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Abstract 

Substantial advances in methods of collecting and aggregating 
large amounts of biomedical data have been met with 
insufficient measures of protecting it from unwarranted access 
and use. Most of the current layers of protection are merely 
aimed at ensuring compliance with regulations (e.g., the EU’s 
General Data Protection Regulation) but do not represent a 
vision of privacy-by-design as an efficient and ethical 
advantage in biomedical research and clinical applications. 
This not only slows down the pace of such efforts but also leaves 
the data exposed to a wide spectrum of cyberattacks. This work 
presents an overview of  recent advancements in data and 
compuation security, along with a discussion of their 
limitations and potential for deployement in both health care 
and research settings. 

Keywords:  

Computer Security, Privacy, Confidentiality  

Introduction 

Storing health-related big data, be it DNA sequences, EEG 

signals or electronic health records, in centrally managed 

servers makes these systems vulnerable to an increasing variety 

of cyberattacks and other forms of data leakage. Although 

perfect informational security is unattainable, the attack surface 

could be reduced. 

Encryption alone won’t do it. A company with unregulated and 

unaudited access to encryption keys is probably using 

encryption for nothing more than marketing. Not to mention 

that there are weak encryptions and strong encryptions. Without 

a way to verify what kind of encryption is in place and how it 

is implemented, it can be safely dismissed as a data security 

solution. 

In late 2020, the private Finnish firm Vastaamo was hit with a 

‘shocking’ hack that affected thousands of psychotherapy 

records that were later used for ransom [1]. This a de facto 

attack on informational privacy, in this case highly sensitive 

data on mental health content, that could have been avoided by 

using better encryption. 

In 2012, an attack vector was demonstrated by using visual 

stimuli and affordable EEG BCIs (e.g., Emotiv) to extract 

private information (e.g., banking, addresses, etc.)[12]. In 2018, 

another research group demonstrated a model for predicting 

human mental states (e.g., concentration) from EEG data[5]. 

Even well-protected data will be happily handed over by, or to, 

actors for whom informational security and privacy is not a 

priority. Google is notorious for such practices. Project 

Nightingale with Ascension involved a HIPAA-noncompliant 

and unconsented transfer of personal medical records of 

millions of Americans to Google Cloud [15]. DeepMind had a 

similar deal with the Royal Free NHS Trust, granting the AI 

giant, once again, unconsented access to sensitive healthcare 

data of more than a million Brits [8]. 

The repercussions are thus not only limited to unimaginable 

data misuse - although that’s sufficient on its own - but also 

extend to exclusivity in use and access. 

It is important to stress that the surface of benefits from health-

related data is possibly as large as the surface of attacks on it; 

amongst many others, some studies demonstrated the use of 

Convolutional Neural Networks for early diagnosis of 

Alzheimer’s Disease [9,13]. It is therefore not the aim here to 

advocate for less access but rather a more agile and secure one. 

The heart of the matter is that if our legal and technical systems 

are standing in the way of true data protection and potentially 

impactful research efforts while facilitating the perpetual 

influence of powerful entities, they must be ripe for a technical 

alternative. 

If we were able to enforce something like the EU General Data 

Protection Regulation (GDPR) and the California Consumer 

Privacy Act (CCPA), it shouldn’t take a miraculous efforts to 

enforce a reliable, privacy-preserving technology framework 

for storing and dealing with neuro and medical data, or any kind 

of sensitive data for that matter. 

Methods 

We conducted a systematic review of recent relevant literature 

and press releases on the topic of informational security and 

privacy. 

Results 

Our current health data safeguards are mostly convoluted legal 

hoops that both consumers and scientists have to jump through 

before getting any meaningful access, either to use a product or 

service (i.e., “inscrutable EULAs” [10] in the case of 

consumers) or to use data for research and analysis (i.e., HIPAA 

and IRB reviews in the case of scientists).  

As mentioned, actors with big financial and lobbying power can 

maneuver through whatever hoops come their way, potentially 

monopolizing most of the impactful research and slowing it 

down overall as a result. Whether this is an unavoidable 

dynamic in nature and free markets (i.e., power law) or one that 

should be regulated is beyond the scope of this work. 
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The claim here is that it is possible to have strong technological 

safeguards that can remove a lot of the legal barriers, making 

general access to health data even more secure and attainable. 

The following are some high-level definitions of such potential 

safeguards that are necessary to later examine how all the 

different pieces may fit together. 

Data Anonymization 

This is the process of simply removing personally identifiable 

information from a dataset so that any sensitive data cannot be 

linked to any specific data subject. 

Differential Privacy (DP) 

Differentially private algorithms are used for protecting 

individual private information when aggregating sensitive data 

by adding some noise to the dataset. Balancing how much noise 

should be added is a non-trivial task that is specific to the data 

type or the use case. 

Federated Learning (FL) 

The key principle behind federated learning is sending the 

computational model (e.g., neural network) to train itself 

wherever the data lives, instead of sending the data to where the 

model is. 

Zero Knowledge Proofs (ZKP) 

Zero Knowledge Proofs are essentially probabilistic proofs of 

possessing some information without revealing the information 

itself. A famous example of this is proving that the salary of a 

loan applicant is within a certain range without revealing the 

exact salary. 

Homomorphic Encryption (HE) 

HE allows for performing computations on encrypted data, 

without having to decrypt it. The computed results, once 

decrypted, are identical to those performed on the same data in 

an unencrypted form. 

Secure Multiparty Computation (MPC) 

Secure Multiparty Computations are done using cryptographic 

protocols that allow multiple parties to jointly compute the 

output of a function over their distributed inputs, without the 

need for a trusted third-party and without revealing information 

about what the function inputs are. 

All the technologies presented so far, given their imperfections, 

seem to stack up perfectly in a Swiss cheese model [22] that 

allows privacy-preserving analysis on sensitive data. 

Indeed, such a hybrid model has been previously put forward, 

for example, by Truex et al. [17]. It is still however a leaky one 

overall. Let’s start with data anonymization. 

Anonymized data is vulnerable to re-identification or linkage 

attacks with the help of other datasets. This was famously 

demonstrated on the anonymized Netflix Prize dataset that was 

re-identified using public data from IMDb [14]. 

While Federated Learning protects the raw data from being 

exposed altogether, it actually exposes the model’s details and 

parameters. The problem here is two-fold. First, if the model is 

proprietary, its architecture should not be exposed. Second, 

such a setting would allow for model inversion attacks, where 

the model could be reverse engineered to leak the private data 

it was trained on. Zhu et al. demonstrated such an attack on 

publicly shared model gradients [21]. They suggested a few 

techniques to mitigate the attack (e.g., Differential Privacy with 

Gaussian and Laplacian noise). However, they all came at the 

cost of sacrificing the model’s accuracy. 

FL is also prone to data poisoning and backdoor attacks. 

Tolpegin et al. demonstrated how malicious participants can 

send partial model updates derived from mislabeled data, 

causing significant negative impact on the performance and 

accuracy of the global model [16]. Bagdasaryan et al. 

demonstrated how any FL participant can introduce a hidden 

backdoor to poison and manipulate the joint global model [2]. 

Lastly, similar to MPC and HE, FL generally requires a large 

computation and communication overhead [19]. 

The problems identified above could be mitigated with a 

combination of the following techniques. 

Split Learning (SplitNN) 

This approach, pioneered by Gupta and Vepakomma et al. 

[7,18], is a method that allows each FL data owner (e.g. a 

hospital) to train the model or neural network up to a certain 

layer (i.e., “cut layer”). The analysts can then pick up the 

outputs of this training to train the rest of the network on their 

side. After that, they backpropagate gradients until the cut layer, 

at which time the gradients are sent to the hospitals where the 

rest of the backpropagation, and thus the training process, is 

completed. 

Split Learning has proven to be effective in reducing 

computation and communication costs as well as protecting the 

model details (i.e., architecture and weights), without 

sacrificing the model accuracy. However, it still requires a 

relatively large communication bandwidth when the training is 

done within a smaller network of data owners [19]. Something 

that could be addressed with advanced methods for neural 

network compression [11]. 

It is not clear however if SplitNN could still overcome some of 

the general FL attacks, namely model inversion, poisoning and 

backdoors.  

Federated Learning of Cohorts (FLoC) 

Although this is a new technique currently pushed for by 

Google as a replacement for web advertisement cookies, it 

would be interesting to bring it to health and brain data. 

Especially since most of its downsides seem to apply only in a 

web browser context [4]. 

The core concept of FLoC is to introduce longitudinal privacy, 

where users are no longer tracked individually but rather in 

large groups (i.e., cohorts) instead. Cohort membership changes 

over time with changes in browsing behavior [20]. 

zk-STARK 

This is a scalable, transparent, and post-quantum secure Zero 

Knowledge system introduced by Ben-Sasson et al. in 2018 [3]. 

It overcomes a lot of the inefficiencies of previous Zero 

Knowledge proofs (e.g., zk-SNARK) and could be, at least 

theoretically, a superior alternative to other Zero Knowledge 

(ZK) systems.
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Figure 1 – Theoretical comparison of universal realized ZK 
systems [3] 

 
hPKC = Homomorphic public-key cryptography 

DLP = Discretelogarithmproblem 
IP = Interactive Proofs 

MPC = Secure multi-party computation 
IVC = Incrementally Verifiable Computation 

This is another system that hasn’t been explored in a medical or 

health-realted data context yet. It could be particularly powerful 

in overcoming the aforementioned FL attacks (e.g., inversion, 

poisoning, etc.) as it allows for secure, verifiable and tamper-

proof computation. 

Discussion 

A privacy-preserving Swiss army knife, albeit so far theoretical, 

would consist of the following stack of technologies and 

characteristics: 

� Open Source - vetted by the community 

� zk-STARKs 

� Federated Split Learning (if feasible) 

� Differential Privacy (if feasible) 

While this could be applied to any kind of data, it could bring 

tremendous privacy and accessibility benefits to biomedical or 

health data. With this set of techniques, most of the GDPR and 

HIPAA requirements pertaining to personally identifiable 

information (PII) and sensitive data can be easily and ethically 

met.  

Conclusions 

The privacy-preserving technologies presented here are still 

immature in many respects and will witness continuous 

improvements over time. This is a beam of hope for potential 

solutions to dealing with advances in data extraction and 

analysis. 

It will be important however to investigate whether the tradeoff 

between privacy and utility can be completely avoided. That is, 

whether we will always have to substantially sacrifice privacy 

in order to keep data accessible enough for research and 

analysis, or we will be able to have strong “privacy-by-

default”[10] without standing in the way of health research. 

It is important to highlight that even with the presented 

technology stack, encryption keys are still prone to loss or 

leakage. This could be potentially mitigated via a 

Multisignature (multisig) scheme. 

Another puzzle that remains unresolved at this point is how do 

we protect and consent data about other people who are cross 

referenced within one person’s health data (e.g., in 

psychotherapy records). 
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