
OpenEHR Implementation Guide: Towards Standard Low-Code Healthcare Systems

Samuel Fradea, Thomas Bealeb, Ricardo J. Cruz-Correiaa,c

a Center for Health and Technology and Services Research - CINTESIS, University of Porto, Portugal
 b Ars Semantica (UK); openEHR International Board.

c VirtualCare, Portugal

Abstract

Several open source components have been made available in
recent years to help develop full openEHR systems. Still doubts
exist if these are sufficient. This paper presents a case study of
implementing a low-code openEHR system, investigating the
feasibility and challenges of developing a system using these
components for each step. The method used consisted in
selecting successful examples of implementation case studies,
identifying key development steps, and for each step searching
for possible open source options. As a result, we had a working
low-code openEHR powered EHR, successfully demonstrating
the feasibility of the proposed implementation guide. The main
available free or open source components used were
ArchetypeDesigner and EHRbase, developed by Better and
Vita/HighMed respectively. In our opinion, it is possible to
build EHR systems using the available open source
components, but support is still missing in the front end,
specifically for form generation and screen representation.
Keywords:

Electronic health records; Model-Driven Development,

Reference Standards.

Introduction

Electronic Health Records (EHR) have a positive impact in

quality of care, efficiency and patient safety, by improving the

ability of healthcare professionals in enacting evidence-based

knowledge management and aiding decision making. To

advance towards those visions, it is imperative to gain the trust

of the involved stakeholders, doctors and other medical

personnel, patients, families, health care providers and

regulators, as well as system developers and IT personnel [1].

Even though two critical requirements are interoperability

among the various systems involved and involvement of all

stakeholders, currently existing solutions are still vertical silos

to a large extent and developed and maintained by IT

professionals [2].

OpenEHR is an open specification in health informatics that

describes the management, storage, retrieval and exchange of

health data in electronic health records. It allows the

standardization of the EHR architecture following a multi-level

modelling approach, which separates information from

knowledge [3]. The first level, the reference model (RM),

specifies a generic model according to which data will be stored

and communicated (e.g.: data types). The second level, the

clinical content models, also called archetypes, defines

constraints to the reference model that represents data groups

on a specific domain topics (e.g.: blood pressure), that are then

to be combined and further constrained for specific use, similar

to paper documents of old, the templates (e.g.: vital signs). This

fact changes the way health information systems are developed.

Domain experts define the structure and element types of the

domain content (making it possible to create new models or

update the current ones on their own), while the system

developers can focus managing the concrete data that represent

the data according to the RM, creating user interfaces for the

templates and overall system functionalities and applications

[3].

The openEHR standard is a promising Model-Driven

Development (MDD) approach for electronic healthcare

records, providing data interoperability and making both

developers and clinicians work together. But modelling clinical

domains is complicated and the standardization process

complex [4]. A process called “rapid prototyping”, which has

been applied successfully to software engineering and to

design, and is part of agile development methodologies [5], can

be the solution for efficient modelling. It can provide an initial

draft of a usable system and/or already be the first version of

the system. The benefits are enabling early visualization of a

model functionality, flexibility to make rapid changes, rapid

finalization of requirements and a vehicle for communication

between all stakeholders. This can be achieved with minimal

difficulty with a low-code approach to development, enabled

by the MDD basis of openEHR.

The term “low-code”, first mentioned by Forrester Research in

2014 [6], states that companies prefer low-code alternatives for

fast, continuous, and test-and-learn delivery. Low-code

development platforms are ecosystems with which applications

can be developed, with minimal manual programming labor,

since the platforms are built and prefigured to generate code

itself. Low-code development platforms emphasize visual

interfaces to enable people, without a technological

background, to create and deploy business apps with relative

ease. Furthermore, these platforms also offer companies an

economical way to fulfil requirements. With the low-code

development platforms, programs or apps for mobile or desktop

devices can be created maintaining the multifunctionality and

high information-management capabilities.

The existing system that will be part of the study is Obsccare.

It is a clinical record software designed to be used by obstetrics

and gynecology doctors, anesthesiologists, nurses and

administrative staff to register inpatient admission and

discharge, childbirth and newborn data, as well as surgical

procedures, nursing records and gynecological interventions.

This study implements an openEHR based low-code EHR

system, using available openEHR open source software

components and following a Model-Driven Architecture,

aiming to investigate the feasibility and challenges of

developing such a system and to present it as a step by step

guide.

MEDINFO 2021: One World, One Health – Global Partnership for Digital Innovation
P. Otero et al. (Eds.)

© 2022 International Medical Informatics Association (IMIA) and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/SHTI220030

52

Methods

In order to identify key development steps, a search was made

in the openEHR official website (www.openehr.org) during

April 2021. Even though there was no general implementation

guide, the architecture and documentation provide hints as to

how the development process should occur (figure 1).

Figure 1- The model-driven openEHR technology ecosystem

Based on the specification, two main distinct development lines

were identified that we called: Model Domain and

Applicational Domain. This split made it easier to subdivide

processes and distribute responsibilities between roles and

tools. For each domain, a search was made for successful

research projects describing their development process.

The openEHR tools and components to support each step of the

process were chosen from the list of options published at the

previously mentioned official website, and others of more

generic use picked from previous work experience.

Results

Model Domain

In this domain the main artefacts produced were archetypes and

templates. These were stored in a local version repository.

Templates can be used in runtime, but mainly are to be

uploaded to platforms in “Operational Template” (OPT)

format. The main stakeholders developing these models were

healthcare experts (doctors, nurses, health data analysts). The

development process used was [6]:

1. Collect data requirements. For existing systems, this

means going through existing forms and for new

projects doing roundtables with domain experts, and in

both scenarios end up building mind-maps. In this case

study, we were aiming for a legacy system upgrade,

and it also proved to be a good moment to reorganize

and improve data requirements.

2. Search the Clinical Knowledge Manager (CKM).

There are already existing archetypes (776 active at

April 2021), that mostly match the requirements. CKM

provides international governance of the knowledge

artifacts, as well as a full life cycle management. This

lays the foundation of the interoperability, both

semantic and syntactic, capability that openEHR offers,

as the same archetype is used in different systems in

different countries, all can identify and understand the

clinical data since they share the same underlying

models.

3. Create new Archetypes or specialize existing. During

this step, if no existing archetype was found, a new one

was created, and preferably submitted to the CKM to

be shared with others. When an archetype partially

fulfilled the requirements, it was specialized to

accommodate additional fields or constraints, keeping

in mind that further constraints can be made when

assembling the template.

4. Create/edit Templates. A template is where archetypes

are assembled and constrained for context-specific

purposes. It will serve as the storage scheme and the

basis for the user interface form. For example two

templates with the same archetypes can have a

different data set (ex: General Practice Visit,

Cardiologist Visit), as different parts of the archetypes

are constrained in or out of the template.

5. Export templates to OPT format. The operational

template format (OPT) is the usable self-contained file

(the source .opt template form) only describes

references to archetypes and constraints. With this file,

the model is complete and ready to be put to use by

uploading to an openEHR platform.

The free tools used for each step are described in table 1.

Table 1 – Tools in Model Domain

Step# Component/Tool Reason

1 XMind It is the most popular

mindmap tool, free and

easy to use

2 CKM

https://ckm.openeh

r.org/ckm/

The international, online

clinical knowledge

resource

3,4,5 ArchetypeDesigner

https://tools.openeh

r.org/designer

It is the most recent

modeling tool, online,

better features, free and

easy to use

During this study two templates (Birth data and Personal

background) were made based on forms of an existing

obstetrics EHR system, ObsCare. These forms were chosen

because of their different complexity. Birth data contained 99

data inputs from birth date to umbilical cord pH and

complications and repeatable sections, and Personal

background only 23 simple concepts.

Both were successfully modeled and we then were able to test

using the platform developed in the Application Domain.

Application Domain

In this domain, the main focus is to put together low-code

development platforms in order to get a functional ecosystem.

Apart from specific project related middleware development

and component integration, the objective is that after

deployment it is possible to build applications based on the

template definition. The components used were [8]:

1. openEHR Clinical Data Repository (CDR). This is the

main component of an openEHR compliant platform. It

is where the clinical records are stored and queried. It

should implement the RM and the official REST API,

making it possible to be the backbone of the entire

ecosystem. The OPT obtained from the model

development is uploaded and without further effort, be

ready to receive data [9].

2. Middleware development. In this step is where initial

development is necessary to make the project specific

S. Frade et al. / OpenEHR Implementation Guide: Towards Standard Low-Code Healthcare Systems 53

ecosystem integrate with each other. For example

integrating the openEHR platform with legacy systems,

with patient identity source. It is also where additional

project specific features can be added or integrated.

3. User interface form generation. This component should

be able to generate a usable interface form based on the

OPT definition [10].

4. Applications. This is what the users will use in their

healthcare setting. In this study there was already

ObsCare, which we modified to integrate in this

ecosystem.

5. Interoperability services. This component is not

openEHR-specific and is often known as “integration

bus”. It allows the system to communicate with other

external systems. In a healthcare setting this

communication can be HL7 messages, web services,

database access, etc.

Table 2 – Components/tools in Application Domain

Step# Component/Tool Reason

1 EHRBase Good documentation,

more compliant REST

API, provides SDK for

middleware

2 EHRBase Java

SDK+*PHP

existing platform client,

existing system ObsCare

was developed in PHP

3 *PHP Since no open source

component was available

we developed our own

4 ObsCare Existing obstetrics system

that provides user

authentication and

interface for healthcare

setting

5 Mirth Good interface for setting

communication channels,

relative ease of setup,

audit trails, already being

used in ObsCare

*programming language used on components developed

The component used as a platform was EHRBase, as it was

more compliant with the specification, mainly at the REST API,

more lightweight, supports easier deployment through Docker

technology and provided open source client SDK.

The middleware developed used the chosen platform Java

SDK, and a custom made PHP module to integrate all the

components. If our existing platform had been in Java, the SDK

could have been used somewhat more efficiently, taking

advantage of more of its features, such as runtime object

handling.

One of the missing open source components necessary to create

a low-code system was a user interface generator. So we

developed our own in PHP, parsing the OPT file and generating

usable forms for ObsCare. These forms combine HTML with

PHP, and can be “themed” with different stylesheets.

For interoperability, we used Mirth, a cross-platform interface

engine that was already a part of ObsCare and we also had

previous experience in its use.

The end result was a functional integration of these different

components and platforms, that allows a domain expert to

develop a template, import an OPT, choose a language, from

the possible options present at the template, and generate a

usable form inside ObsCare. The forms generated are very

similar to the previous existing non openEHR forms, in order

for existing users to retain familiarity with the interface.

Discussion

The case study allowed us to assess the current reach of the

available openEHR open source tools and components, as well

as the difficulty implied in their combination for setting up a

system that could be used in day-to-day clinical practice.

The model development domain is very well supported, even

though it is also less tool demanding. Only three tools are

involved in the process, one being optional, while the mind

mapping can be done on paper or via other generic tools. Of the

two necessary model-related tools, the chosen tool

(ArchetypeDesigner) incorporates both archetype and template

editing, as well as an integration with a range of versioning

repositories (google drive, github, etc).

During the process of developing a template there was a lot of

discussion between domain experts, as it is a complex task [4].

Depending on the complexity and detail level of the concept to

model, the time consumed varied a lot, but as experience

increased, the development also accelerated.

The application development raised more concerns during

planning, since most options of available components were

developed using Java, and we had an existing system developed

in PHP. One of the essential parts of any system is a user

interface, however today there is still no open source

component in openEHR (i.e. current solutions are all

commercial). For the purposes of testing the feasibility of this

study, we developed our own. During this development we also

felt the need of an artefact that made parsing easier, since the

operational template definition is in XML and the structure is

complex. A more compact definition in JSON would be easier

to handle. A non-essential but very helpful tool would be a

visual interface-builder for building the form, since the model

is known, a domain expert could build forms block by block to

his requirements. This is one of the limitations of our form

generator, which is the order in which data is presented. Since

the template is built by combining archetypes, the data elements

of an archetype are defined next to each other, but at form level

it needs to have some flexibility to reorder the inputs to better

fit the user experience requirements. Another useful feature is

visual query building. This allows domain experts to retrieve

data for themselves, for example, or to much easier build

queries for specific applications.

There are at least two other useful components we did not find

and did not include in our study: Clinical Decision Support

(CDS), a component to handle openEHR Task Planning

specification providing decision support and process guidance

to the ecosystem, and Data Analytics. These will be added to

our ecosystem in future work.

The limitations of the study were the lack of testing for

scalability and stress due to time constraints.

The proposed guide and the developed system, seems to be a

good solution, at least for small projects (with a relatively small

number of patients and users) or initial openEHR projects.

S. Frade et al. / OpenEHR Implementation Guide: Towards Standard Low-Code Healthcare Systems54

Conclusions

In this paper, we demonstrated that it is possible to use the

available openEHR open source components to create a low-

code ecosystem to build EHR systems. While this form

generation approach was successful for the scope of this

project, we identified the remaining need for a visual-interface

builder tool within the openEHR open source ecosystem, which

would enable final visual form design and screen workflow to

be specified. Such a tool would be predicated on the kind of

generator we developed, but would allow subsequent manual

adjustment steps. Even though commercial options are more

robust and feature rich, they are also more costly, and currently

not easily obtainable for evaluators, small projects or academia.

Therefore, an open source option is likely to help the uptake of

the platform, and in time can always be replaced without losing

any data, thanks to the usage of a standardized openEHR

specification.

Secondly, although openEHR has an active supportive

community and much detailed documentation, there is

currently no general simple step-by-step implementation guide

like the one presented in this paper, which we believe will prove

useful for concrete application of the openEHR standard to

development activities.

Acknowledgements

The authors would like to acknowledge - Project “NORTE-01-

0247-FEDER-038393” (ObsCare WCR-Worldwide Maternal

and Child Care and Research) is financed by the North Portugal

Regional Operational Program (NORTE2020), under the

PORTUGAL 2020 Partnership Agreement, and through the

European Regional Development Fund (ERDF).

References

[1] AHIMA, Assessing and improving EHR Data Quality

(Updated), Journal of AHIMA 86 (2015), 58–64.

[2] C. Meier, A role for data: an observation on

empowering stakeholders, American journal of
preventive medicine 44 (2013), S5–S11.

[3] T. Beale, and S. Heard, Archetype Definitions and

Principles (2021), https://specifications.openehr.org/-

releases/BASE/Release-

1.2.0/architecture_overview.html.

[4] B. Christensen, and G. Ellingsen, Evaluating Model-

driven Development for large-scale EHRs through the

openEHR approach, International Journal of Medical
Informatics 89 (2016), 43-54.

[5] S. D. Nelson, G. Del Fiol, H. Hanseler, B. I. Crouch,

and M. R. Cummins, Software Prototyping: A Case

Report of Refining User Requirements for a Health

Information Exchange Dashboard, Applied clinical
informatics 7 (2016), 22–32.

[6] C. Richardson, and J.R. Rymer, New Development
Platforms Emerge For Customer-Facing Applications,

Forrester: Cambridge, MA, USA, 2014.

[7] L. Min, Q. Tian, X. Lu, and H. Duan, Modeling EHR

with the openEHR approach: an exploratory study in

China, BMC medical informatics and decision making

18 (2018), 75.

[8] B. Haarbrandt, B. Schreiweis, S. Rey, U. Sax, S.

Scheithauer, O. Rienhoff, and Et al, HiGHmed - An

Open Platform Approach to Enhance Care and

Research across Institutional Boundaries. Methods of
information in medicine 57 (2018), e66–e81.

https://doi.org/10.3414/ME18-02-0002

[9] P. Pazos Gutiérrez,. Towards the Implementation of an

openEHR-based Open Source EHR Platform (a vision

paper), Studies in health technology and informatics

216 (2015), 45–49.

[10] G. Kopanitsa, H. Veseli, and V. Yampolsky,

Development, implementation and evaluation of an

information model for archetype based user responsive

medical data visualization, Journal of biomedical
informatics 55 (2015), 196–205.

S. Frade et al. / OpenEHR Implementation Guide: Towards Standard Low-Code Healthcare Systems 55

