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Abstract. The process of consolidating medical records from multiple institutions 
into one data set makes privacy-preserving record linkage (PPRL) a necessity. Most 
PPRL approaches, however, are only designed to link records from two institutions, 
and existing multi-party approaches tend to discard non-matching records, leading 
to incomplete result sets. In this paper, we propose a new algorithm for federated 
record linkage between multiple parties by a trusted third party using record-level 
bloom filters to preserve patient data privacy. We conduct a study to find optimal 
weights for linkage-relevant data fields and are able to achieve 99.5% linkage 
accuracy testing on the Febrl record linkage dataset. This approach is integrated into 
an end-to-end pseudonymization framework for medical data sharing. 
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1. Introduction 

1.1. Background 

In a research environment driven by modern data analysis methods, collaboration 

between institutions is essential to ensure that analyses are performed on as large and as 

complete a dataset as possible. For medical research studies, this can mean consolidating 

patient data from two or more institutions and databases into one. In order to aggregate 

data for one study subject while also keeping duplicates of subjects’ records to a 

minimum, record linkage has to be employed in this process [1].  

In accordance with the EU General Data Protection Regulation (GDPR), 

encrypted identifiers should be used for the record linkage process [2]. A demand for 

encryption and privacy has led to methods called privacy-preserving record linkage 

(PPRL), most notably record linkage using Bloom Filters. In this approach proposed by 

Schnell et al., sensitive identifying data is split into n-grams, all of which are then 

encoded into a bit vector called a Bloom Filter using two hash functions [3,4]. A 

similarity of Bloom Filters can then be calculated using measures such as the Dice-Index, 

assigning linkage matches when similarity rises above a defined threshold [5]. 

An important goal of the German Medical Informatics Initiative (MII) 

consortium HiGHmed is to facilitate sharing and reuse of medical patient data for 

research purposes [6,7]. To this end, the HiGHmed Data Sharing Framework (DSF) is 

currently being implemented, allowing researchers at different medical data integration 
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centers (MeDICs) to request and exchange patient data on a per-study basis. This 

workflow is illustrated in Figure 1. Upon request, all participating MeDICs retrieve 

medical data of all their patients fulfilling the criteria of the study cohort. Before all these 

records from different MeDICs can be forwarded to the coordinating organization, i.e. 

the researcher who put out the original request, they are linked and pseudonymized by a 

trusted third party (TTP), thus ensuring that no MeDIC has direct access to another 

MeDIC’s patients’ medical- (MDAT) or identifying data (IDAT). 

In this paper, we report on the development of a pseudonymization and record 

linkage framework for data sharing inside the HiGHmed consortium and the novel 

federated multi-party PPRL algorithm used to link MeDIC records. 

1.2. Requirements 

Given the highly heterogeneous nature of IT architecture in MeDICs and privacy 

concerns while sharing sensitive data between them, the framework employs a trusted 

third party and is implemented using an otherwise distributed architecture. Encoding of 

IDAT into Bloom Filters is performed locally at each data-providing MeDIC while 

linkage and pseudonymization is performed at the TTP.  

In order to provide the best possible forward secrecy, given that patient medical 

data is classified sensitive personal data under the GDPR [2], the TTP does not 

persistently store any IDAT or MDAT at any time. Instead, it is solely the channel 

through which data is passed to the recipient. 

The ultimate goal of this implementation is to obtain a high linkage quality, 

specifically, to avoid false-positive matches and false-negative non-matches, while also 

ensuring the privacy and security of the processed personal data using state-of-the-art 

encryption and hashing methods. 

 

 

 

Figure 1: Schematic overview of the HiGHmed data sharing workflow after a request for study data has been 

issued. Arrows represent the flow of patient data between institutions. 

2. State of the art 

Approximate matching of Bloom Filters is a well-established PPRL technique. 

Following Schnell et al.’s original method described in [3], personal identifying fields of 

a record (such as patient IDAT) are selected and their values split into n-grams, usually 

of length n = 2. Using two hashing methods in the double hashing scheme proposed by 

Kirsch and Mitzenmacher in [4], n-grams are assigned k bit positions in a bit vector of 
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length m, known as a Bloom Filter (Figure 2). As different n-grams can map to the same 

bit position in the resulting Bloom Filter, this matching method can lead to high degrees 

of similarity and thus, false positive matches. This can be mitigated by using a large 

enough length m. 

Given two Bloom Filters A and B, a similarity can be calculated using the Dice 

coefficient ��,� =  

��

(���)
, where h is the number of bits set to 1 in both Bloom Filters, a 

is the number of bits set to 1 in Bloom Filter A and b is the number of bits set to 1 in 

Bloom Filter B. 

 

 

Figure 2: Simplified example of the double hashing scheme and similarity calculation. Adapted from [8]. 

 

For the purposes of record linkage and pseudonymization, the Mainzelliste software 

is well-established in the German healthcare system [9]. It is designed to link records 

from different locally stored databases. Its PPRL approach is based on the EpiLink 

algorithm, and defines Field-level Bloom Filters (FBFs) for each field and calculates 

individual similarities between these FBFs [10]. However, FBF encodings have been 

shown to be vulnerable to dictionary attacks [11–13]. 

Durham et al. proposed a method of generating Bloom Filters more securely, 

resulting in a structure called Record-level Bloom Filters (RBFs) [11]. In this method  

FBFs are generated for each field of a record with assigned field weights. A number of 

bits out of each FBF is then sampled2 into the RBF based on its respective field weight: 

higher field weights mean more bits of the corresponding FBF will be sampled. The RBF 

is then shuffled based on a permutation that is predetermined by the participating partners 

of the record linkage process. This sampling and shuffling approach of RBF encoding 

lowers the risk of dictionary attacks. 

Most PPRL approaches are designed to link records from only two origins. In the 

HiGHmed data sharing context, however, records from several MeDICs need to be 

linked. While multi-party PPRL approaches have been proposed, e.g. by Vatsalan and 

Christen in [14], their aim is to aggregate only those records that can be matched from 

all participating origins, ignoring those records that are only found in one or some of 

them.  

 
2 The „eligible bit selection“-step for sampling has been foregone, as it demands a multiparty protocol. 
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3. Concept 

To implement PPRL separate modules for TTP and MeDIC systems were designed. An 

overview of the services includes in these modules is provided in Figure 3, arrows 

representing the flow of patient datasets. 

 

 

Figure 3: High-level architecture of the framework showing the services required for each module. 

3.1. MeDIC 

The MeDIC module provides the necessary services to encode a set of patient data for 

the data sharing process. Given a set of patient data meeting the criteria for the study 

cohort, a request to the MeDIC’s Master Patient Index is issued to look up each patient’s 

IDAT and their local ID. This local ID is then encrypted using 256-bit AES-GCM 

encryption with a MeDIC-specific secret key to obtain a local pseudonym, hereinafter 

called MeDIC-PSN. AES-GCM has been chosen for this purpose as it provides state-of-

the-art authenticated encryption [15]. 

For record linkage purposes, an agreement on nine identifying data fields has been 

reached in the German medical informatics initiative [16]. These are: first name, last 

name, sex, date of birth, city, zip code, street name, country and insurance number. All 

of these IDAT fields, formatted as strings, are individually encoded into FBFs after being 

split into bi-grams as per the scheme in figure 2. To achieve the best possible 

performance with regards to linkage quality, different combinations of hashing methods, 

using the double-hashing-scheme proposed in [4], were compared: 

- MD5 + SHA-1 

- MD5 + SHA-1 with 32-bit HMAC 

- SHA-1 + SHA-2 

- SHA-1 with 32-bit HMAC + SHA-2 with 32-bit HMAC 

- SHA-2 + SHA-3 

- SHA-2 with 32-bit HMAC + SHA-3 with 32-bit HMAC 

Regarding FBF encoding parameters, we follow the recommendations of Schnell et 

al. in [8], using n = 2, m = 500 and k = 15. However, shorter FBF lengths m are used for 

very short fields resulting in few n-grams, such as sex (m = 50), zip code and date of 

birth (m = 250 each), considering a point made by Broder and Mitzenmacher in [17] that 

BFs reach maximum security when exactly half their bits are set. 

Employing Durham et al.’s RBF design, FBFs are sampled into an RBF according 

to their weights. To maximize linkage quality, different combinations of weights have 
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been evaluated using a grid search. The RBF bits are then shuffled according to a study-

specific permutation that is communicated to all participating partner MeDICs and not 

the TTP. At the time of writing, this approach is considered to be good practice in 

mitigating frequency analysis attacks [18]. 

For data sharing purposes all MDAT contained in the input data set are encrypted 

using 256-bit AES-GCM encryption with a study-specific MDAT-key also only 

communicated to all MeDICs. 

An output data set containing the MeDIC-PSNs, RBFs and encrypted MDAT is then 

send to the TTP. 

3.2. TTP 

The TTP module provides services to link and pseudonymize the records collected from 

all MeDICs and submit them to the coordinating organization. 

For linking MeDIC datasets, we propose the following algorithm: 

 

Input: n lists of patient records (MeDIC-PSN and RBF) 

Output: A list of matched patients (containing joint MeDIC-PSNs) 

1. Select largest input list as the base list 

2. for each remaining list: 

for each patient (in parallel): 

Compare patient RBF against base list RBFs 

if Dice-SimilarityRBF  linkage threshold: 

Merge patient into base list patient, joining MeDIC-PSNs 

Break 

 

Given computational resources, the algorithm can be run in a highly parallelized 

manner, comparing multiple patients from a given list against the base list 

simultaneously.  

Following linkage, the joint MeDIC-PSNs are encrypted into study-pseudonyms: 

Traversing the list of matched records, corresponding MeDIC-PSNs of each patient are 

concatenated into a string of the form origin: medic-psn, e.g.: {“UKHD”: 1234, 

“UMG”: 5678, …}. This concatenated string is padded, making all pseudonyms the same 

length and then encrypted into the final study-pseudonym using 256-bit AES-GCM with 

a study-specific key only known to the TTP. The key is persistently stored by the TTP 

to enable de-pseudonymization if needed. 

Finally, the output data set is composed, containing the study-pseudonym for each 

patient together with merged MDAT from all sources. The data set is then submitted to 

the researcher at the coordinating organization, where the MDAT can be decrypted using 

the study-specific MDAT-key. 

4. Implementation3 

For testing, experiments were run on a record linkage dataset created using the Febrl 

library [19]. The dataset contained 5000 original records and 5000 duplicates with up to 

4 corrupted or missing attributes per duplicate. As this duplicate-based setup would only 

 
3 As part of the HiGHmed Data Sharing Framework (Apache 2.0): https://github.com/highmed/highmed-dsf 
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allow for True Positive (TP), False Positive (FP) and False Negative (FN) matches to be 

observed, 1000 records from the original set were removed during testing in order to 

observe and evaluate performance in True Negative (TN) cases. Different combinations 

of hashing methods for FBF generation were implemented and evaluated in regards to 

linkage quality. A grid search for the optimal combination of FBF weights was conducted, 

resulting in the weight matrix depicted in Table 1: 

 

Table 1: Optimal weight matrix for FBF weights determined by a grid search with regards to linkage quality. 

First Name Last Name Sex Birthday City Zip Code Street Country Insurance  

0.1 0.1 0.2 0.1 0.05 0.1 0.05 0.2 0.1 

 

Using these weights, an evaluation of the linkage algorithm for all six combinations 

of FBF hashing methods yielded the results depicted in Table 2: 

 

Table 2: Linkage quality measures achieved by the different combinations of FBF hashing methods. Printed 
in bold are the highest results achieved. Prec. = Precision, Rec. = Recall, Acc. = Accuracy, F1 = F1-Score. 

Methods TP FP FN TN Prec. Rec. Acc. F1 

MD5+SHA1 3910 0 90 1000 1.0 0.978 0.982 0.989 
MD5+SHA1 HMAC 3972 0 28 1000 1.0 0.993 0.994 0.996 
SHA1+SHA2 3688 2 311 1000 0.99 0.922 0.937 0.959 
SHA1 HMAC + SHA2 HMAC 3898 4 100 1000 0.998 0.975 0.979 0.986 

SHA2+SHA3 3953 0 47 1000 1.0 0.988 0.991 0.994 

SHA2 HMAC + SHA3 HMAC 3974 0 26 1000 1.0 0.994 0.995 0.997 

 

These results were achieved using a similarity threshold of 0.8 for positive matches. 

The execution times of the different runs are recorded in Table 3: 

 

Table 3: RBF generation and linkage execution times using different combinations of hashing methods. The 
experiments were run on a 6-core i7-9750H, 32 GB memory using all cores.  

Methods RBF Time [s] RL Time [s] 

MD5 + SHA1 9.94 1.09 

MD5 + SHA1 HMAC 19.82 1.19 

SHA1 + SHA2 10.9 1.16 

SHA1 HMAC + SHA2 HMAC 22.97 1.11
SHA2 + SHA3 15.57 1.21
SHA2 HMAC + SHA3 HMAC 37.69 1.20

5. Discussion 

We provide a framework capable of achieving a high linkage accuracy while also 

effectively avoiding FP matches. The only information persistently stored at the TTP is 

a study-specific AES-GCM key used to encrypt and decrypt study-pseudonyms. 

As listed in table 2, the best linkage results have been achieved using a combination 

of SHA2 and SHA3 with 32-bit HMACs in the double hashing scheme. It is, therefore, 

our recommendation that this method of FBF generation be used for optimal PPRL. It is 

worth mentioning, however, that the accuracy achieved by using MD5 and SHA1 with a 

32-bit HMAC is only 0.1 percentage point lower than that of the SHA2+3 HMAC variant 

while running considerably faster at only a quarter of its execution time. This might prove 

especially relevant when encoding large numbers of records into FBFs. Given 
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appropriate computational resources, however, our framework is able to achieve high 

performance, as it allows for parallelized execution of most steps in the process. 

As mentioned in section 4, the reported times and values have been ascertained by 

linking data from only two parties and not in a multi-party setup. The primary goal of 

this study was to identify optimal weights and parameters for a high linkage accuracy, 

which is best achieved only using data from two parties. However, the proposed 

algorithm has been used to demonstrate feasibility studies using the HiGHmed DSF with 

data sets from multiple parties [20]. 

At this point, several considerations regarding our linkage parameters shall be 

mentioned. Firstly, using a similarity threshold of 0.8 may seem rather low. However, it 

still avoids FP matches while at the same time keeping FN matches to a minimum, even 

when tested on corrupted or partially missing data.  

Secondly, when introducing our framework to be used productively in the HiGHmed 

data sharing context, some weights may need to be adapted for optimal performance. 

The optimal weight of the field insurance number, for example, determined to be 0.1 in 

our evaluation using the Febrl dataset, might be raised in a final version, given that this 

number uniquely identifies a patient and is less error-prone than other fields, as it is 

usually copied from the patients’ health insurance card. On the other hand, the weight 

for the field country, determined to be 0.2 in our evaluation, may need to be lowered in 

the future as, expectedly, the majority of HiGHmed patients will have a German 

residence address, thus lowering the significance of this field. 

6. Conclusion 

In this paper, we proposed a new algorithm for federated record linkage over multiple 

parties using a trusted third party infrastructure. We conducted a study to find optimal 

weights for linkage-relevant data fields and achieved a high linkage accuracy testing on 

the Febrl record linkage dataset. We integrated this approach into an end-to-end 

pseudonymization framework for medical data sharing. Additional evaluation regarding 

field weights will be performed before productive rollout in order to achieve optimal 

performance, but results so far are promising. 
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