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Abstract 

Background: Terminology integration at the scale of the 
UMLS Metathesaurus (i.e., over 200 source vocabularies) 
remains challenging despite recent advances in ontology 
alignment techniques based on neural networks. Objectives: To 
improve the performance of the neural network architecture we 
developed for predicting synonymy between terms in the UMLS 
Metathesaurus, specifically through the addition of an attention 
layer. Methods: We modify our original Siamese neural 
network architecture with Long-Short Term Memory (LSTM) 
and create two variants by (1) adding an attention layer on top 
of the existing LSTM, and (2) replacing the existing LSTM layer 
by an attention layer. Results: Adding an attention layer to the 
LSTM layer resulted in increasing precision to 92.38% 
(+3.63%) and F1 score to 91,74% (+1.13%), with limited 
impact on recall at 91.12% (-1.42%). Conclusions: Although 
limited, this increase in precision substantially reduces the 
false positive rate and minimizes the need for manual curation. 
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Introduction 

The first version of the Unified Medical language System 

(UMLS) Metathesaurus was released 30 years ago [3]. Over the 

past 30 years, the size and complexity of the UMLS has grown 

tremendously, from integrating seven source vocabularies 

(grouping 208,000 terms into 64,000 Metathesaurus concepts) 

to a very large graph (13.7M terms from 218 sources grouped 

into 4.4 million concepts). Over the past three decades, this 

large-scale terminology integration resource has become ubiq-

uitous in biomedical research projects and applications, where 

it supports not only crosswalks among standard terminologies, 

but also other tasks, such as natural language processing. 

In contrast, the UMLS Metathesaurus development process has 

essentially remained unchanged over these three decades. Cen-

tral to the Metathesaurus is the grouping of synonymous terms 

into a concept. Terms from source vocabularies are normalized 

[6] and lexically-similar terms become candidates for integra-

tion into the same concept. Lexically-suggested grouping of 

terms are then be reviewed by human Metathesaurus editors. 

Additional curation support includes source synonymy (i.e., 

synonymy asserted between terms in a source vocabulary tends 

to be conserved in the Metathesaurus) and source semantics 

(terms that do not share a common semantics are prevented 

from being grouped into the same concept even if they are lex-

ically similar). Despite this algorithmic support, the curation of 

the Metathesaurus remains challenging and extremely labor-in-

tensive. 

We recently developed a synonymy prediction model for the 

UMLS Metathesaurus based on neural networks and showed 

that it largely outperformed the algorithms currently used for 

supporting Metathesaurus curation [7]. More specifically, we 

achieved the following performance: precision = 0.8875, recall 

= 0.9254 and F1 score = 0.9061. At the scale of the Metathe-

saurus, the number of false positive synonymy predictions for 

this system remains very high and improving the performance 

of our model remains a priority. 

In recent years, the use of attention mechanisms has improved 

the performance of neural network models in a variety of tasks, 

from natural language processing to computer vision [10]. 

The objective of this work is to improve the performance of the 

neural network architecture we developed for predicting synon-

ymy between terms in the UMLS Metathesaurus. More specif-

ically, we explore whether the addition of an attention layer to 

our original Siamese neural network architecture with Bio-

WordVec embeddings and Long-Short Term Memory (LSTM) 

yields additional performance. More specifically, we assess 

which of the two following variants performs better: (1) adding 

an attention layer on top of the existing LSTM, or (2) replacing 

the existing LSTM layer by an attention layer. 

The specific contributions of this work include (1) a simple 

modification to our existing neural network architecture with 

an additional attention layer on top of the LSTM layer that 

yields +3.63% in precision and +1.13% in F1 score, and (2) 

confirmation that attention improves performance for predict-

ing synonymy between UMLS Metathesaurus terms. 

Background 

Related work 

Previous work on synonymy prediction in the UMLS 
Metathesaurus 

We recently formalized synonymy prediction in the Metathe-

saurus as a vocabulary alignment problem (UVA). We devel-

oped a neural network model for predicting synonymy between 

terms in the UMLS Metathesaurus [3]. This simple model 

solely leverages the lexical features of terms. Our neural net-

work architecture consists of BioWordVec embeddings fed to 

Long Short-Term Memory (LSTM) neural network. Because 

our goal is to compare two terms, we adopted a Siamese archi-

tecture, in which the two terms are processed in parallel and the 

output vectors compared using a Manhattan distance metric. 
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Furthermore, we created different datasets with different de-

grees of lexical similarity among negative examples for training 

the neural networks and testing their generalization. Our exper-

iments showed that the model trained with negative examples 

from different degrees of lexical similarity yielded the best per-

formance for the UVA task. (See Datasets section below for 

details). The performance of this model was: accuracy = 

0.9938, precision = 0.8875, recall = 0.9254 and F1 score = 

0.9061. 

Attention mechanisms in neural network models 

Attention mechanisms were first used in neuroscience [8] and 

have gained popularity in other fields, especially in natural lan-

guage processing. Self-attention mechanisms relating different 

word positions of an input to compute its context representation 

have succeeded in a variety of tasks including reading compre-

hension, abstractive summarization, textual entailment and 

learning task-independent sentence representations [1; 2; 4; 5; 

9; 10].  BERT [2] is a great example among many successful 

projects that use a self-attention mechanism with multi-heads 

in both pretraining and fine-tuning tasks. Although BioBERT 

[4], further pretraining of BERT on PubMed abstracts, has 

shown performance improvements on several biomedical NLP 

tasks, the pretraining cost is substantial – it required 16x Tesla 

V100 GPUs running continuously for 23 days. Our preliminary 

work suggested that fine-tuning BERT or BioBERT for our 

UVA task will also be computational expensive in both the 

training and testing phases. Therefore, we are interested in eval-

uating a simpler attention mechanism that can be scalable for 

the UVA task. Compared to BERT and BERT-variants using 

self-attention mechanism with multi-heads, the dot-product at-

tention mechanism is much faster and more space-efficient [1; 

10]. As a result, we chose to implement and evaluate the dot-

product attention mechanism for the UVA task in this paper. 

Datasets 

In our original work, we created multiple datasets with increas-

ing levels of lexical similarity among negative pairs, because 

we hypothesized that it would be difficult to predict the absence 

of synonymy between lexically-similar terms. We showed that 

the best performing model was trained on the large dataset in-

cluding the three variants in terms of lexical similarity (“ALL”). 

While the objective is to improve the performance with the pro-

posed attention-based models, we also want to assess the gen-

eralization of our attention-based models on the three degrees 

of lexical similarity among negative examples (TOPN_SIM – 

high-level of lexical similarity, RAN_SIM – low level of lexi-

cal similarity and RAN_NOSIM – no lexical similarity). For 

training, we used the ALL dataset with 170,075,628 negative 

examples, and 22,324,834 positive examples. For testing the 

generalization of the models, we used the ALL dataset and the 

dataset variants, for which the numbers of positive and negative 

examples are shown in Table 1. 

Table 1 – Training and generalization test datasets (number of 
pairs of terms) 

Training Negative Positive Total 
ALL (training) 147,750,794 22,324,834 170,075,628 

Testing Negative Positive Total 
TOPN_SIM 54,752,228 5,581,209 60,333,437 

RAN_SIM 54,445,899 5,581,209 60,027,108 

RAN_NOSIM 58,256,526 5,581,209 63,837,735 

ALL (testing) 167,454,653 5,581,209 173,035,862 

Methods 

Architecture 

We implemented a simple attention layer [1] where the context 

vector is created by (1) taking the dot product of inputs and 

weights followed by the addition of bias, (2) applying a tanh 

function followed by a softmax layer, and (3) taking the dot 

product of softmax outputs and the hidden states. This attention 

layer is used to create two model architecture variants, V1 and 

V2, depicted in Figure 1, along with the original model, V0. 

 

Figure 1: The proposed neural network architectures with 
three variants: V0 as the original architecture with LSTM 

alone, V1 with an attention layer on top of the LSTM layer, 
and V2 with the LSTM layer replaced by an attention layer. 

Using LSTM alone (V0) 

This is the original model used in [7], which we use as a base-

line in this investigation. In this model, the original LSTM layer 

that only outputs the last hidden state. 

Using attention in addition to LSTM (V1) 

In this architecture, we add an attention layer with the same 

number of hidden states as in the original LSTM layer in V0. 

Unlike the V0 variant, however, the LSTM layer in this variant 

outputs all the hidden states. The output from this LSTM layer 

is fed to the attention layer described above.  

Using attention in replacement of LSTM (V2) 

In this model variant, we replace the LSTM layer by the atten-

tion layer with the same number of hidden states. The context 

vector output is passed to the remaining layers of the architec-

ture. 

Experimental Setup 

We conduct the following experiments for each model variant: 

(1) we train the models (V1 and V2)  using the ALL dataset, (2) 

we test these trained models using the ALL generalization test 

dataset, and (3) we test these trained models using the 

TOPN_SIM, RAN_SIM, and RAN_NOSIM generalization 

tests.  

All the experiments are deployed to the Biowulf High-Perfor-

mance Cluster at the National Institute of Health. We use Tesla 

V100x GPU with 32 GB of GPU RAM and 220 GB of system 

RAM for each experiment.  
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Training parameters 

We use 50 hidden states for both LSTM and attention layers. 

The remaining hyperparameters are the same as in our original 

model. (For details, see [7].) We train the models with 100 

epochs with a batch size 8192 and report the results in Table 2. 

Each epoch takes 27 minutes for training. 

Quantitative evaluation 

We compute the usual metrics (accuracy, precision, recall and 

F1 score) for the two models we developed (i.e., using attention 

in addition to LSTM [V1] and using attention in replacement of 

LSTM [V2]) and compare these results to those obtained with 

our initial model that does not leverage attention (V0). Addi-

tionally, we assess the effect of the best performing model on 

the three generalization test datasets with various degrees of 

lexical similarity.  

Qualitative evaluation 

In addition to comparing the performance of the models, we 

also assess their impact on the false positive rate (FPR). The 

false positive rate is important here given the predominance of 

negative cases in our main test dataset (ALL). 

Results 

Quantitative evaluation 

The performance metrics for the two models (V1 -  LSTM  + 

Attention, and V2 - Attention alone) using the ALL generaliza-

tion test dataset are shown in Table 2, along with the metrics 

for the baseline from prior work (V0 - LSTM alone).   

Compared to the original architecture with LSTM alone (V0), 

the architecture with an additional attention layer on top of the 

LSTM layer (V1) yields better performance. It improves accu-

racy (+0.09%), precision (+3.63%), and F1 (+1.13%) while 

slightly reducing recall (-1.42%). 

In contrast, the architecture with the LSTM layer replaced by 

the attention layer (V2) performs poorly on all the metrics. 

Table 2 –Performance of the three models for testing using the 
ALL generalization test dataset 

Variant Accuracy Precision Recall F1 
V0 0.9938 0.8875 0.9254 0.9061 

V1 0.9947 0.9238 0.9112 0.9174 
V2 0.9928 0.8876 0.8908 0.8892 

 

Performance improvement is more markedly observed on the 

test dataset with the highest level of lexical similarity 

(TOP_SIM). 

Qualitative evaluation 

The false positive rate of the baseline model (V0) is 0.39% 

(654,699 / 167,454,653) vs. 0.25% (419,487 / 167,454,653) 

with the best performing model (V1). 

Discussion 

Findings 

In this experiment, we showed that adding an attention layer to 

the original LSTM neural network was beneficial in terms of 

precision (+3.63%) and overall performance (+1.13%), with 

minimal cost in terms of recall (-1.42%). This is interesting and 

encouraging, because this gain in performance can be attributed 

to the attention layer. This means that adding features to the 

model (e.g., adding contextual information for disambiguating 

homonyms) will likely increase performance beyond the gains 

attributable to the attention layer. 

However, our experiments also show that using an attention 

mechanism instead of the LSTM neural network resulted in 

poor performance. Therefore, while the attention mechanism is 

an important component of a neural network architecture, 

where the attention mechanism is used matters a great deal. In 

our model, the addition of an attention layer was on top of the 

LSTM layer was most beneficial. 

Significance 

Cost-effectiveness of the solution. While the addition of an at-

tention layer only yielded modest gains in performance, these 

gains came at a very limited cost. Adding an attention layer to 

our original neural network architecture required minimal 

changes to the architecture. Moreover, adding an attention layer 

did not significantly increase processing time for training and 

testing. Finally, we were able to reuse the same datasets we cre-

ated for the original work, both for training and testing. 

Practical significance of decreasing the false positive rate. 
The UMLS Metathesaurus integrates some 10M English terms, 

which are amenable to synonymy prediction with our models. 

At this very large scale, a 1% gain in precision and the corre-

sponding drop in false positive rate largely reduces the burden 

of manual curation. For example, in our test dataset with 173M 

pairs of terms with 5,581,209 positive pairs, increasing preci-

sion from 0.8875 to 0.9238 reduces the number of false posi-

tives from 654,699 to 419,487 – a 36% reduction. Even if each 

false positive only required ten seconds for a human Metathe-

saurus editor to adjudicate, this would represent a saving of 653 

hours (at the limited scale of our test sample). 

Limitations and future work 

One limitation of this work is the small impact on recall (-

1.42%) observed with the model after the addition of the atten-

tion layer. In the future we hope to compensate for this by add-

ing features susceptible to increase recall, e.g., source synon-

ymy. Another limitation is that this model remains a purely lex-

ical model (i.e., only the terms themselves are fed to the model). 

Our future plans include adding contextual information to the 

model (e.g., hierarchical relations) to support the disambigua-

tion of homonyms. 

Conclusions 

Adding an attention layer to our initial neural network architec-

ture is a simple way of getting a moderate performance im-

provement, particularly for precision. Although limited, this in-

crease in precision will reduce the false positive rate and mini-

mize the need for manual curation.  
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