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Abstract 

Primary Immunodeficiencies (PIDs) are associated with more 

than 400 rare monogenic diseases affecting various biological 

functions (e.g., development, regulation of the immune 

response) with a heterogeneous clinical expression (from no 

symptom to severe manifestations). To better understand 

PIDs, the ATRACTion project aims to perform a multi-omics 

analysis of PIDs cases versus a control group patients, 

including single-cell transcriptomics, epigenetics, proteomics, 

metabolomics, metagenomics and lipidomics. In this study, 

our goal is to develop a common data model integrating 

clinical and omics data, which can be used to obtain 

standardized information necessary for characterization of 

PIDs patients and for further systematic analysis. For that 

purpose, we extend the OMOP Common Data Model (CDM) 

and propose a multi-omics ATRACTion OMOP-CDM to 

integrate multi-omics data. This model, available for the 

community, is customizable for other types of rare diseases 

(https://framagit.org/imagine-plateforme-bdd/pub-rhu4-

atraction).    
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Introduction 

There are about 7000 different types of disorders and rare 
diseases which have an impact on a large population 
worldwide [1]. In this context, patient data collection and 
analysis of rare and undiagnosed diseases have the potential to 
offer the opportunity to increase knowledge and discover new 
therapeutic approaches.  

In the project ATRACTion (Autoimmunity & inflammation 
Through RNAseq Analysis at the single Cell level for 
Therapeutic Innovation), we are interested in rare Primary 
Immunodeficiencies (PIDs). PIDs gather more than 400 rare 
monogenic diseases affecting the development, the function or 
the regulation of the immune response [2]. Moreover, a given 
monogenic cause could be associated with variable expression 
ranging from no symptom (no penetrance) to a broad spectrum 
of severe and debilitating manifestations. As a national 
reference center of PIDs, Necker hospital registered more than 
5000 PIDs. The variable expression observed in PIDs with 
autoimmunity/inflammation is therefore leading to diagnosis 
and therapeutics wandering. 

In this project, we will include 250 PIDs patients and 250 
controls. Their clinical data and multi-omics data will be 
collected. As some clinical data are mandatory for omics 

partners for the results analysis and the determination of omic 
signature, it is important to combine clinical data and omics 
data into a common data model.  

Nevertheless, the combination of clinical and omics data 
remains challenging [3]. The first challenge comes from the 
complexity, heterogeneity and scale of non-omics data (i.e., 
clinical data). They can be structured (e.g., Body Mass Index 
(BMI), blood pressure) or unstructured (information extracted 
from clinical narratives), in various data types (qualitative and 
quantitative), and from different providers. Moreover, some 
phenotypes can be absent from a patient record, due to the 
absence of a medical test. The second challenge lies in 
combining microbiota data with other omics data [4]. In fact, 
the metabolome state is a back-and-forth process with the 
immune system. On one hand, metabolites captured the end 
products of biochemical reactions, which lead to a patient 
phenotype. On the other hand, metabolites shape the immune 
response and therefore impact transcriptomics and proteomics. 
The third challenge comes from the relation between omics 
and non-omics data. Omics data show an ascertainment bias 
due to the experiment itself (case versus control), which can 
be specific to a patient condition (e.g., age, gender, drugs).  

 

State of the art 

Many efforts have been made for solutions to combine clinical 
data and omics data. In the medical informatics community, 
two approaches have been observed. The Observational 
Medical Outcomes Partnership Common Data Model (OMOP-
CDM) [5] is dedicated to the integration of heterogeneous 
hospital data such as administrative data, clinical results, 
information extraction from electronic health records. Shin SJ, 
et al 2019 [6], [7] proposed the Genome Common Data model 
as an extension of the OMOP-CDM to include clinical 
sequencing data (gene name, variant type and actionable 
mutation). They integrated 114 lung cancer patients [7] from 
the Ajou University Hospital, Suwon, Republic of Korea and 
1060 patients from the Cancer Genome Atlas. To do so, they 
added four tables linked to the OMOP-CDM, namely 
Genomic_Test, Target_Gene, Variant_Occurrence and 
Variant_Annotation. Nevertheless, they did not deliver a 
general way to integrate other omics data. 

Carnival [8] is a graph database model inspired by the Open 
Biological and Biomedical Ontology (OBO) Foundry 
ontologies. This database contains over 60,000 patients from 
the University of Pennsylvania Health System and includes 
both clinical and whole-exome genomics data (blood and 
tissue samples). For the clinical data it contains demographics 
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(age, sex), vital signs (BMI, smoking status, blood pressure), 
ICD9/10 codes and the loss of genes function.  

In the bioinformatics community, we had a look at three 
propositions: Moped 2.5, Aging atlas, LinkedOmics.  

Moped 2.5 [9] is an Integrated Multi-Omics Resource which 
includes approximately 5 million of transcriptomics and 
proteomics expression records from over 250 experiments 
coming from four reference organisms:  human, mouse, worm, 
and yeast. Those data contain protein absolute and relative 
expression and gene relative expression. Relative expression 
data in Moped are displayed in terms of pairwise comparisons 
of conditions (case vs control) using the expression ratio for 
each protein. Moped provides both p-values and false 
discovery rate (FDR) estimates. Furthermore, to support the 
goal of reproducible science they provide a metadata checklist 
information about experimental design, instrument details, 
sample preparation, data processing, and analysis.  

Another step is reached by Aging Atlas [10], which is a 
curated aging biology database which integrates multi-omics 
data (transcriptomics, single-cell transcriptomics, 
epigenomics, proteomics, and pharmacogenomics) from 
heterogeneous sources.  

The LinkedOmics [11] database contains multi-omics data 
(genomics, epigenomics, transcriptomics and mass 
spectrometry) for 32 cancer types associated with 11,158 
patients from The Cancer Genome Atlas (TCGA) project. 

 

Goals 

In this work, according to the experimental design of the 
ATRACTion project, we propose an integrative model of 
clinical data and multi-omics data, which can be used to 
obtain standardized information necessary for the 
characterization of PIDs patients and the identification of 
molecular signatures. Furthermore, it will allow machine-
learning based unsupervised approaches such as network 
inferences and could facilitate the visualization of the complex 
data via multi-layer networks. 

Methods 

We here defined a minimal dataset to integrate both clinical 
data and multi-omics data. Regarding clinical data, the OMOP 
data model offers a comprehensive patient-centered 
description for clinical trial purposes. In this work, we have 
built our data model by selecting only the tables of OMOP 
relevant for our studies. Indeed, we have included the Person, 
Observation, Visit_occurrence, Condition_occurrence, 
Drug_exposure, Measurement, Procedure_exposure, 
Survey_conduct and all the tables related to the concepts and 
vocabularies. We have excluded tables like Cost, Care_site, 
Device_exposure, which provide a specific level of detail but 
are not relevant for our studies.  

ATRACTion multimodal database 

As each data type needs a specific storage format, we have 
looked for ad hoc ontologies and thesaurus. 

 

Samples collection 

The cohort includes 250 patients and 250 healthy relatives 
followed in the Necker hospital. The required clinical data for 
the project will be collected from the clinical data warehouse, 
as well as specific interviews driven by medical staff. Plasma, 
peripheral blood cells, feces and urine samples will be 
collected from all individuals and be registered in the 

laboratory information management system, in which the link 
between the samples and the analyses will be kept. 

Clinical data 

To compute the analyses and determine omic signatures, some 
metadata are mandatory for the omics partners, (e.g. 
breastfeeding information for metagenomic analyses). For that 
purpose patients will be interviewed by clinicians within the 
use of RedCap and collected information then transferred in 
the ATRACTion database. We have defined the minimal 
dataset based on both administrative information and clinical 
data needed for further analyses. We also included for each 
patient, the medical history from the Necker hospital database 
to complete the clinical data. We mapped the data with the 
OMOP data model. 

Ontologies and knowledge databases 

To ensure data interoperability, symptoms will be described 
using the Medical Subject Headings (MeSH), the Logical 
Observation Identifiers Names & Codes (LOINC), the Human 
Phenotype Ontology (HPO), genes with HGNC ontology, and 
diagnoses with Orphanet Rare Disease Ontology (ORDO). 
These ontologies and thesaurus will be stored in the OMOP 
Concept table. Molecules and biological compounds like 
proteins or lipids will be linked to KEGG databases. 

 

Omics data 

Beyond clinical information, six different types of omics will 
be analyzed from patient samples (Figure 1): transcriptomics, 
epigenomics, proteomics, lipidomics, metabolomic, and 
metagenomic. In order to build a well-designed data model for 
each omic dataset, we have organized meetings with project 
partners to give insights from omics field specialists and to 
collect example data files. We were then also able to highlight 
some data types inherent issues. In our data model we 
compare cases versus controls patients in order to compute 
fold changes. More details are provided in the following for 
each omic data. 

 

Transcriptomics 

These data will allow us to identify differential gene 
expression between patients. The data files will be generated 
from single-cell experiments performed by using 10x 
Genomics CITE-seq protocol on peripheral blood 
mononuclear cells (PBMCs) extracted from blood samples.  

Epigenomics 

Epigenomics data will inform us about chromatin accessibility 
which is required to allow binding of transcription factors and 
subsequent gene expression. Data files will be generated 
through 10X Genomics ATAC-seq protocols performed on 
nuclei extracted from PBMCs 

Proteomics 

CYTOF mass cytometry and Olink experiments will generate 
a large dataset of differential expression for inflammatory-
related proteins in blood samples. These experiments will be 
performed at single-cell level, which could constrain the group 

comparison, as needed for others single-cell results. 

Metabolomics 

The data files will be generated from analyses via 
chromatography and dosage of LPS activity, to investigate the 
impact of disease on over 300 metabolites belonging to 
biological pathways. The results data files will give the 
quantity of a large number of molecules involved in biological 
pathways linked with the inflammation process.  
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Metagenomics 

Sequencing process will be performed on fecal samples to find 
which bacterial genes are present in these samples and infer 
the corresponding bacteria species. The presence of some 
species could be linked with specific metabolites, allowing the 
link between metagenomic and metabolomic data. 

Lipidomics 

Lipidomics gives the concentration of molecules and can be 
linked with the presence of bacterial species for specific 
metabolites. This allows lipidomics and metagenomics data to 
be correlated. Lipidomics data files will be obtained from 
analyses performed using high-resolution mass spectrometry 
on blood et urine samples.  

 

 

Figure 1: data flow of the ATRACTion data process

 

Implementation 

Regarding the technical aspect, the database is based on an 
object-relational database implemented in PostgreSQL 
(available at https://framagit.org/imagine-plateforme-bdd/pub-
rhu4-atraction.) and queried via a Django web interface. The 
relation model of the database stores each type of omic data in 
specific tables. For each omic, a table suffixed with ‘_exp’ 
describes metadata about the experience (device, culture 
medium, statistic model, …)  and a table suffixed by ‘_result’ 
contains numeric results, including p-value, fold change or 
other types of metrics. For results obtained via group 
comparisons, the group identifier is stored into the attribute 
‘[omic]_group_id’.  

Results 

Figure 2 shows the Unified Modeling Language (UML) 
diagram of the multi-omics ATRACTion OMOP-CDM.  

Clinical data set 

This dataset consists of 6 parts:  

 

- Patient information and administrative data (e.g. birth 
date, gender, origin): table PERSON 

- Diagnosis and medical condition at the time of the 
sample (e.g. inflammation state of the patient, BMI, 
breastfeeding, diet): tables OBSERVATION, 
CONDITION_OCCURRENCE, 
SURVEY_CONDUCT, OBSERVATION _PERIOD 

- Biological results (creatininemia, autoantibodies 
etc.): Table MEASUREMENT 

- Drugs, one month before the samples: Table 
DRUG_EXPOSURE 

- The type of omic analysis performed can be stored in 
the PROCEDURE_OCCURRENCE (MeSH 
Procedure).  

- The sample description (type of sample, quantity, 

etc.): table SPECIMEN, TRANSFORM_SAMPLE.  

- In addition, the Vocabulary table stores the different 
used ontologies, each ontology term being listed in 
the Concept table, with corresponding entry code.  
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Figure 2: UML diagram of ATRACTion OMOP-CDM, we represent the main key concepts (the complete diagram is in the git 

project). All the concept_id are linked to the CONCEPT table  

 

Omics 

The omic_experiment table is used to group samples 

sequenced together (batch). Each table with suffix exp groups 

sequenced samples processed together by computational 

biologist (*_group_id). Each table with a suffix _results 

contain analysed data and proposed a Fold Change and 

adjusted pvalue of an experiment.  

Transcriptomics 

With the help of the raw and normalized files, we build 6 

tables: Single_cell_exp, Coordinates, Sequence_annot, 

Raw_counts, Single_cell_results, and Gene. Single_cell_exp 

contains metadata about the experiment. Coordinates gathers 

the sequence reads coordinates for each gene. Sequence_annot 

contains metadata about sequences, like cellular type, the read 

sequence in nucleotides. Raw_counts contains raw sequence 

count associated with an experiment. At last, Gene presents 

information like gene name and chromosomal location. 

Epigenomics 

The Modification table relates the genes accessibility by 

transcription factors associated with peaks of accessible 

chromatin. 

Proteomics 

The Protein table details protein information like name, 

ontology entry, function, and coding gene linked to an 

experiment.  

Metabolomics 

3 tables described Metabolomics:  Metabolite, Pathway, 

Metabolomics_Results. The Metabolite table associates a 

metabolite to a pathway. The Pathway table details pathways 

within the use of ontology. Metabolomics_Results contains 

analysed results of an experiment.  

Metagenomics 

We include 3 tables: Bacterial_gene, Species, and 

Metagenomic_result. Species table contains relevant  
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information about the bacteria taxonomy. The Bacterial_gene 
table linked genes to species and biological function of these 
genes.  

Lipidomics 

We include 2 tables: Lipidomic_results and Lipid. Lipid 
contains the lipid name and function.  

Discussion 

Technical significance 

To the best of our knowledge, it is the first description of a 
clinical and multi-omics (including 6 types of omics data) 
database implementation, which extended the OMOP-CDM 
for PIDs diseases. This model can be generalized to the 
studies of other types of rare diseases, with a focus of case 
versus control comparison.  

Significance for secondary use of clinical data 

This data representation approach could enhance 
reproducibility and sharing of models that are learned from 
this data. Such OMOP-CDM models could be deployed in 
other reference PIDs centers and researchers will be able to 
perform distributed queries across them. 

Perspectives   

In the near future, we will have access to all omics data files to 
complete and further improve the model. Such a multi-omics 
database can help identify specific molecular signatures for 
PIDs, facilitate the visualization of complex data, allow 
network inferences, and finally build a multi-layer disease 
network. 

Conclusions 

In this work, we present a multi-omics ATRACTion OMOP-
CDM, which expands the OMOP-CDM in order to include 
both clinical and multi-omics data. The data definition 
language is available at https://framagit.org/imagine-
plateforme-bdd/pub-rhu4-atraction. 
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