
ISO 21526 Conform Metadata Editor for

FAIR Unicode SKOS Thesauri

Mark R. STÖHRa,1, Andreas GÜNTHERa and Raphael W. MAJEEDa
a

 UGMLC, German Center for Lung Research (DZL),

Justus-Liebig-University, Giessen, Germany

Abstract. Metadata repositories are an indispensable component of data integration
infrastructures and support semantic interoperability between knowledge
organization systems. Standards for metadata representation like the ISO/IEC 11179
as well as the Resource Description Framework (RDF) and the Simple Knowledge
Organization System (SKOS) by the World Wide Web Consortium were published
to ensure metadata interoperability, maintainability and sustainability. The FAIR
guidelines were composed to explicate those aspects in four principles divided in
fifteen sub-principles. The ISO/IEC 21526 standard extends the 11179 standard for
the domain of health care and mandates that SKOS be used for certain scenarios. In
medical informatics, the composition of health care SKOS classification schemes is
often managed by documentalists and data scientists. They use editors, which
support them in producing comprehensive and valid metadata. Current metadata
editors either do not properly support the SKOS resource annotations, require server
applications or make use of additional databases for metadata storage. These
characteristics are contrary to the application independency and versatility of raw
Unicode SKOS files, e.g. the custom text arrangement, extensibility or copy & paste
editing. We provide an application that adds navigation, auto completion and
validity check capabilities on top of a regular Unicode text editor.

Keywords. Metadata, classification, data visualization, semantic web, data
management, health information interoperability

1. Introduction

1.1. Background

Metadata repositories are an indispensable component of data integration infrastructures
and support semantic interoperability between knowledge organization systems. The
underlying controlled vocabulary varies in scope, notation format, storage type and
complexity. This yields two key aspects for long-term functional appropriateness: First,
the ability to interconnect with other metadata vocabularies in form of mappings and
translations and secondly, the maintainability of the vocabulary itself. Common
standards were published to approach these issues: The ISO/IEC 11179 standard defines
a schema for representing metadata. It has been extended and clarified by the ISO/IEC
21526 standard to meet the requirements of healthcare [1,2]. The World Wide Web
Consortium (W3C) defined multiple standards: The Resource Description Framework

1 Corresponding Author, Mark R. Stöhr, UGMLC, Justus-Liebig-University, Klinikstraße 36,

35392 Gießen, Germany, E-Mail: mark.stoehr@innere.med.uni-giessen.de

German Medical Data Sciences: Bringing Data to Life
R. Röhrig et al. (Eds.)

© 2021 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/SHTI210056

94

(RDF) provides a common framework to share and reuse data across the semantic web
[3]. The Web Ontology Language (OWL) provides a language to describe ontology
resources, their relations and properties expressed in RDF [4]. The Simple Knowledge
Organization System (SKOS) is a lightweight data model formally defined as OWL
ontology with purpose to describe thesauri and other classification schemes [5]. It is
considered a compromise between poorly structured taxonomies and extensively
formalized ontologies. A large collection of example SKOS datasets can be found on the
W3C homepage, showing that SKOS has a wide scope of application including national
libraries, social sciences, MeSH terms and drug administration forms [6]. The ISO/IEC
21526 standard explicitly “mandates the use of SKOS to provide user-interface surfaced
content classification”. The use of SKOS leads directly to metadata with improved
compliance with three of the four FAIR principles [7]: Resources are registered with
unique identifiers (Findability), data is available in a “broadly applicable language for
knowledge representation” (Interoperability) and resources are annotated with preferred
labels, descriptions and notations (Reusable). The fourth principle “Accessibility” can
be achieved by loading SKOS resource definition files into a dedicated application, e.g.
a triple store like Apache Jena Fuseki with SPARQL interface [8,9].

Implementing the SKOS standard for representing a classification scheme means to
use one or more of RDF’s serializations formats, the most popular ones being RDF/XML,
Notation3, Turtle and JSON. We prefer Turtle, which is highly human readable and still
machine parsable at reasonable costs. Since it is written as Unicode text, it can on the
one hand easily be shared between people and applications and on the other hand be
maintained in simple text editors. Nevertheless, especially when handling large
classification schemes, the latter can lead to negative user experiences: Resource
definitions and their relations become confusing, syntax errors will possibly be
unrecognized until the documents are parsed by a machine. All known tools for
maintaining SKOS data make use of (server) applications with additional databases and
user interfaces to operate on them. Although the tools offer interfaces that allow the
import and export of various Unicode formats, they thereby negate the simplicity,
independency (no server needed, offline editing possible) and high flexibility (e.g.
extensibility, copy & paste editing, commenting) of raw Unicode SKOS data. The
decision for an editing tool depends on the target users. Conway et al. claim that in the
field of medicine such tools are mostly used by physicians [10], whereas we made
contrary experiences: In the domain of medical informatics, the development of
classification schemes necessitates a certain amount of knowledge about metadata
management and compliance with design patterns. For example, hierarchical
subordinated elements may inherit context information, different catalogues in different
versions need to be merged (e.g. TNM classification) and annotated codes may require
accurate post-coordination. Therefore, in many cases editing is performed by data
managers and medical documentalists. For such clientele, an editor should support users
at their task while not impeding any Unicode text editor functionality.

In this paper, we elaborate a solution to fill a disregarded niche of Unicode SKOS
classification scheme maintenance.

1.2. Requirements

Throughout over one hundred iterations of editing SKOS data and uploading it into our
metadata repository, we identified various requirements for an assisting Unicode editor:
(1) We need RDF syntax highlighting as well as syntax verification, (2) a presentation

M.R. Stöhr et al. / ISO 21526 Conform Metadata Editor for FAIR Unicode SKOS Thesauri 95

of the defined SKOS hierarchy and (3) the possibility to include multiple Unicode files
at once. The editor should (4) support navigation within the classification scheme:
selecting a node in the concept tree or selecting a concept’s reference to another concept
should navigate to the respective text segment. Hovering a concept identifier should (5)
offer context information about the SKOS resource, e.g. label and hierarchical
classification. (6) Changes should be adopted immediately and (7) proper suggestions
(auto completion) should be offered during typing. (8) We require basic semantic
verification, e.g. checks for unique preferred labels, an existing English label and no
loops in hierarchy. Improper text segments should be visualized for the user. For the
purpose of sustainability and due to limited resources, we do not want to develop a
completely new editor from scratch. Thus, we require (9) a platform independent existing
text editor with extension capabilities. The editor itself should work (10) server-
independently/stand-alone, which on the one hand corresponds to the proven approach
of editing offline and publishing/versioning online and on the other hand prevents
accessibility issues like server downtime or network problems.

2. State of the art

Although we seek a server-independent editor, we still want to take the most prominent
ones and their SKOS editing capabilities into account: Protégé, developed by the
Stanford University, incorporates a large toolset for complex OWL ontology
maintenance [11]. Like its browser-based counterpart “Web Protégé” [12], Protégé only
considers the “subclass” and “is a” relation for hierarchy evaluation. Thus, SKOS’
“broader” and “narrower” relations are supported, but they will not result in a proper tree
view. An SKOS plugin was developed in 2011, but it is not supported by the latest
Protégé version and development has been discontinued [13]. The University of Utah
developed a web-based SKOS editor, which unfortunately is no longer accessible [10].
Additionally, there are various commercial vendors like PoolParty [14] and
TopQuadrant. Those focus on creating and maintaining thesauri according to the SKOS
standard. They offer additional tools like text mining, graph visualization and use deep
learning algorithms for content classification. Again, the actual data is either stored on a
web server or in a binary database.

On the other hand, we have a large amount of text editors. To name only few popular
ones, there are Atom, Notepad++, Vim and Sublime. Many of them provide an extension
interface, making them potential candidates for powerful SKOS editors.

3. Concept

The most appealing text editor is the Visual Studio Code editor by Microsoft. It is free
to use, has a strong community, is highly extensible, platform independent, provides
built-in Git commands, the IntelliSense feature offers smart completion capabilities and
our working group already made positive experiences with it. Additionally, an extension
for RDF syntax highlighting and syntax verification is already available. Visual Studio
Code extensions are written in typescript.

In order to build a Visual Studio Code extension that meets the requirements, we
seek to make use of as many built-in features as possible. Defining SKOS classification
schemes has lot in common with program code writing: Both have clear grammar rules

M.R. Stöhr et al. / ISO 21526 Conform Metadata Editor for FAIR Unicode SKOS Thesauri96

and include references to other text segments. Visual Studio Code offers interfaces to
implement custom features for code editing, context information, validation and
navigation, e.g. “Go to Reference”, search and replace, “Tree View” panels, tooltip on
hover, word suggestion, diagnostics and word completion (“IntelliSense”).

We will make use of many of SKOS’ classes (“Concept”, “Collection”,
“ConceptScheme”), hierarchical relations (“broader”, “narrower”, “inScheme”,
“member”, “topConceptOf”, “hasTopConcept”) and properties (“prefLabel”,
“notation”).

Regarding the overall architecture of our extension, the user interface consists of
two panels: The actual text editor and the tree view, which depicts the SKOS resources
in hierarchical order. Editing the text document will trigger the extension to parse the
whole text document and update these definitions and the tree view. We will implement
a button to load all turtle files from the current working directory. During text editing,
the user will be offered suggestions based on the context, e.g. after typing “skos:broader”
the extension will suggest all known concepts. Hovering a resource will show helpful
information in a tooltip, e.g. the label and the hierarchical classification. Using the “Right
Click  Go to Implementation” function as well as clicking a resource in the tree view
will jump to its defining paragraph(s). Using the “Right Click  Go to Reference”
function will show all text segments that reference the respective resource. We use the
Visual Studio Code “Diagnostic Collection” to highlight invalid text segments with
proper severity level.

For text document parsing, we decided to use regular expressions. We defined them
according to the RDF grammar rules (https://www.w3.org/TR/turtle/#sec-grammar-
grammar). The downside of this approach is that regular expressions do not support
recursion. To solve this issue, we decided not to parse nested blank nodes. Throughout
our research, we did not come across any thesaurus making use of nested blank nodes.

4. Implementation

During development, two users intensively tested the editor for usability, performance
and functional appropriateness. As data basis, we made use of various publicly available
Turtle SKOS metadata sets.

Figure 1 shows some of the extension’s key features: On the left side is a tree view
panel, which shows all defined “Concept”, “Collection” and “ConceptScheme” instances
in a hierarchical arrangement. Clicking on a tree view item will focus the respective text
segment or offer a selection if more than one segments describe the item. Located on the
right side is an outline panel. The middle section shows the actual text editor with active
syntax highlighting. Green text sections are comments that will be ignored by the parser
and can be used to take notes or to blank out definitions. After typing “skos:broader”,
the editor offers a list of all available preferred labels and additionally a descriptive
window showing the selected item’s hierarchical classification and all defining text
paragraphs. Picking a selection will insert the selected item’s identifier.

To prove the editor’s functionality, we loaded three different SKOS datasets: (1)
The “STW Thesaurus for Economics” by the Leibniz Information Centre for Economics
[15], (2) the UNESCO Thesaurus [16] and (3) the German Center for Lung Research
(DZL) thesaurus [17]. The first two thesauri can be downloaded and both consist of one
Unicode file with approximately 3.4 megabyte and 3.2 megabyte in size. The DZL
thesaurus consists of 63 Unicode files with a total of approximately 700 kilobyte. All

M.R. Stöhr et al. / ISO 21526 Conform Metadata Editor for FAIR Unicode SKOS Thesauri 97

thesauri were parsed successfully and displayed correctly. To test the loading
performance, we used a computer with an i7-8700 CPU. Loading the STW thesaurus
took approximately 59 seconds, the UNESCO thesaurus approximately 20 seconds and
the DZL thesaurus took less than 2 seconds. For comparison: Loading the STW thesaurus
into an Apache Jena Fuseki server instance took less than one second. After every text
editing, the refreshing takes the same amount of time. During that refresh process,
interaction with the tree view is delayed, but text editing including suggestions still works
seamlessly. Additionally, we wanted to test the extension for the “NIH NLM Value Sets”
thesaurus found in BioPortal [18], but had to realize that with over 37 megabytes in size
it was too large for our parser in its current version.

Figure 1. Screenshot of the editor’s user interface. Left side: Tree view. Middle: Text editor. During text input,
a suggestion window with additional context information pops up.

The implementation in its current version has been tested for usability by a medical
documentalist and a medical information scientist. Both are experienced in editing text-
based SKOS thesauri. They became a short introduction into the developed editor’s
features. For testing, the DZL thesaurus has been extended by a disease area specific
catalog. The users shared their experiences in a short qualitative evaluation interview
naming the advantages and disadvantages they found. Beneath the ability to navigate
through the thesaurus, the users especially appreciated the semantic checks. Proper
indication for duplicates and ambiguous preferred labels raised awareness for concepts
that are included in more than one sub-catalog. Auto completion for known SKOS
resources helped preventing typing errors. On the other hand, navigating with the “Go to
Reference” and “Go to Implementation” features turned out to be less intuitive for non-
software architects.

M.R. Stöhr et al. / ISO 21526 Conform Metadata Editor for FAIR Unicode SKOS Thesauri98

5. Lessons learned (Discussion)

The Visual Studio Code documentation helped us to develop an editor extension that
meets our requirements entirely for relatively small classification schemes. For larger
thesauri (up to a size of around 3 megabytes or 7000 SKOS resources) like the “STW
Thesaurus for Economics” and the UNESCO Thesaurus, the functionality is assured, but
maintenance is not as fluent. This is because the editor is not yet built for performance.
After every change, the whole file is parsed again. Thus, refreshing is delayed and editing
feels less fluent. For smaller thesauri, the user experience is positive, especially the
semantic verifications have been found very useful. An additional benefit that occurred
during tests was the fact, that the built-in Git module automatically indicated changes
made since the last thesaurus upload. Of course, this only works, if the thesaurus is
versioned with Git. When searching for datasets to test our application, we found many
thesauri in RDF XML format. For more compatibility, additional parsers should be
developed. The current parser only works for Turtle files and ignores nested blank nodes.
During our research, we did not find any thesaurus making use of nested blank nodes.
Another suggestion for future development could be an additional form-based interface
for editing SKOS resources. Visual Studio Code provides so-called “Web Views” for
custom HTML-based interfaces.

6. Conclusion

We identified the necessity to complement the collection of SKOS thesaurus editors with
a server-independent standalone Unicode SKOS thesaurus editor. Our main purpose was
to keep the versatility of raw Turtle formatted text files (e.g. custom text arrangement,
extensibility, copy & paste editing, versioning) and to add navigation, auto completion
and validity check capabilities on top. For thesauri divided in multiple files, the presented
editor works as intended. It offers benefits for usability like clarity, validity checks and
fast navigation. For larger thesauri, improvements in performance are required. The
extension is publicly accessible:
https://marketplace.visualstudio.com/items?itemName=markstoehr.skos-ttl-editor

Conflict of Interest

The authors state that they have no conflict of interests.

M.R. Stöhr et al. / ISO 21526 Conform Metadata Editor for FAIR Unicode SKOS Thesauri 99

References

[1] S.M.N. Ngouongo, M. Löbe, J. Stausberg, The ISO/IEC 11179 norm for metadata registries: does it
cover healthcare standards in empirical research?, Journal of biomedical informatics 46(2) (2013),
318–327, DOI: 10.1016/j.jbi.2012.11.008.

[2] International Organization for Standardization, ISO/TS 21526:2019 Health informatics — Metadata
repository requirements (MetaRep) [Last accessed: 25/02/2020],
https://www.iso.org/standard/71041.html.

[3] World Wide Web Consortium, Resource Description Framework, 2014 [Last accessed: 25/02/2020],
https://www.w3.org/RDF/.

[4] World Wide Web Consortium, Web Ontology Language, 2012 [Last accessed: 25/02/2020],
https://www.w3.org/OWL/.

[5] World Wide Web Consortium, Simple Knowledge Organization System, 2009 [Last accessed:
25/02/2020], https://www.w3.org/2004/02/skos/.

[6] World Wide Web Consortium, SKOS/Datasets, 2018 [Last accessed: 26/03/2020],
https://www.w3.org/2001/sw/wiki/SKOS/Datasets.

[7] M.D. Wilkinson, et al., The FAIR Guiding Principles for scientific data management and stewardship,
Scientific data 3 (2016), DOI: 10.1038/sdata.2016.18.

[8] The Apache Software Foundation, Jena Fuseki, 2011 [Last accessed: 14/07/2020],
https://jena.apache.org/documentation/fuseki2/.

[9] W3C Semantic Web, SPARQL Protocol And RDF Query Language (SPARQL), 2013 [Last accessed:
14/07/2020], https://www.w3.org/TR/2013/REC-sparql11-query-20130321/.

[10] M. Conway, et al., Developing a web-based SKOS editor, Journal of biomedical semantics 7 (2016), 5,
DOI: 10.1186/s13326-015-0043-z.

[11] T. Tudorache, et al., Supporting Collaborative Ontology Development in Protégé, ISWC 2008: The

Semantic Web (2008), 17–32.
[12] M. Horridge, et al., WebProtege: a collaborative Web-based platform for editing biomedical

ontologies, Bioinformatics (Oxford, England) 30(16) (2014), 2384–2385, DOI:
10.1093/bioinformatics/btu256.

[13] S. Jupp, S. Bechhofer, R. Stevens, A Flexible API and Editor for SKOS, ESWC 2009: The Semantic

Web: Research and Applications 2009, 506–520.
[14] T. Schandl, A. Blumauer, PoolParty: SKOS Thesaurus Management Utilizing Linked Data, ESWC

2010: The Semantic Web: Research and Applications (2010), 421–425.
[15] Leibniz Information Centre for Economics, STW Thesaurus for Economics, 2019 [Last accessed:

25/02/2020], http://zbw.eu/stw/version/latest/about.
[16] UNESCO, UNESCO Thesaurus [Last accessed: 25/02/2020], https://skos.um.es/unescothes/.
[17] German Center for Lung Research, CoMetaR - Collaborative Metadata Repository, 2019 [Last

accessed: 25/02/2020].
[18] M. Salvadores, NIH NLM Value Set as a SKOS terminology, 2015 [Last accessed: 27/03/2020],

https://bioportal.bioontology.org/ontologies/NLMVS.

M.R. Stöhr et al. / ISO 21526 Conform Metadata Editor for FAIR Unicode SKOS Thesauri100

