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Abstract 

While the PICO framework is widely used by clinicians for 
clinical question formulation when querying the medical 
literature, it does not have the expressiveness to explicitly 
capture medical findings based on any standard. In addition, 
findings extracted from the literature are represented as free-
text, which is not amenable to  computation. This research 
extends the PICO framework with Observation elements, which 
capture the observed effect that an Intervention has on an 
Outcome, forming Intervention-Observation-Outcome triplets. 
In addition, we present a framework to normalize Observation 
elements with respect to their significance and the direction of 
the effect, as well as a rule-based approach to perform the 
normalization of these attributes. Our method achieves macro-
averaged F1 scores of 0.82 and 0.73 for identifying the 
significance and direction attributes, respectively. 
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Introduction 

Evidence-Based Medicine (EBM) is the practice of using the 

best evidence to make decisions about the care of patients [1]. 

Unfortunately the large and ever-increasing amount of infor-

mation available in the medical literature, the time required to 

read and synthesize the findings presented, and the hectic nature 

of clinical schedules are barriers to implementing EBM [2; 3]. 

Thus, it is imperative to improve the efficiency of the EBM-

driven decision-making process, especially the processes of 

searching for and identifying the findings in medical literature. 

The PICO framework has been widely adopted to explicitly for-

mulate clinical questions and facilitate EBM [4]. PICO is an 

acronym for the components of the framework, which identifies 

the Population, Intervention, Comparator, and Outcome of in-

terest. 

Much of the prior work using PICO has focused on incorporat-

ing PICO into document retrieval [5-7] and automatic annota-

tion of PICO elements in medical literature [8; 9]. PICO ele-

ments are further mapped to medical concepts using standard-

ized vocabularies such as UMLS [10] and OMOP [11]. Recent 

work has been made to normalize composite treatments, such 

as HemOnc [12] to capture chemotherapy regimen information, 

as well as efforts to capture more general medication infor-

mation such as dosage and frequency [13; 14]. The normaliza-

tion of these more nuanced medical details is necessary to en-

hance the expressiveness and completeness of medical litera-

ture mining, as well as to enhance the capacities of the compu-

tational systems that rely on this information. While these com-

bined efforts greatly improve the process of identifying relevant 

medical evidence to a clinician’s queries, they do not address 

the time-consuming process of reading and understanding the 

literature. 

There have been both manual efforts—such as UptoDate [15] 

and the Cochrane Collaboration [16]—as well as automated ef-

forts [17; 18] to capture and summarize the findings in medical 

literature; however they do not go beyond presenting the find-

ings as free text. While this presentation is conducive to a hu-

man reader trying to make sense of a single article, it is not as 

useful for automated evidence synthesis and summarization of 

larger bodies of literature—as there is no standard representa-

tion of the findings these articles present.  

This research seeks to leverage the widespread use of PICO in 

order to represent and normalize the findings in the medical lit-

erature for use in medical evidence computation and synthesis. 

By adding Observation elements to the PICO framework—

which capture the relationship between the treatments and the 

Outcome measure—we enable it to represent medical findings 

as well as questions. As we have identified no prior work ad-

dressing this issue in this fashion, we also propose a normaliza-

tion scheme to extract and normalize two attributes from the 

Observations: significance and the direction of the observed ef-

fect. Our contributions are two-fold: (1) we extend the PICO 

framework to include Observation elements to facilitate evi-

dence computing tasks and (2) we implement and evaluate a 

framework to normalize Observation elements with respect to 

significance and the direction of the observed effect. 

Methods 

Observation Elements and Attributes 

For the purposes of this study, we combine Intervention and 

Comparator classes, and will refer to them simply as Interven-

tions. As described above, Observation elements represent the 

observed relationship between Interventions and the Outcome 

measure. For example, Figure 1 presents related Intervention, 

Observation, and Outcome elements from a snippet of text 

which form a medical finding. In this case, the treatment signif-

icantly increased the prevalence of “good results.” We formu-

late “findings” as the combination of related Intervention, Ob-

servation, and Outcome elements in the text. 

 

Figure 1– Example annotation of related Intervention, 
Observation, and Outcome elements [PID: 9001833] 
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For the Observation elements in these findings, we seek to cat-

egorize them with respect to two attributes: Significance and 

Clinical / Measurement Direction. 

Significance 

The Significance attribute of an Observation, as the name 

would suggest, captures if the finding in question was statisti-

cally significant. It takes one of three possible values: TRUE, 

FALSE, and N/A. TRUE/FALSE values for significance are 

used for significant/not significant findings respectively, while 

N/A is used for cases where no indication of significance is 

made. Examples from these three classes are included below, 

with the relevant context to determine the class label under-

lined. 

� TRUE: “Bone-specific alkaline phosphatase decreased 

( p < 0.05 ) …” [PID: 10993031] 

� FALSE: “No significant difference was observed after 

6 and 12 months of treatment in PEF variability” 

[PID: 10741095] 

� N/A: “PEF variability improved in BDP and BDP + S 

groups” [PID: 10741095] 

Clinical/Measurement Direction 

The Clinical/Measurement Direction (referred to henceforth 

simply as Direction) captures the effect of the Intervention on 

the Outcome as presented in the text. It takes one of four possi-

ble values: UP, DOWN, CHANGE, UNKNOWN. Explana-

tions of these categories as well as some examples are included 

below, with the relevant context to determine the class label un-

derlined. 

� UP: The UP category captures effects that are 

presented in terms of a positive numeric (e.g. an 

increase in some value) or clinical (e.g. an 

improvement in the patient’s condition) effect 

� “good results were significantly higher in the 

ketorolac-treated group” [PID: 9001833] 

� “PEF variability improved in BDP and BDP + S 

groups” [PID: 10741095] 

� DOWN: The DOWN category captures the effects 

that are presented in terms of a negative numeric (e.g. 

a decrease in some value) or clinical (e.g. a worsening 

of the patient’s condition) effect 

�  “Bone-specific alkaline phosphatase decreased 

( p < 0.05 ) …” [PID: 10993031] 

� “statistically significant , but clinically small , 

impairment of memory” [PID: 11205419] 

� CHANGE: The CHANGE category captures effects 

that are presented as differences between the groups in 

question, without specifying the nature of that 

difference 

� “The difference in the median annual change 

between the two groups was significant  

(P=0.013)” [PID: 10385063] 

� UNKNOWN: The UNKNOWN category captures 

effects where the direction of the effect is not apparent 

from the text 

� “in a Cox model of overall survival , but the 

effect of cisplatin was not significant” [PID: 

8918486] 

Normalization Process 

With the framework above, we present and evaluate the follow-

ing rule-based method to determine the values for the different 

attributes. There are separate processes for the categorization of 

an Observation with respect to these attributes, the details of 

which can be found below. 

Significance Normalization 

In order to determine the value for the Significance attribute, 

we first employ regular expressions to scan the Observation and 

its immediate surrounding context, for indicators of signifi-

cance such as explicit wording or p-values. If no indication of 

significance is detected, then the Observation is assigned to the 

N/A category. 

If an indication of significance is present, then the Observation 

is checked for negations (e.g., “no significant difference”) if 

significance was indicated via explicit wording, and the 

TRUE/FALSE value is assigned accordingly. Alternatively, if 

significance was indicated with a p-value, then the process to 

determine significance is as follows. If the computed p-value is 

provided in the text (e.g., p = 0.0013), then we compare its 

value against the threshold of 0.05 to determine significance. If 

the p-value is given as greater than some value (e.g., p > 0.05), 

then the Observation is marked as non-significant and assigned 

the value FALSE for significance. Alternatively, if the p-value 

is presented as less than some value (e.g., p < 0.01) then the 

Observation is assigned the value TRUE. 

Direction Normalization 

We employ a string-matching approach to determine the Direc-

tion of a given Observation, using synonyms to improve cover-

age without having to specify every possible term. First, the 

Observation and its immediate context is scanned for negations 

(e.g. no significant difference), and if one is found the Obser-

vation is labelled UNKNOWN. Next, given a set of trigger 

words for the TRUE, FALSE, and CHANGE classes, we scan 

the Observation for matches to these terms and assign the ob-

servation to the corresponding category. For example, the UP 

class set of trigger words may include terms such as “increase” 

or “improve,” whereas the DOWN class trigger words would 

include “decrease” or “deteriorate.” 

If no exact match is found, we then repeat the exact match 

search using synonyms of the terms in the trigger word sets. 

Word synonyms are determined using WordNet [19], and terms 

in the text are transformed to the form present in the WordNet 

database when possible. We use the WordNet implementation 

from the python NLTK package [20]. 

Experiment Design and Evaluation 

For the training set, 211 abstracts were pulled from PubMed 

and manually annotated for their PICO elements using the 

BRAT annotation tool [21]. We then generated “findings” spec-

ified by Intervention-Observation-Outcome triplets as defined 

above; we took a sample of 150 of such triplets and manually 

labeled them for their Significance and Direction according to 

the class definitions provided above. For the testing set, we 

pulled an additional 50 abstracts and followed the same process 

to generate the “findings” presented in them. We randomly se-

lected 150 of these triplets and once again manually labeled 

them with respect to their Significance and Direction for use as 

a testing set. Two annotators determined the Significance and 

Direction; a sample of 20 “findings” were used to establish in-

ter-annotator agreement between two annotators. After this 

step, one annotator determined the labels for the training set 

while the other labeled the testing set. A  
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breakdown of the class distributions for the two attributes 

across the datasets can be found in Table 1. The training set was 

used to determine the Significance trigger phrases, as well as 

the candidate set of words for the Direction classes. We then 

evaluated the model using the testing set. 

We formulate the task of determining the value for each attrib-

ute as a multi-class classification problem, and present the 

class-specific precision, recall, and F1 scores in Tables 2 and 3. 

In order to have an idea of the overall quality of the normaliza-

tion performance, we also present the micro and macro-aver-

aged values for each measure of interest, as the attributes have 

varying degrees of class imbalance across the datasets. 

Results 

Significance 

The performance of the Significance attribute normalization 

process outlined above can be found in Table 2. Our approach 

achieves a macro-averaged F1 score of 0.82 on the testing set 

for this task. The F1 scores for the TRUE, FALSE, and N/A 

classes are 0.81, 0.78, and 0.85 respectively. While the perfor-

mance metrics tend to be similar across the training and test 

sets, there is an observed degradation (-0.12) in the FALSE cat-

egory’s Recall as well as the N/A category’s Precision (-0.11). 

Clinical/Measurement Direction 

The performance of the Direction normalization process out-

lined in the earlier section can be found in Table 3. Our ap-

proach achieves an overall macro-averaged F1 score of 0.73 on 

this task. The macro-averaged F1 scores for the UP, DOWN, 

CHANGE, and UNKNOWN Direction classes were 0.83, 0.81, 

0.62, and 0.65 respectively. Between the training and testing 

dataset we see drops in the recall of the UP class (-0.16), as well 

as improvements in the CHANGE class’s precision (+0.22). 

Discussion 

Error Analysis 

Errors in determining the Significance come predominantly 

from limitations in the annotation of Observations rather than  

limitations of the logic employed, and originate from discon-

nected spans of text comprising the ‘full’ Observation. Con-

sider the examples below (the Intervention is italicized, the Out-

come is underlined, and the annotated Observation is in bold) 

� Significant Doppler flow improvement was obtained 

in the L-arginine supplemented group [PID: 

10402369] 

� In the CG, soccer training caused an improvement of 
smaller magnitude in 10m and shooting speed (p < 

0.05). [PID: 30431535] 

In both cases, the Direction component of the Observation is 

separate from the Significance component, but the annotation 

can only capture one of them. In the first example, due to the 

wording of the sentence the indicator of significance is sepa-

rated from the Observation by the Outcome. In the second ex-

ample the significance indicator is a p-value, but it is presented 

at the end of the sentence. For cases like the latter one it may be 

possible to have an additional step to assign un-marked p-val-

ues to the closest observation, but further analysis would be 

necessary to determine how this affects performance. 

With respect to  the observed drop in performance in the pro-

posed rule-based method’s on the FALSE category, we attrib-

ute this decrease in performance to an increase in the prevalence 

of cases similar to the ones mentioned above in the testing da-

taset. A performance shift can be expected as the training set 

only contains 15 FALSE Observations whereas the testing set 

contains 40 of them, bringing the performance more in line with 

the TRUE category. 

Errors in determining the Direction attribute arise both from the 

aforementioned limitation in the annotation as well as the lack 

of coverage in the class-specific trigger words. For example, the 

testing set has terms such as “alleviate” and “prolong,” which 

are out of the scope of the synonyms generated from the train-

ing set. As mentioned in the results section, we observe an in-

crease in the performance on the CHANGE class’s precision. 

Our proposed method appears to have had difficulty differenti-

ating CHANGE and UNKNOWN Observations; in the testing 

set 6/18 predicted CHANGE Observations were in fact 

UNKNOWN, and 8/21 of the CHANGE Observations were 

predicted to be UNKNOWN. The magnitude of the change in 

performance may also be due to the limited number of 

CHANGE examples  in the original training set. 

Table 2– The proposed method’s performance for Significance classification 

 Train Test 

Class Precision Recall F1 Supp. Precision Recall F1 Supp. 
TRUE 1.00 0.70 0.83 44 0.97 0.70 0.81 43 

FALSE 1.00 0.80 0.89 15 0.93 0.68 0.78 40 

N/A 0.85 1.00 0.92 91 0.74 1.00 0.85 67 

Macro-Avg. 0.95 0.83 0.88 -- 0.88 0.79 0.82 -- 

Micro-Avg. 0.91 0.89 0.89 -- 0.86 0.82 0.82 -- 

Table 1–  Attribute statistics for the Observations in the two datasets 

  Significance Attribute Direction Attribute 

Dataset # Observations # TRUE # FALSE # N/A # UP # DOWN # CHANGE # UNKNOWN 
Train 150 44 15 91 58 42 10 40 

Test 150 43 40 60 44 41 21 44 
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Limitations and Extensions 

We recognize the limitations of our simple framework. Primar-

ily, there is no distinction made between clinical findings and 

numerical ones. This is particularly relevant in cases where a 

clinical increase corresponds to a numeric decrease (e.g., blood 

pressure in hypertension patients). An improvement (UP) in 

such a patient’s blood pressure corresponds to a decrease 

(DOWN) in the numeric value; assigning it to any of the 

UP/DOWN Direction categories results in a dissonance with 

the other type of finding. This issue also arises in the example 

provided earlier which describes improvements in PEF varia-

bility; an improvement actually corresponds to a decrease in 

some numeric value. 

There is some ambiguity in this framework when it comes to 

representing negative findings—findings that report the ab-

sence of an effect. Consider an intervention that is reported to 

operate “without increasing the rate of complications.” This 

finding would fall into the UNKNOWN category defined above 

because the actual effect on the outcome, if any, is not specified. 

However, it may be meaningful to capture the fact that this find-

ing is presented in terms of an “increase in complications,” even 

if it presents the absence of an increase. In the case of a non-

inferiority trial, this type of negative finding would be one of 

the main conclusions to draw from the text. For cases like this 

it may be better—for interpretation—to split up the Direction 

attribute into sub-components that capture the direction pre-

sented in the finding along with a negation. 

We recommend further work on synthesizing propositions that 

operate on the same Intervention and Outcome to have a more 

complete understanding of the effect presented in the text. In 

the example below, the presented finding is a significant in-

crease in the levels of peripheral leukocytes and lymphocytes. 

� “Over a 24-month observation period the immunized 

group always had higher levels of peripheral 

leukocytes and peripheral lymphocytes ; this 

difference was significant for the first 21 months.” 

[PID: 8908288] 

It is clear to a human reader that the “difference” specified is in 

fact an increase, however with our current approach there 

would be two extracted findings (the observations for which are 

bolded): an increase of unspecified significance, and a signifi-

cant change in the levels of the leukocytes and lymphocytes.  

With respect to the normalization process, we recommend fu-

ture work explore more robust statistical or computational ap-

proaches, such as neural networks, to determine the Direction 

attribute. While we do offset some of the brittleness of using a 

manually specified list of words by enriching it with synonyms, 

such an approach is not scalable to deal with the many possible 

ways to describe findings in medical literature. 

Use Cases for Normalization 

Suppose that a clinician is looking to compare the effectiveness 

of different interventions with respect to some outcome meas-

ure. With a PICO-based search, at best this provides them a list 

of potentially relevant studies that they would need to review 

manually. While available summaries of the relevant docu-

ments would help speed up this process, they do not address the 

issue of needing to sift through a potentially large volume of 

relevant articles. Making use of our approach to normalize find-

ings, it would be possible to generate summary views of the 

literature as a whole, indicating for example that of the 15 rele-

vant documents retrieved, 12 of them indicate a significant pos-

itive effect of the intervention on the outcome while the remain-

ing three do not have significant findings. While the simplicity 

of the current framework somewhat limits its expressivity, it 

can assist in streamlining the evidence review portion of EBM. 

This framework has uses beyond simply summarizing the liter-

ature. With a standard representation of “findings,” it is possi-

ble to detect when there is a contradiction  in the results of dif-

ferent studies. In addition, it has been noted that abstracts may 

report findings in a more positive light than in the main text of 

the article [22]; our approach can be extended to full-text arti-

cles to automatically identify such instances where the findings 

of a study are “spun” differently in the Abstract. 

Conclusions 

In this study, we propose a novel extension to the PICO frame-

work: Observation elements which capture the effect of the In-

tervention on the Outcome, in order to extend the framework to 

more explicitly represent findings in the literature. In addition, 

we propose and evaluate a rule-based method to normalize 

these elements by capturing information about significance and 

the direction of the reported effect. We are able to achieve F1 

scores of 0.82 and 0.73 for determining the Significance and 

Direction of medical findings respectively. 
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