
DIAG a Diagnostic Web Application Based 

on Lung CT Scan Images and Deep 

Learning 

Amel Imene HADJ BOUZIDa1, Said YAHIAOUIa, Anis LOUNISa, Sid-Ahmed 
BERRANIb, Hacène BELBACHIRa, Qaïs NAÏLIc, Mohamed El Hafedh ABDIc, 

Kawthar BENSALAHa and Djamal BELAZZOUGUIa  
a CERIST, Research Center on Scientific and Technical Information, Algiers, Algeria 

bNational Polytechnic School, Algiers, Algeria 
cCentre d'imagerie scintigraphique, Blida, Algeria 

Abstract. Coronavirus disease is a pandemic that has infected millions of people 
around the world. Lung CT-scans are effective diagnostic tools, but radiologists can 
quickly become overwhelmed by the flow of infected patients. Therefore, automated 
image interpretation needs to be achieved. Deep learning (DL) can support critical 
medical tasks including diagnostics, and DL algorithms have successfully been 
applied to the classification and detection of many diseases. This work aims to use 
deep learning methods that can classify patients between Covid-19 positive and 
healthy patient. We collected 4 available datasets, and tested our convolutional 
neural networks (CNNs) on different distributions to investigate the generalizability 
of our models. In order to clearly explain the predictions, Grad-CAM and Fast-CAM 
visualization methods were used. Our approach reaches more than 92% accuracy on 
2 different distributions. In addition, we propose a computer aided diagnosis web 
application for Covid-19 diagnosis. The results suggest that our proposed deep 
learning tool can be integrated to the Covid-19 detection process and be useful for 
a rapid patient management. 

Keywords. Covid-19, CT-scan, Deep learning, CNN, Classification 

1. Introduction 

SARS-CoV-2 disease (Covid-19) is a highly contagious respiratory disease. Early 
diagnosis of Covid-19 is crucial in reducing the spread of the disease and its mortality. 
Diagnosis can be based on several methods:  clinical symptoms, molecular tests, serology, 
laboratory examinations and imaging using chest X-ray examination, chest computed 
tomography (CT-scans) or lung ultrasound [1]. 

SARS-CoV-2 RT-PCR is the gold standard diagnosis.  Although it can be useful to 
do imaging diagnosis for patients with clinical signs of Covid-19 and negative initial 
molecular test [2], most of the findings observed in CT-scans are “ground glass 
opacities”, “crazy paving” and “reversed halo sign” [1]. 

In pandemic times it is necessary to offer tools to help clinicians’ decision making 
for quick isolation and appropriate patient treatment. Deep learning in the field of 
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automatic diagnosis of different disorders is a rapid solution to support the management 
process for patients in critical conditions. 

Several deep learning-based techniques for classification [3] of patients, 
segmentation [4] or quantification [5] of Covid-19 lesions have been performed. 
Classification methods are often binary. Models are mostly trained on X-ray images or 
CT-Scans, but studies suggest that CT-scans are more reliable compared to X-ray images 
for Covid-19 diagnosis [6]. 

Different CNN architectures were investigated and modified versions were proposed 
with optimization methods to improve model’s classification accuracy. ResNet reached 
the highest detection accuracy of 95% to identify “ground glass opacities” [7]. 
Meanwhile, DenseNet combined with a machine learning classifier achieved the 
classification accuracy of  99% [8] , and EfficientNet was the best among 15 other CNN 
classifiers based on the accuracy of 82% [9]. 

In this work, we aim to develop deep learning models that can detect Covid-19 from 
CT-scans. We trained and tested 3 CNNs for classifying CT images from 2 datasets using 
4-folds cross validation, and verified how well it generalizes to new incoming data from 
2 other datasets. We then integrated our best model in a platform intended for clinicians. 

The remainder of this work is organized as follows. In Section 2, we first present the 
details of the datasets used for training and testing our models, then explain our deep 
learning methods, and finally give a short description of our web application.  
Experimental results are presented in Section 3. Finally, Section 4 discusses the results 
and concludes the paper. 

2. Methods 

2.1.  Datasets 

We selected 4 available datasets. The first one from Zhang et al. [5] proposed a CT-scan 
database of 2246 patients including 752 Covid-19 patients. The second dataset proposed 
by Rahimzadeh et al. [10] contained 2282 CT images from Covid-19 patients and 9776 
CT images from healthy patients. Next, the third dataset from He et al. [11] consisted in 
349 CT images from Covid-19 patients, and 397 CT images from non-Covid patients. 
Lastly, the fourth dataset of Soares et al. [12] contained 1252 CT images labelled as 
Covid-19, and 1230 CT images of healthy subjects. 

For the training set we selected datasets [5] and [10] which contain entire CT-scans. 
An entire CT-scan consists in a sequence of consecutive slices from the chest, some 

of which may contain evidence of Covid-19 infection, while others can be healthy. In 
addition, the upper and lower parts of the lung are not discriminatory for the disease 
detection. The training set was thus divided into 3 classes: Covid-19, Healthy and Closed 
lung. 

To get a fair approximation of the model a 4-fold cross-validation was used to train 
and validate the CNNs on [5] and [10]. We thus trained our models on 27000 CT images 
and tested on 9000 unseen CT images in each iteration. To avoid misleading results, we 
ensured that all samples from a given patient appear in either the training or the testing 
datasets, but not in both. 

In addition, to investigate the generalization of our models; we evaluated the 
behaviour of our models with images from two other datasets, namely 746 CT images 
from [11] and 2482 CT images from [12]. 
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2.2.  CNN 

We selected deep learning architectures that showed great performance in the state of the 
art: ResNet50, DenseNet161 and EfficentNet-b7. We fine-tuned each CNN using the 
weights from the training on ImageNet. The fully connected parts of the models were 
fixed to 3 prediction nodes layers with Sigmoid activation function. 

We scheduled the learning rate using SGD optimizer that we started at 0,001. Batch 
normalization has also been used to allow rapid convergence of networks. The batch size 
varied from 8 to 64 depending on the network. 

The use of a pulmonary parenchyma mask was tested at every CNN entry, in order 
to focus the learning on regions containing the features observed during the Covid-19 
infection, and not on the meaningless parts such as the vertebral or the axillary region. 

2.3.  Web Application 

We develop DIAG, a Flask web application served with uWSGI and Nginx. Flask 
architecture contains two important parts: The server side “app.py” preloads the models, 
operates pre-processing and makes predictions, and HTML file receives Python objects 
and synthesizes the predictions. 

3. Results 

In order to evaluate the model’s performance, this study used Accuracy, Specificity, 
Sensitivity, Precision and F1-score as evaluation metrics. 

The test on the datasets [5] and [10] resulted in the highest Accuracy, Specificity, 
Sensitivity, Precision and F1-score of 92.48%, 94.14%, 89.48%, 90.27% and 89.87% 
respectively. Tests on [11] led to a decrease in performance. Meanwhile, testing on [12] 
gave results similar to testing on [5] and [10] with Accuracy rate of 92.03% for 
ResNet50. Table 1 lists the results of the different CNNs. 

 

Table 1. Evaluation of the models trained during a 4-fold cross-validation on [5],[10], tested on [11] and [12]. 

Models Evaluation 

Metrics 

(%) 

Test 

set [5], 

[10] 1st 

fold 

Test 

set [5], 

[10] 

2nd 

fold 

Test 

set [5], 

[10] 3rd 

fold 

Test 

set [5], 

[10] 4th 

fold 

Test set 

[5], [10] 

Average  

Test 

set 

[11] 

Test 

set 

[12] 

ResNet 50 Accuracy 79.02 97.22 97.11 96.58 92.48 84.53 92.03 

Specificity 83.43 97.89 97.80 97.42 94.14 80.35 97.07 

Sensitivity 71.42 95.87 95.71 94.92 89.48 89.26 88.04 

Precision 74.28 95.88 95.77 95.15 90.27 80.15 96.82 

F1-score 72.82 95.87 95.74 95.03 89.87 84.46 92.22 

EfficientNet-

b7 

Accuracy 84.06 96.08 94.79 92.36 91.82 81.73 83.67 

Specificity 87.70 97.02 96.06 94.20 93.75 74.56 87.38 

Sensitivity 77.74 94.22 92.27 88.69 88.23 89.80 80.03 

Precision 79.12 94.31 92.34 89.10 88.72 75.83 86.64 

F1-score 78.42 94.26 92.30 88.89 88.47 82.23 83.20 

DenseNet 

161 

Accuracy 82.40 94.32 97.46 94.58 92.19 79.07 89.46 

Specificity 86.27 95.65 98.09 95.92 93.98 75.31 99.02 

Sensitivity 75.62 91.68 96.20 91.93 88.86 83.29 80.11 

 Precision 77.74 91.68 96.22 91.82 89.37 75.00 98.82 

 F1-score 76.67 91.68 96.21 91.87 89.11 78.93 88.49 
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The Grad-CAM (1) and Fast-CAM [13] (2) explanations for ResNet50 with 
parenchyma mask are shown in Figure 1. We clearly see that the model focuses on the 
region containing the parts affected by Covid-19. 

Figure 1 illustrates also the DIAG procedure for loading a CT-scan and launching 
prediction (3). The prediction established by the model is shown in (4). The viewer in 
(5) allows the clinician to verify the predicted diagnosis. 

 

 
Figure 1. Grad-CAM and Fast-CAM data visualisation [13], and the DIAG platform prediction screen. 

4. Discussion and conclusions 

In this study, we proposed a deep learning solution for the diagnosis of Covid-19 disease 
based on CT-scan images. We made a quantitative analysis of different CNNs and 
qualitatively assessed the obtained models using visualisation algorithms. Finally, we 
developed a web application to assist clinicians during the diagnosis process. 

Testing our models on [12], which contains images acquired with different clinical 
practices; demonstrated the model’s generalizability. Even more, compared to the best 
proposed approach available in the state of the art [3] our ResNet50 and DenseNet161 
models achieved better performance. 

Nevertheless, the testing on [11] shows a decrease in accuracy because this dataset 
contains non-Covid cases including patients with lung infections which have similar 
features to Covid-19 disease. In addition, images from [11] contain textual information 
which could have biased the predictions. 

Even though the proposed models achieved promising results, there are still some 
improvements that need to be made. Unfortunately, ResNet50, DenseNet161 and 
EfiicnetNet-b7 models contain respectively, 23.51, 26.47 and 63.79 million of 
parameters which makes them extremely memory hungry. We prospect to create a CNN 
with feature extraction based on the ResNet50 backbone design and replace the classifier. 
The resulting model would have fewer parameters without the fully connected part. 

Data from other sources need to be incorporated to achieve better performance. 
Radiologists intend to add Algerian datasets in future work. Meanwhile, we can use GAN 
to generate new instances of CT images [14] to continue the networks learning. 

The use of the features described by the Fast-CAM [13] can be an interesting 
prospect to obtain the rendered approximation of the Covid-19 lesions. It would be 
innovative because the quantification is mainly carried out with the CNNs dedicated to 
the segmentation [15]. 

Following the quantification of the disease using the patterns described by the Fast-
CAM rendering, we can add a clinical database to retrieve the patient's information and 
assess the severity of the Covid-19 as proposed in [16]. 
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DIAG can be seen as an end-to-end solution that can store CT images, improve 
model’s performance and provide more accurate diagnosis. Nonetheless, there should be 
a patient's medical data management, with particular regard to the CT-scans 
anonymization and the access control. 

References 

[1]  Cascella M, Rajnik M, Cuomo A, et al. Features, Evaluation, and Treatment of Coronavirus. StatPearls. 
Treasure Island (FL): StatPearls Publishing; 2020. 

[2] Karam M, Althuwaikh S, Alazemi M, et al. Chest CT versus RT-PCR for the Detection of COVID-19: 
Systematic Review and Meta-analysis of Comparative Studies. medRxiv [Internet]. 
2020;2020.06.22.20136846. Available at: 
http://medrxiv.org/content/early/2020/12/12/2020.06.22.20136846. 

[3] Silva P, Luz E, Silva G, et al. COVID-19 detection in CT images with deep learning: A voting-based 
scheme and cross-datasets analysis. Inform Med Unlocked [Internet]. 2020/09/14 ed. 2020;20:100427–
100427. Available at: https://pubmed.ncbi.nlm.nih.gov/32953971. 

[4]  Amyar A, Modzelewski R, Li H, et al. Multi-task deep learning based CT imaging analysis for COVID-
19 pneumonia: Classification and segmentation. Comput Biol Med [Internet]. 2020;126:104037. 
Available at: http://www.sciencedirect.com/science/article/pii/S0010482520303681. 

[5]  Zhang K, Liu X, Shen J, et al. Clinically Applicable AI System for Accurate Diagnosis, Quantitative 
Measurements, and Prognosis of COVID-19 Pneumonia Using Computed Tomography. Cell [Internet]. 
2020;181:1423-1433.e11. Available at: 
http://www.sciencedirect.com/science/article/pii/S0092867420305511. 

[6]  Borakati A, Perera A, Johnson J, et al. Diagnostic accuracy of X-ray versus CT in COVID-19: a 
propensity-matched database study. BMJ Open [Internet]. 2020;10:e042946. Available from: 
http://bmjopen.bmj.com/content/10/11/e042946. 

[7]  Ye W, Gu W, Guo X, et al. Detection of pulmonary ground-glass opacity based on deep learning 
computer artificial intelligence. Biomed Eng Online. 2019;18:6. 

[8]  Kassani SH, Kassani PH, Wesolowski M, et al. Automatic Detection of Coronavirus Disease (COVID-
19) in X-ray and CT Images: A Machine Learning-Based Approach. ArXiv. 2020;abs/2004.10641. 

[9]  Gifani P, Shalbaf A, Vafaeezadeh M. Automated detection of COVID-19 using ensemble of transfer 
learning with deep convolutional neural network based on CT scans. Int J Comput Assist Radiol Surg. 
2021;16:115–123. 

[10] Rahimzadeh M, Attar A, Sakhaei SM. A Fully Automated Deep Learning-based Network For Detecting 
COVID-19 from a New And Large Lung CT Scan Dataset. medRxiv [Internet]. 
2020;2020.06.08.20121541. Available at: 
http://medrxiv.org/content/early/2020/09/01/2020.06.08.20121541.abstract. 

[11] He X, Yang X, Zhang S, et al. Sample-Efficient Deep Learning for COVID-19 Diagnosis Based on CT 
Scans. medRxiv [Internet]. 2020;2020.04.13.20063941. Available from: 
http://medrxiv.org/content/early/2020/04/17/2020.04.13.20063941. 

[12] Soares E, Angelov P, Biaso S, et al. SARS-CoV-2 CT-scan dataset: A large dataset of real patients CT 
scans for SARS-CoV-2 identification. medRxiv [Internet]. 2020;2020.04.24.20078584. Available at: 
http://medrxiv.org/content/early/2020/05/14/2020.04.24.20078584. 

[13] Mundhenk TN, Chen BY, Friedland G. Efficient Saliency Maps for Explainable AI. CoRR [Internet]. 
2019;abs/1911.11293. Available at: http://arxiv.org/abs/1911.11293. 

[14] Acar E, Şahin E, Yılmaz I. Improving effectiveness of different deep learning-based models for detecting 
COVID-19 from computed tomography (CT) images. 2020. 

[15] Chen J, Wu L, Zhang J, et al. Deep learning-based model for detecting 2019 novel coronavirus 
pneumonia on high-resolution computed tomography. Sci Rep [Internet]. 2020;10:19196. Available at: 
https://doi.org/10.1038/s41598-020-76282-0. 

[16] Lassau N, Ammari S, Chouzenoux E, et al. Integration of clinical characteristics, lab tests and a deep 
learning CT scan analysis to predict severity of hospitalized COVID-19 patients. medRxiv [Internet]. 
2020; Available at: https://www.medrxiv.org/content/early/2020/10/06/2020.05.14.20101972. 

A.I. Hadj Bouzid et al. / DIAG a Diagnostic Web Application336


