
A Modeling Framework for Decision 

Support in Periprosthetic Joint Infection 

Treatment 

Vasiliy N. LEONENKOa1, Yulia E. KALIBERDAa and Vasiliy A. ARTYUK b 
a

 ITMO University, St. Petersburg, Russia 
b

 Russian Scientific Research Institute of Traumatology and Orthopedics “R.R. Vreden”, 
St. Petersburg, Russia 

Abstract. In this paper, we present a framework, which aims at facilitating the 

choice of the best strategy related to the treatment of periprosthetic joint infection 

(PJI). The framework includes two models: a detailed non-Markovian model based 

on the decision tree approach, and a general Markov model, which captures the most 

essential states of a patient under treatment. The application of the framework is 

demonstrated on the dataset provided by Russian Scientific Research Institute of 

Traumatology and Orthopedics “R.R. Vreden”, which contains records of patients 

with PJI occurred after total hip arthroplasty. The methods of cost-effectiveness 

analysis of treatment strategies and forecasting of individual treatment outcomes 

depending on the selected strategy are discussed. 
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1. Introduction 

In today’s aging society with high demands on mobility, arthroplasty is increasingly 

performed for both elderly and younger patients. The widespread use of replacing the 

affected joints with artificial ones increases the need for revision arthroplasty (re-THR). 

Today, periprosthetic joint infection (PJI) is one of the leading indications for revision 

surgery and by far the most ominous complication in artificial joint patients [1]. 

Periprosthetic infection is associated with high morbidity and requires complex treatment 

strategies including multiple surgical revisions and long-term antimicrobial treatment, 

because the implant as a foreign body increases the pathogenicity of bacteria and the 

presence of       biofilm makes the diagnosis and treatment problematic [2]. 

A scientific approach to medical practice requires a search for evidence of the 

efficacy and safety of existing and promising surgical methods for treating PJI. The 

optimal tool in solving this problem is evidence-based medicine, allowing comparison, 

generalization and wide practical application of the data obtained [3]. Thus,       the need for 

a clinical and economic analysis of PJI treatment from the standpoint of evidence-

based medicine seems to be very relevant. The investigations related to the creation of cost-
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effective approaches to PJI treatment [4, 5] mention the issues connected with the 

corresponding analysis due to lack of quality studies. 

In this paper, we present a framework, which aims at facilitating the choice of the 

best strategy related to the treatment of PJI. The application of the framework is 

demonstrated on the dataset provided by Russian Scientific Research Institute of 

Traumatology and Orthopedics “R.R. Vreden”, which contains records of the patients 

with PJI occurred after total hip arthroplasty. The methods of cost-effectiveness analysis 

of treatment strategies and forecasting of individual treatment outcomes depending on 

the selected strategy are discussed. 

2. Data 

The analyzed data set contains the records of 571 patient who were subjected to a revision 

total hip replacement (re-THR) in the period of 2000-2020. The patient records were 

collected in two different ways. A large part of the disease histories (a so-called retrospective 

group of 405 patients) was taken from the archives, whereas the remaining part 

(prospective group, 166 patients) was filled in real time by adding data of the patients 

undergoing treatment starting from 2014. All the patients were being observed for the 

possible PJI relapse till the end of 2020. In the retrospective group, the following 

treatment methods have been applied: resection arthroplasty (RA), revision operation 

with the preservation of endoprosthesis (re-THR-PE) and two-stage revision total hip 

replacement with the two consecutive interventions separated by more than 2 months. In 

the prospective group, new treatment methods were presented, namely, one-stage re-

THR and partial re-THR. Also, in the prospective group, the waiting time between 

surgeries for two-stage revisions did not exceed 2 months. The patients in the prospective 

group who underwent two- stage re-THR were divided into two subgroups based on their 

waiting time: 2-3 weeks and 6-8 weeks correspondingly. In many cases, in addition to 

PJI-related surgeries, additional operations were required due to the relapse of PJI or 

other issues (postoperative wound hematomas, spacer dislocations, etc.). The recorded 

data we worked with contains 15 different types of operations, which were divided into 

three groups: operations, which have no connection with PJI (e.g., endoprosthesis (EP) 

installation + spacer removal, EP installation (no spacer), etc.); first case of PJI or PJI 

relapse (e.g., debridement, debridement + spacer installation); PJI relapse (e.g., 

debridement + spacer reinstallation, spacer removal + support osteotomy). 

3. Framework Description 

3.1. Decision Tree 

As a continuation of our previous research efforts [6], we developed an algorithm for 

creating and verifying detailed decision trees, which in their turn serve as a base of an 

imitational discrete-event model. The decision tree is comprised of the transitions 

between the states, which are attributed to different medical interventions. Each 

transition signifies the change in patient functional capacity and is associated with the 

treatment costs. The time passed between the transitions is not explicitly taken into 

account. 
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The framework builds trees for a given treatment method based on the subsamples of 

the corresponding patient records. The calibration procedure algorithm uses a recursive 

approach and generates tree branches with the transition probabilities as an output. To 

assess how the results of the sample analysis might be generalized to an independent 

dataset of patients, we calculate mean values of the transition probabilities along with 

their interval assessments with the help of bootstrap aggregating technique. A fragment 

of a decision tree for partial re-THR is shown in Figure 1. 

 

Figure 1. A fragment of the decision tree with confidence intervals for transition probabilities, partial re-THR 

 

The decision trees based on the mean probabilities constitute a base for the discrete 

event imitational model. Each simulation run consists of generating an individual patient 

trajectory via Monte-Carlo methods according to the probabilities calculated during the 

cross-validation procedure. The output of the model includes generated individual 

trajectories and probability distributions for the treatment states calculated via repetitive 

simulation runs. 

The decision tree has the advantage of detailed description of trajectories, which 

makes it possible to calculate the statistics of changes in expected expenses and the overall 

QALY (quality-adjusted life-years, a generic measure of disease burden), related to 

particular interventions. Our framework supports the assignments of two associated 

parameters, related to the impact of the intervention, to each branch of the tree. The first 

parameter is the intervention cost in rubles taken from the list of costs of intervention 

types. The second parameter is the gained utility of the patient during a fixed timeframe 

calculated in QALY units. The quantitative outcomes of the treatment in terms of health- 

care costs and QALY units gained by the patient might be derived from the decision tree 

using the following formula: C = ∑i pi ci, where pi is the probability of selecting the 

branch, obtained by cross-validation, ci is the impact measured in either of the two units. 
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The interval assessment of C can be calculated using the same formula with left and right 

boundaries for pi used instead of their mean assessments. 

The resulting values of Crubl and Cu might be used to calculate the costs of one QALY 

unit and compare them between the treatment strategies. QALY units and costs for 

particular tree branches might be derived from the external sources, for instance, the data 

of the Center for the Evaluation of Value and Risk in Health which was used in the similar 

calculation from [7]. In the current study, however, we relied on the data provided by 

Russian Scientific Research Institute of Traumatology and Orthopedics “R.R. Vreden”. 

The operation costs were taken from the disease histories, and the QALY units were 

assessed based on the EQ-5D indices for each particular patient measured between the 

subsequent operations [8]. The results of QALY assessment are given in Tables 1, 2. 

 

Table 1. Average QALY for treatment methods in the retrospective group according to the decision trees 

Treatment method Re-THR-PE Two-stage > 2 months RA 

QALY 1.537 2.363 0.675 

 

Table 2. Average QALY for treatment methods in the prospective group according to the decision trees 

Treatment method Two-stage 2-3 weeks Two-stage 6-8 weeks One stage Partial 

QALY 1.124 0.634 1.035 1.053 

 

3.2.  Markov Model 

The disadvantage of a decision tree approach is that the tree might become extensively 

big and intractable in case of big samples of patients, long observation time or big variety 

of possible interventions. Also, it does not account for the time passed between the model 

states, which sometimes can be crucial for the accurate cost–effectiveness analysis. As 

an alternative approach, we developed a Markov model with generalized states. The 

generalized intervention types assumed in the model are created according to the 

intervention classification described in Sec. 2. We distinguish PJI-related interventions 

(PJI or PJI relapse), interventions not related to PJI, and, as a separate intervention type, a 

second stage intervention for two-stage treatment methods (’Endoprosthesis installation 

+ spacer removal’). The states of the simulated patient are the following: (a) PJI (waiting 

for the treatment), (b) second stage (no PJI, waiting for the spacer removal in two-stage 

treatment methods), (c) additional surgeries (waiting for the treatment of a non-PJI issue), 

(d) observation (no PJI), (e) death. The last state is the absorbing state. The simulation 

starts from the state ’PJI’. The situations of a first PJI case and a recurrent PJI are not 

distinguished due to the lack of corresponding data in the records. The time in the model 

is discrete, with the time step equal to one month. 

The transitional probabilities are calculated based on the available patient records 

using the same bootstrapping procedure as for the decision tree case. An example of the 

calibrated model is shown in Figure 2. The model makes it possible to generate individual 

patient trajectories with the consideration of time, which is useful for the calculation of 

the expected amount of observation time and the hospitalization time — the latter greatly 

influences the overall treatment costs. 
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Figure 2. Markov model calibration results for partial re-THR (confidence intervals for the probabilities are 

omitted) 

The treatment impact for a fixed individual patient trajectory is calculated according 

to the formula C(t) = ∑i ti ci, where ci are the monthly costs or QALY units associated 

with the patient state i in the model, and ti is the patient’s time of staying in the state 

i (the number of months). Unlike in case of the decision tree, accurate numbers of ci (in 

both rubles and QALY units) are not available due to generalized states used in the 

model. They could be taken by averaging the costs for the patient state based on the set 

of particular interventions related to that state and on the experts’ opinion. For example, 

it might be assumed that the ideal state of the patient in terms of QALY units relates 

to ’Observation’ status. The lowest QALY values correspond to ’PJI’. The quality of life 

of a patient waiting for the second stage or additional surgeries is higher than in case of 

PJI, but lower than in the ’Observation’ state due to corresponding health issues 

(particularly, the patients waiting for the second stage of the treatment have limited 

mobility due to spacer installation which badly affects their QALY count). Average 

QALY values     calculated for different methods are shown in Tables 3 and 4. Following 

expert assumptions, we set the QALY for ’PJI’ state equal to 0.35, for ’Second stage’ 

equal to 0.7, for ’Non-PJI operation’ equal to 0.5, for ’Observation’ equal to 0.85, and 

for ’Death’ equal  to 0. 

 

Table 3. Average QALY for treatment methods in the retrospective group according to the Markov simulations 

Treatment method Re-THR-PE Two-stage > 2 months RA 

QALY 1.88 1.92 1.79 

 

Table 4. Average QALY for treatment methods in the prospective group according to the Markov simulations 

Treatment method Two-stage 2-3 weeks Two-stage 6-8 weeks One stage Partial 

QALY 1.925 2.055 1.99 1.952 

4. Discussion 

In this paper, a modeling framework is presented, which aims at facilitating the decision 

making for healthcare professionals in the area of periprosthetic joint infection treatment. 

By using two different approaches within one framework, which is the decision tree 

approach and the Markov modeling approach, we can obtain a detailed static analysis of 
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the prospected patient treatment trajectories, depending on the selected strategy, or 

alternatively perform a dynamic simulation of a patient trajectory of transitions between 

the generalized states in an imitational model. The former helps to calculate detailed total 

operational costs and obtained quality of life, their average values and their distributions, 

whereas the latter gives an opportunity to monitor and forecast the dynamics of costs and 

QALY units. After an additional verification of the models, specialists of Russian 

Scientific Research Institute of Traumatology and Orthopedics “R.R. Vreden” will test 

the proposed framework in clinical practice. Based on the results obtained, we plan to 

develop this tool further and to apply it for other problems related to PJI treatment. One 

of the possible framework applications consists in forecasting disease trajectories for 

patients using their individual characteristics (age, gender, body mass index) as 

parameters affecting the transition probabilities. Another one is to consider the prediction 

of PJI cases at the city level, using synthesized populations as a model input [9, 10]. The 

framework coupled with the statistical model of PJI occurrence probability and the 

synthetic demographic data will make it possible to assess the middle- and long-term 

expenses of PJI treatment, the hospital occupancy and the prospected potential years of 

life lost in the urban population depending on the prevalent treatment methods. 
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