending capital increases.
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