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Abstract. The paper describes some aspects of precision medicine and shows the 
importance of pharmacokinetics and pharmacodynamics for the therapeutic drug 
monitoring and model-informed precision dosing. A key element in the design of 
the pharmacokinetics and pharmacodynamics (PKPD) models is relevant literature 
search that represents an essential step in the procurement and validation of a new 
drug. Available search engine resources do not offer specific functionalities that are 
required for efficient and relevant search in reliable literature sources. We present a 
prototype of such an intelligent search engine and show its results on real project 
data. 
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1. Introduction 

Fast technological development enabled design and development of new applications 
across many fields during last two decades. Medicine and health care belong to these 
fields. Almost all medical devices can be connected to computers and communicate 
acquired data. Wireless technologies, sensors, wearables and Internet of Things 
contribute to development of continuous data acquisition and communication. Electronic 
health record is an inseparable part of this development. Development of new drugs is 
almost unimaginable without extensive computational resources. Few years ago, we 
spoke about the concept pf P4 health care - Participatory, Predictive, Preventive, 
Personalized. Recently the fifth P has been added: Precision. Precision medicine is 
understood as an approach to patient treatment that considers individual variability in 
genes, environment and lifestyle for each patient. This approach is already applied in 
some areas of medicine for targeted treatment, as for example in oncology. With the 
development of new software tools there opens a great opportunity to apply this approach 
to wider spectrum of treatments. 

The core of the software tools for precision medicine are modules for therapeutic 
drug monitoring and model-informed precision dosing. Background for their 
development constitute pharmacokinetics and pharmacodynamics models for individual 
drugs. Pharmacokinetics and pharmacodynamics represent two phases of the processes 
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between drug input and emergence of the response on the output. The pharmacokinetic 
phase represents all events between the input (drug dose administration) and the 
achievement of drug concentrations throughout the body. The pharmacodynamic phase 
represents all events between the arrival of the drug at its site of action and the onset, 
magnitude, and duration of the biological response [1]. The models have to take into 
account many parameters, including information about the patient, e.g. weight, age, 
gender, ethnicity, metabolism rate, interaction with other drugs, negative effect on 
potential co-morbidities, etc. Additional parameters are dose, frequency of 
administration and route of administration. These parameters represent variables that can 
be adjusted to optimize the therapeutic effects of a drug for a particular disease condition. 
It is possible to control the onset, intensity and duration of the positive drug effect, while 
minimizing any harmful effect. Obviously, for designing such models detailed 
understanding of human physiology, metabolism, dose-response relationships, 
dependence of response on drug route, drug elimination and clearance, molecular 
biology and genetics is needed. That means that such work is strongly interdisciplinary.  

In the paper we present briefly development in the area, show the concept of a 
system for model-informed precision dosing and describe an important tool supporting 
development of models for drugs for given populations. The aim of this tools is to speed 
up the development of models and make the work more efficient. 

2. Related Work 

Last decade showed that the demand for precise drug dosage and therapeutic drug 
monitoring is continuously growing. There have been performed many clinical studies, 
in particular in oncology, showing the positive effect of targeted therapy [2, 3, 4]. Other 
studies include optimizing care of critically ill patients with severe infections [5], 
optimizing the dose for children [6], physiological regulation of drug metabolism and 
transport [7, 8]. Several reviews discuss current state and future of precision medicine 
[9, 10, 11]. Some authors analyze impact on the industry and development of new drugs 
[12, 13, 14]. 

Development of software tools for therapeutic drug monitoring and model-informed 
precision dosing is not an easy task. It requires extensive and deep knowledge from 
different disciplines, which means gathering the experts willing to collaborate on the 
development, and also extensive literature search for drug models and their validation. 
There are not so many tools available as two evaluation studies, performed in the last 
decade show [15, 16]. In [15], published in 2013, 12 software tools were tested and 
evaluated using 12 criteria: pharmacokinetic aspects (population and drug, models, 
modularity, plot, and various) general characteristics (user interface, computing aspects, 
interfacing, cost, report, and storage) and expertise of authors. The authors of [16] 
developed with the help of 22 experts more detailed evaluation criteria, finally grouped 
in eight categories: user friendliness and utilization, user support, computational aspects, 
population models, quality and validation, output generation, privacy and security, and 
cost. They evaluated 10 software tools, three out of them were already evaluated in 2013, 
however, since then new versions were developed with more advanced functionalities. 
They were MwPharm (upgraded to MwPharm++), MM-USC*PACK© (now BestDose) 
and T.D.M.S. (now PrecisePK). MwPharm/MwPharm++ achieved in both evaluations 
one of the highest rankings (first, resp. second). MwPharm++ [17] is continuously 
complemented with new drug models. In this work it appeared that a tool for supporting 
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the model development is needed. Thus, in collaboration of the MediWare company with 
the Czech Technical University in Prague research and development of an intelligent 
search robot was initiated. 

3. Intelligent Literature Search 

The MwPharm++ project (software for drug metabolism modelling, in which validated 
models are implemented) has been expanding into foreign markets over the last 2 years 
and is currently used in 18 countries worldwide. In connection with the completion of 
the cloud version of MwPharm Online, the project will upgrade to the category of 
"software as a service". The project consists of 2 parts: 

� a custom algorithm for patient dose adjustment based on a pharmacokinetics 
and pharmacodynamics (PKPD) model using genetic knowledge related to drug 
metabolism and 

� an ever-expanding database of drug substances that contains PKPD parameters, 
knowledge of possible polymorphisms, and the literature and factual sources 
from which these values were determined. 

The main task is to specify PKPD models for a selected set of drugs and for the 
given population (ethnicity is one of the parameters that influences the drug 
pharmacokinetics and pharmacodynamics). Literature search is an essential step in the 
procurement and validation of a new drug. The intention of the designed tool is to speed 
up and improve the process of conducting a literature search by automatically extracting 
relevant articles using both the tools utilized in natural language processing and by taking 
advantage of the automatic processing capabilities of the retrieved results. It is worth 
mentioning that the publishing activity in the area of interest is very intense, with about 
10 articles per week. This results in a high number of articles (depending on the number 
of drugs) related to the problem. With such a large number of papers, it does not make 
sense to present the results only in the form of a list of publications, but it is necessary 
to evaluate and structure the results for maximum clarity and the possibility of systematic 
work. The work to date has established a basic terminological basis for the representation 
of (abstracts of) articles, the method and conditions for their selection, and the method 
and possible forms of creating a structured, systematic review for the selected literature. 

So far, the available search engine resources (Google, PubMed) have been used to 
build the database, with subsequent manual selection of suitable papers. As the requests 
for new drugs and new population groups are increasing, we decided to simplify this 
process by implementing a robot whose function aims not only at searching and selecting 
articles, but also at systematically classifying the retrieved literature sources in order to 
generate a library of papers on the population parameters of the proposed new drug (with 
the possibility of user annotation). Currently, the system is mainly used for TDM 
(therapeutic drug monitoring), which involves about 200 drugs out of the total number 
of drugs in use. As the new cloud-based version of MwPharm Online also allows for first 
dose reduction in case of renal or metabolic insufficiency of the patient, we are extending 
its functionality to a total of 1500-2000 drug substances for each population group. 
Initially, the information needed to determine the PKPD parameters of new drug 
substances was obtained manually at a cost of approximately 400 EUR / drug. With the 
new robot, this cost should be reduced to 100 EUR/drug. For the 2 population groups 
used so far - the Transcaucasian population and the Asian population, this means a saving 
of almost 2/3 of the costs incurred so far. For example, for the Transcaucasian population 
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and 2,000 drugs, this is a saving of more than 350 thousand EUR and a similar benefit 
can be expected for the Asian and other populations. Considering 500 most used 
medicines for 1 population, the savings compared to the original costs is about 40 - 80 
thousand EUR. If we consider that this is an ongoing process where we have to add and 
update a lot of information on specific medicines every year, this is an ongoing annual 
saving.   

4. Description of the Intelligent Search Engine 

As a reference project, we take article retrieval for model validation for a list of drugs 
provided by the Korean project partner (part of the project No. 

. This set contains 38 drugs for which we wanted to see if PKPD models can 
be specified/validated. Furthermore, collaboration with experts in the field of PKPD 
model building was then used to determine their part of the terms for the text search. 
Collaboration with these experts was done in an iterative manner to obtain the best 
quality term sets for text retrieval. Until now, no such standardized sets existed (at least 
for our subject area).  

These documents are used in the form of a dictionary. The dictionary forms the basis 
of each project created within the application developed. The use of dictionaries is one 
of the standard methods for text processing by assigning entities to the required 
(searchable) parts of the text. The user can basically view the dictionary in its three levels. 
Each dictionary is thus divided into three levels, representing categories, entities and the 
search words themselves. Primarily, further processing works with entities that represent 
a defined set of words. However, from the searches carried out, it became clear that for 
a clearer orientation in the selection result it is advisable to define a higher level, i.e. the 
category of entities, in certain parts.  

After defining the dictionary, the next steps are available. The first step is to collect 
the articles. We chose the PubMed database as the primary source of articles for this 
prototype because it contains articles that have been subjected to peer review. Thus, the 
resulting extraction contains articles that can be considered valid in terms of expertise. 
The PubMed database has an advanced search system that allows searching for 
combinations of terms using the logical AND and OR operators. 

The query is created automatically either based on entities in mandatory categories 
or (if no category is marked as mandatory) based on entities in all categories. The 
complication is that the search  

� is either very rigid and not many relevant papers are included in the resulting 
selection,  

� or the search rule is loose and the search results in thousands, tens of thousands 
or even hundreds of thousands of articles.  

With a broader coverage, which is the reference in a case like this, the numbers of 
articles from a PubMed search are very high, and even automatically clustering them 
according to the occurrence of each class of interest would lead to an unprocessable result. 
Therefore, the step of selecting articles from PubMed by our independently developed 
system is quite relevant. 
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To illustrate the complexity, we show an example: As of December 23, 2019, there 
are 14980 articles on PubMed corresponding to our query, of which 14912 abstracts are 
in the internal working database - where the texts are already there after tokenization and 
lemmatization. The same number (14912) was screened and tagged, and 414 articles 
were finally selected as best meeting the dictionary-defined requirements. These 414 
articles are being worked on further. It is obvious that the reduction of number of articles 
that have to be reviewed by human experts is significant. 

Part of the file tagging is the calculation of the score of each article. For this purpose, 
a weight is added to each defined entity. However, the user does not directly define the 
numerical value of the weights, but gives a hierarchy of entities, whereby any number of 
entities can be at the same level.  

The user is not required to define the weights and can leave all entities with the same 
weight (weight 1). However, s/he can use the weights even if none of the dictionary 
categories are defined as mandatory and the level of importance of the article is then 
defined only by the resulting score of the article. In our benchmark example, a 
combination of both approaches has been chosen, i.e. we have defined 3 categories as 
mandatory and the weights of each entity are defined at the same time.  

If a dictionary is defined and the supporting documents are ready, the user can 
specify browsing and tagging of articles by dictionary. Here, the result of the search 
through the PubMed database interface serves as input to our extraction algorithm. The 
final selection of the articles is based on the dictionaries defined, the weights of each 
class (entity) defined in the dictionaries, and the algorithm for arranging the results. The 
output of this part of the processing is a primary ordered list of entities from each 
category for each of the selected articles. This tagging is available to the user in three 
different forms of representation.    

The first of the possible representations is a tabular form. This output is easy to see 
for many users, but it is true that the results of the article tagging are stored in Microsoft's 
Excel format. It is therefore possible to open them in this program and make any further 
modifications to the output. A far more meaningful representation of the results is the 
tree structure, which is formed by creating classes for combinations of entities (there can 
be, but also one single entity) from each category. An example of detail of such an output 
is shown in Figure 1, in which it can be seen that the order of the categories is population, 
drugs, pharmacological information, characterization and the last one is the article itself. 

 

 
Figure 1. Detail of the resulting tree 
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However, this order is not fixed and the user can modify the order of the categories. 
The order of the entities has a relatively strong influence on the clarity of the result tree, 
so it is a good idea to choose it appropriately.  

In any case (for any dictionary), the article itself is part of the result. In the tree 
representation, a link to the PubMed database is added to this tree node, so the user can 
open the article abstract by double-clicking. 

The last form of representation of the results from dictionary tagging is a graph. This 
form of representation can be very useful for identifying common articles and selecting 
those for download and study. However, it is true that this form of representation needs 
to be handled very judiciously to make the resulting graph workable. Therefore, in order 
to give the user the best possible experience when reading the results of the selection in 
graph form, the user has two options for editing the input data (labelling results). The 
first is the option to select the entities to be omitted from the graph. Thus, the user can 
define that s/he wants, for example, only articles containing the entity Korean and no 
others. This does not only mean removing the nodes of the other populations, but a very 
significant reduction in the total number of nodes, because the entity Korean does not 
connect to many entities from other categories (there are no links connecting them) and 
so these entities (nodes of the graph) also drop out. The second option is then to select 
the links themselves. Again, the individual articles in the leaf are linked to the url and a 
double-click leads to the selected article in the PubMed database. 

However, the results of tagging articles using dictionaries have several drawbacks. 
The biggest of these is the fact that there is no simple coincidence of words within the 
text. A dictionary is thus a very quick and convenient tool in terms of definition by 
experts, but it is advisable to complement the results given by it with some more 
comprehensive form of text representation. In this project, we made two assumptions: 

� we are interested in the relationship of entities, or their proximity in the text, 
and the filtering of the text into classes is of secondary interest to us (the 
dictionary has proven itself in this respect); 

� we work primarily with short texts (abstracts), for which forms of representation 
such as term_frequency/inverse_document_frequency are common. 

We have therefore chosen the standard text representation in the form of word n-
grams. In this representation, the text is sequentially split word by word into a 
combination of n words. The n can be chosen as a number from 2 (bi-gram), 3 (tri-gram), 
4 (quatro-gram) and even higher. However, there is of course a logical limitation in the 
number of words for which text sampling make sense. We have chosen to create 2-gram, 
3-gram and 4-gram models and the user has the option to choose which n-gram model to 
use to label the selected articles. An example of a window listing 4-grams defined based 
on dictionary-defined articles is shown in Figure 2. 

The process of marking and clustering cells is then divided into the following steps: 
� Each n-gram has stored with it which entities represent it and which articles 

contain it. Here it is very important to note that n-grams are made up of the 
words of articles, but these are represented by entities in our system. Thus, two 
different n-grams can be described by the same entities. 

� A transformation is made where entities are the key and n-grams and articles 
are subsets of them. This step leads to the clustering of the n-grams. This 
reduces the dimension of this representation (example from the reference set: 
the original 13624 4-grams are represented by 334 entities or combinations of 
entities) 
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� In the next step, a transformation is performed where entities are atomized (until 
now they could represent n-grams in combinations) and assigned the value 1 if 
they are represented in the given n-gram. 

� The final step is to convert the previous representation into articles, i.e., each n-
gram is replaced by the articles it represents. Since one article can be 
represented by multiple n-grams, the occurrences of each entity are summed. 
To reinforce the role of the combination of entities within an n-gram, this is 
weighted - here, if an entity occurs repeatedly in an article but alone, its value 
within the vector of that article is increased by +1. If an entity occurs in 
combination with another entity, the value within the vector for both is 
increased by +10, in the case of three entities it is increased by +100, and in the 
case of 4 (we are working with a 4-gram in the description) it is increased by 
+1000. 

 

Figure 2. Overview of 4-grams extracted from the articles selected by the dictionary 

 

By this procedure, we have obtained a vector representation of articles that takes 
into account combinations of entities in n-grams. We can now perform the standard 
hierarchical clustering process, using cosine similarity as the similarity metric. The result 
of this process is represented within the application in two ways. The first is a tree 
representation, an example of its detail is shown in Figure 3.  

The second is the dendrogram representation of the clustering result. In this form of 
representation, the user can again define which entities will be included in the 
comparison and can then choose which articles they want to see in the display. The items 
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in the article list are ordered according to the ordering (clustering) in the dendrogram and 
again serve as links to the PubMed database for the selected article. 
 

 
Figure 3. Detail of a tree generated from the clustering results for a model based on 4-grams from the 

reference example 

5. Conclusion 

The proposed system allows for functional search, sorting and visualization of literature 
resources with output storage that allows to refine one's own library of articles. The 
system is in the prototype stage, which enables all the declared functionalities. Currently, 
the next phase of evaluation of the system is underway and the evaluation of 
functionalities and elements that should undergo further development for the most 
optimal use of the tool. 

The studies presented in the Section 2 Related work show that the demand for 
model-informed precision dosing software tools will grow and that it may positively 
influence the whole area of precision medicine. Thus, all software tools that can support 
the process of development of new drug PKPD models are and will be useful and 
effective contribution. 
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