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Abstract. Telehealth services for long-term monitoring of chronically ill patients 
are becoming more and more common, leading to huge amounts of data collected 

by patients and healthcare professionals each day. While most of these data are 

structured, some information, especially concerning the communication between the 
stakeholders, is typically stored as unstructured free-texts. This paper outlines the 

differences in analyzing free-texts from the heart failure telehealth network 

HerzMobil as compared to the diabetes telehealth network DiabMemory. A total of 
3,739 free-text notes from HerzMobil and 228,109 notes from DiabMemory, both 

written in German, were analyzed. A pre-existing, regular expression based 

algorithm developed for heart failure free-texts was adapted to cover also the 
diabetes scenario. The resulting algorithm was validated with a subset of 200 notes 

that were annotated by three scientists, achieving an accuracy of 92.62%. When 

applying the algorithm to heart failure and diabetes texts, we found various 
similarities but also several differences concerning the content. As a consequence, 

specific requirements for the algorithm were identified. 
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1. Introduction 

1.1. Background 

A rising prevalence of chronic diseases like heart failure and diabetes mellitus is a major 

concern for healthcare systems, since they are not only accompanied by a high burden 

for the patients but also by high costs [1,2]. To counteract these medical and financial 
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issues, different disease management programs were implemented in recent years. E.g., 

in 2012, a heart failure telehealth system called HerzMobil was launched in Tyrol, 

Austria, by the healthcare provider Tiroler Landeskrankenanstalten GmbH [3]. In 2010, 

a diabetes management program called DiabMemory was started by the 

Versicherungsanstalt für öffentlich Bedienstete, Eisenbahnen und Bergbau (BVAEB). 

Both systems are based on a telehealth platform developed by the AIT Austrian Institute 

of Technology [4]. In both programs, patients are equipped with a specific smartphone 

app for submitting data concerning their chronic disease to a backend system, where 

healthcare professionals review the data. While in HerzMobil, the focus is set on cardiac 

parameters such as blood pressure and heart rate [3], participants of the DiabMemory 

program primarily upload data like blood sugar values, insulin administration and their 

daily food intake [5]. Both systems store these data in a structured format. However, it 

is possible for the participants (patients and healthcare professionals) of the HerzMobil 
as well as the DiabMemory network, to upload additional information in free-text format. 

This function is used as an additional communication channel between participants. In 

the HerzMobil network, this interaction is mostly used between physicians, nurses and 

other healthcare professionals, whilst in the DiabMemory network, most free-text 

messages derive from the communication between patients and healthcare professionals. 

Since these free-texts often contain important information, analyzing them in a structured 

way, based on natural language processing techniques, would provide additional value. 

1.2. State-of-the-art 

The amount of unstructured clinical notes in modern healthcare systems is already very 

high and increases rapidly [6]. Therefore, previous studies have already made efforts 

towards an analysis of free-text clinical notes. A study by Hebal et al. [7] compared 

methods for automated and manual data extraction from clinical notes. However, the 

scope of this study was rather small with 149 individual notes and, additionally, these 

notes had to follow a specific template for the automated extraction. Another approach 

for analyzing clinical notes is to detect named entities by using a domain ontology [8]. 

Amongst other techniques it is also possible, to use systems based on Support Vector 

Machines or Statistic Language Modeling [9,10].  

1.3. Objectives 

In this paper, automated classification of clinical free-text notes from a heart failure 

telehealth network and a diabetes telehealth network are compared. The paper focuses 

on a) differences in the frequency of free-text categories in the two corpuses and b) on 

implications on the natural language processing algorithm when applying tools 

developed for a heart failure application to free-texts from a diabetes telehealth service. 

2. Methods 

2.1. Corpus 

The datasets for the analysis stem from the two telehealth systems: HerzMobil and 

DiabMemory. The HerzMobil dataset contained 1,564 notes with 55,737 tokens. These 
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1,564 notes were tokenized so that every resulting text snippet represented a separate 

sentence, resulting in 3,739 notes on a sentence layer.  

In the DiabMemory network, the clinical notes can be further divided into comments, 

which were written by the patients themselves, and feedbacks which represent a response 

from a physician. The physicians’ respond must not necessarily concern a patient’s free-

text comment, but it can also refer to an uploaded measurement or any other issue. For 

the evaluation of the DiabMemory system, 71,241 comments written by patients and 

156,868 free-text feedbacks from physicians were available.  

The clinical notes from both systems were exclusively written in German language, 

which had to be considered during keyword and regular expression creation in chapter 

2.3. 

Ethics approval for our analyses was granted by the Ethikkommission der 

Medizinischen Universität Innsbruck (vote nr. AN2015-0131 35/4.2 374/5.10(4092a)) 

and the Niederösterreichischen Ethikkommission (vote nr. GS1‐EK‐4/534‐2018). 

2.2. Natural language processing 

Our algorithm was based on an approach developed by Gruber et al. [11, 12] in 2015, 

based on HerzMobil notes. Adaptions of these algorithms and of the categories used for 

classification were applied. The final algorithm consisted of pre-processing, stemming, 

and filtering based on regular expressions, which are described in detail in the following. 

Details concerning adaptions as compared to Gruber et al. are described in chapter 3. 

2.2.1. Pre-processing 

Since the notes contained personal information about patients and healthcare 

professionals, all personal data had to be de-identified using a rule-based algorithm 

during preprocessing, including  data like names, age, address, etc., Additionally, in 

order to prevent linkage of the de-identified data with telehealth data especially in case 

of abnormal values mentioned in the free-texts, all numeric values were masked, 

resulting in e.g. <Digit> km of running instead of an actual distance, or hba1c <Digit>.  

A previously developed algorithm by Wiesmueller et al. was applied to tag all notes 

containing time-related information like e.g. gestern (yesterday) [13]. Even though this 

algorithm was developed using the notes from the HerzMobil network, it was not yet 

available during the work by Gruber et al.  

2.3. Regular expressions and keywords 

A set of keywords which were analyzed by regular expressions was applied to all free-

text notes. Each expression corresponded to one category. E.g., free-texts containing the 

word krank (sick) were classified as category state of health. The keywords for each 

category were stored in separate plain text files for further use in a Python algorithm.  

In general, most regular expressions had the following structure  

 
(?:^|\s)expression(?:\s|$).  
 

The enclosing expressions were start and stop parameters which escaped the expression 

in the case of e.g. a blank character or a new line. As compared to Gruber et al., the 

number of keywords was reduced by simply using the stem of a word and appending a 
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leading and trailing \w*. An example, where this technique was useful, is the expression 

(?:^|\s)\w*schlecht\w*(?:\s|$). This single expression covered all cases of schlecht (bad), 
schlechter (worse), verschlechtern (worsen), Verschlechterung (worsening), etc. 

2.4. Filter process  

A Python2 script was developed to analyze the notes. Therefore, all the prebuilt keyword 

files were transformed into a Python list object, in which each element represented an 

expression. Python’s own library for regular expressions was used to filter the input notes. 

Afterwards, the results for each individual note were aggregated and grouped by patients 

and physicians, based on each note’s sender and recipient ID, respectively.  

To normalize the results for each participant, the overall number of free-text 

elements for each category were subsequently divided by the overall number of free-text 

elements of the respective participant.  

2.4.1. Classification 

We slightly adapted the 28 classes used by Gruber et al. and merged similar classes, 

leading to a smaller set of ten different categories as described in Table 1.  

The developed regular expressions categorized each of the free-text elements into 

none, one or more of these categories.  

 

Table 1 – Categories used for classifying the free-text elements, including short name, description, some 

examples and the number of keywords that were used in the regular expressions. 

Short name Description Example Number of 
keywords 

State of health Physical and mental well-being, pain, 
illness, etc. 

Had a headache today. 91 

Measurements Measurements of physical activities and 

vital parameters 

*DIGIT* km 

*DIGIT* kcal 

10 

Nutrition Meals, food/drink intake Had bread and ham 

for breakfast. 

42 

Activities Physical activities, chores, errands *DIGIT* h cycling 
 

34 

Medication Medication and medication forms (pills, 

capsules, etc.) 

Insulin injected at 10 

pm. 

245 

Technical issues Technical malfunctions/outages, test 

messages and phone-related notes 

I could not transmit 

my measurements. 

26 

Medical 
appointment 

Stationary and ambulatory visits at 
hospitals, rehab-institutes, physicians, etc. 

I am going to be at the 
hospital next week. 

11 

Absence Vacations and travelling I am going abroad for 

two weeks. 

6 

Relatives Relatives, their activities and visits Yesterday was my 

daughter’s birthday. 

22 

Timestamps Time-related information Today, tomorrow, at 
10 pm, on Monday… 

- 

                                                           
2 http://www.python.org  
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2.5. Statistical analyses and evaluation 

2.5.1. Reference annotation and validation 

To validate our algorithm, a sample of 200 free-text notes were randomly selected from 

the DiabMemory dataset. These 200 notes consisted of an equal amount of 100 comments 

from the patients to the healthcare professionals and 100 feedbacks from the healthcare 

professionals to the patients. An annotation guideline was developed and provided, based 

on which three scientists independently annotated the whole set of 200 notes, resulting 

in three annotations per note. These annotators already had experience with classification 

of free-text clinical notes. The inter-annotator reliability was calculated via the Fleiss' 

kappa measure which is part of Pythons numpy library [14]. After the first annotation 

phase, divergent notes were analyzed jointly by the three annotators and an update of the 

guidelines was made to be more specific even in case of unclear free-text classifications. 

Afterwards, one of the three annotators applied the finale guideline on the in-sample set 

of 200 notes to create a gold standard, which was used for validating our algorithm. 

2.5.2. Comparison of diabetes and heart failure free-text elements 

The number and ratio of free-text elements per category as achieved for the HerzMobil 
and the DiabMemory corpus were compared with one another. The results of this 

comparison are depicted in chapter 3.3. 

3. Results 

3.1. Adaptions of the algorithm 

During the development of the DiabMemory algorithm, two major differences between 

the HerzMobil and the DiabMemory system were identified. The first important 

difference was the origin of the notes. Whilst both datasets originated from a telehealth 

system, the HerzMobil notes were used for communication between various healthcare 

professionals like physicians and nurses. In DiabMemory, however, a healthcare 

professional directly communicated with the patient, which might have resulted in more 

inexpertly and personal expressions and conversations. 

The second aspect was the different nature of the diseases heart failure and diabetes. 

Even though the cores of the algorithms were similar, some keyword categories had to 

be extended or changed, to fit the profile of both diseases. Nutrition is, for example, a 

very important aspect in the management of diabetes and, therefore, the nutrition-related 

keywords were vastly extended. Instead of the initially eight words from Gruber et al., 

the final dictionary for the DiabMemory system had 42 expressions for the nutrition 

category.  

The list of medications had to be extended as well. Diabetes patients need different 

medication than heat failure patients, which had to be considered during the creation of 

the keywords. Insulin was especially important, since it is one of the most important 

medications of patients with diabetes. Activity-related notes represented an entirely new 

category. Since physical activities are a key factor in the management of diabetes, it was 

necessary to filter end extract this information. The importance of this category is also 

reflected by its relative frequency of 16.53% as shown in Table 3. 
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3.2. Statistical analyses and evaluation 

3.2.1. Inter-observer-variability  

The inter-observer-variability of the three annotators for the subset of DiabMemory notes 

was calculated based on the annotations prior the annotation guideline update. Based on 

Feiss’ kappa [15], a slight agreement was identified (Fleiss’ kappa = 0.017). The 

comparison of the results of each individual annotator with the gold standard resulted in 

an accuracy of 91.95%, 90.65% and 87.58%, respectively. 

3.2.2. Accuracy of the analyzing algorithm for DiabMemory 

To calculate the accuracy of the newly developed algorithm for DiabMemory, the 

manually annotated gold standard was compared to the results of the Python script. Using 

the previously annotated set of 200 notes resulted in an accuracy of 92.62% for the 

automated extraction algorithm.  

 

Table 2. Contingency table as achieved for 200 notes, each of which could be positive or negative according 

to the ten categories, leading to 2,000 decisions as a whole.  

 Positive (Annotation) Negative (Annotation) Total 
Positive (Algorithm) 150 43 193 

Negative 
(Algorithm) 

112 1,695 1,807 

Total 262 1,738 2,000 

3.3. Comparing the relative frequency of categories 

Table 3 shows the relative frequency of specific categories normalized by the overall 

number of notes.  

Table 3. The relative frequency of notes per category for the HerzMobil and DiabMemory system in percent.  

Note: Relative frequencies do not sum up to 100 %, since 0, 1 or >1 categories can be applied to each note. 

 HerzMobil DiabMemory 
State of health 37.26 25.33 

Measurements 15.97 27.43 
Nutrition 5.64 19.8 
Activities 5.03 16.53 
Medication 38.05 4.25 

Technical Comments 31.15 3.04 
Medical appointment 22.90 0.42 

Absence 4.09 2.65 

Relatives 5.63 3.57 
Time references 63.14 23.55 

4. Discussion 

When trying to apply natural language processing methods developed within the 

HerzMobil telehealth program for heart failure patients on data from the DiabMemory 

diabetes monitoring program, we identified that several adaptions were required. These 

adaptions primarily related to the different focusses addressed in the two programs, i.e. 

hospital stays, medication adaptions, etc. for the (rather severely ill) heart failure patients, 

as compared to nutrition, physical activities, and vital parameters for the diabetes patients. 
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Although some of the differences identified related to the different type of 

communication (heart failure: between healthcare professionals, diabetes: patient to 

healthcare professionals), this effect had less influence than the different focus of the 

diseases. 

All categories except three show higher frequencies in the HerzMobil notes than in 

the DiabMemory notes. This is because HerzMobil notes tend to be longer and, therefore, 

it is more likely for one note to have multiple categories. The three categories 

measurements, nutrition and activity seem to be of great importance for diabetes patients, 

since they are more common in the DiabMemory notes than in HerzMobil.  
The inter-observer-variability with a Fleiss’ Kappa result of 0.017 in between the 

three annotators shows, that annotating clinical notes is, in some cases, not quite clear 

and the annotator has room for interpretations. Comparing the accuracy of the three 

annotators with the newly developed algorithm shows, that the algorithm works with a 

slightly higher accuracy, even though the reference annotations significantly influenced 

the golden standard. However, since the annotation guidelines were adapted after the 

results used to calculate the inter-observer-variability and prior finalizing the golden 

standard, inter-observer-variability must be interpreted with care.   

State of health is a very common category in HerzMobil as well as in DiabMemory. 

However, due to the nature of the keywords from Gruber et al., this category is 

predestined to contain false-positive results. Due to the very general expressions like gut 
(good/well), phrases which have no relation to the state of health might be considered as 

relevant. For example, the common greeting phrase Guten Morgen (Good morning) 
would be considered as a state of health expression. This is probably the reason for the 

high relative frequencies of 37.26% and 25.33% for the respective systems.  

The difference in the number of medication-related notes between HerzMobil and 

DiabMemory might be explained by the origin of the notes. In an expert-to-expert 

communication like in HerzMobil, it is apparently more common to talk about the 

patient’s medication, whilst in a patient to physician communication, the medication is a 

less frequent topic. Similarly, the rate of activity-related notes might be higher in 

DiabMemory because activities are not so much in the focus of the healthcare 

professionals (as compared to the patients), although activities are known to have a huge 

impact on the outcome in both, heart failure and diabetes management. 

Due to the large number of 228,109 available notes, using an in-sample set of notes 

for the evaluation should have a neglectable impact on the results of this paper.  

4.1. Outlook 

Up to now, we have applied our classification algorithm to the telehealth data 

retrospectively, to structure the information included in the free-text clinical notes. These 

analyses have already helped us and will further help us to identify, which important 

information need to be recorded in a structured way.  

Currently, we apply various machine learning and artificial intelligence algorithms 

to the data derived within our telehealth services to predict events like hospitalizations 

or dropouts. As a next step, we will include not only structured data, but also the classes 

derived from the free-text data in these models, which might further improve the model 

accuracy.  
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5. Conclusion 

Structuring free-text notes from telehealth services via natural language processing 

methods provides valuable information, which can complement structured data. Even 

though methods derived for a specific telehealth program can be a good starting point 

for analyzing data from other programs, various adaptions might be necessary, especially 

regarding disease specific aspects. 
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