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Abstract 

Chart checking is a time intensive process with high cognitive 
workload for physicists. Previous studies have partially 
automated and standardized chart checking, but limited studies 
implement data-driven approaches to reduce cognitive 
workload for quality assurance processes. This study aims to 
evaluate feature selection methods to improve the 
interpretability and transparency of machine learning models 
in predicting the degree of difficulty for a pretreatment physics 
chart check. We compare chi-square, mutual information, 
feature importance thresholding, and greedy feature selection 
for four different classifiers. Random forest has the highest 
performance with SMOTE oversampling using mutual 
information for feature selection (accuracy 84.0%, AUC 
87.0%, precision 80.0%, recall 80.0%). This study 
demonstrates that feature selection methods can improve model 
interpretability and transparency. 
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Introduction 

Prior to radiation therapy, quality assurance (QA) is conducted 

after treatment planning to ensure quality of treatment and pa-

tient safety. Treatment planning is typically done by a team of 

dosimetrists, physicists, and physicians, where QA is done by 

dosimetrists, physicists, and physicians. Studies show that the 

majority of errors that occur in the radiation therapy workflow 

happen in the pretreatment process [5; 9]. The pretreatment QA 

process is broken into a series of dosimetry checks and physics 

checks. After a dosimetry check, physicists verify the dosime-

try check and perform their own chart review. The nationally 

regulated approach to QA consists of a physicist manually 

checking a series of metrics prior to radiation therapy [11]. This 

process is necessary to catch errors and ensure patient safety, 

and although physics QA checks are very effective, this can 

lead to physicists having a high cognitive workload, which can 

impact how sensitive they are to errors in treatment plans [5; 

6]. Recent efforts have been applied in the QA process to re-

duce workload and optimize accuracy [4; 7; 8; 12]. Machine 

learning has also been implemented in this space to assist with 

automation and strengthening effectiveness of physics chart 

checks [10]. However, there are very few studies that imple-

ment data-driven approaches for process QA [1]. 

The aim of this study is to evaluate feature selection methods 

to improve the interpretability and transparency of machine 

learning models for physicists by predicting the degree of dif-

ficulty to check a plan. After prediction, the objective is for 

physicists to be able to differentiate between plans that require 

more or less scrutiny prior to starting the chart check process. 

While the study is not directly aimed at error prediction, reduc-

ing cognitive workload of physicists can improve their effec-

tiveness and thereby have downstream effects on improving pa-

tient safety. 

Methods 

Data Collection 

Data were retrieved from physics pre-treatment and weekly 

chart checks for treatment plans of each patient from July 2018 

to October 2020, encompassing all cancer sites at UNC Depart-

ment of Radiation Oncology. The outcome variable, the degree 

of difficulty of treatment plans, was collected from physics pre-

treatment chart checks from sixteen physicists as a subjective 

rating on a scale of 1-10. 778 patient plans were used as a train-

ing set, divided into 622 patient plans to train and 156 patient 

plans to test (test set). 

Attribute Selection 

An iterative data selection process was conducted by one clini-

cian, one physicist, and a software development team to select 

attributes along the radiation therapy workflow, which consists 

of four key stages: shared decision making, CT simulation, 

treatment planning, and quality assurance [10]. The attributes 

selected were based on clinical relevance, contribution to plan 

complexity, and quality assurance metrics and taken throughout 

the workflow. Clinically relevant features include patient age 

(mean 62 years, SD 15 years), patient sex (52.73% male, 

47.27% female) and site name. All fourteen sites found in plans 

were included in the analysis. Plan complexity features in-

cluded numbers of isocenters (mean 1, SD 1), fractions (mean 

16, SD 11), beam sets (mean 2, SD 1), and images (mean 5, SD 

6) as well as organ count (mean 33, SD 24), dose per monitor 

unit (MU) (mean 0.64, SD 0.33), having a pacemaker (99.9% 

without, 0.01% with), being pregnant (99.2% not pregnant, .8% 

pregnant),  and having had previous treatment (86.0% without, 

14.0% with). Quality assurance features included numbers of 

physicians (mean 1, SD 1) and dosimetrists (mean 1, SD 1) on 

a plan, whether the plan was on an accelerated schedule (72.3% 

not accelerated, 27.2% accelerated, 0.5% missing data), and the 

physicist on the plan. The physicist on the plan was incorpo-

rated to account for differences in experience levels and per-

ceptions of degree of difficulty. 

MEDINFO 2021: One World, One Health – Global Partnership for Digital Innovation
P. Otero et al. (Eds.)

© 2022 International Medical Informatics Association (IMIA) and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/SHTI220118

460



Data preparation 

The outcome variable for the analysis was the degree of diffi-

culty for each treatment plan. The degrees of difficulty were 

binned into two classes to enable a binary classification. The 

plans that were rated 1-5 were considered not difficult, and 

plans that were rated 6-10 were considered difficult. Synthetic 

Minority Over-sampling Technique (SMOTE)[2] with a minor-

ity sampling strategy was used to oversample the difficult class 

and improve performance (Table 1). 

Table 1– Dataset Class Distributions 

Train (n=622) Count (% of Set) 
Not Difficult 440 

Difficult 182 

Train (Oversampled) (n=740) Count (% of Set) 
Not Difficult 440 

Difficult 300 

Test (n=156) Count (% of Set) 
Not Difficult 108 

Difficult 48 

 

Feature Selection and Classification 

Four different feature selection methods were compared for 

four different classifiers. The feature selection methods used 

include: mutual information, chi-square test (filtering meth-

ods), feature importance thresholding (wrapper method), and 

greedy forward selection (embedded method). Mutual infor-

mation is the measurement of mutual dependence between two 

random variables, where the larger the measurement, the more 

dependent one variable is on another. Features with a mutual 

information score > 0.05 were included in the analysis. The mu-

tual information score threshold was selected by training clas-

sifiers with 10-fold cross-validation and selecting the score re-

lated to the highest accuracy. Chi-square feature selection con-

sists of testing the independence between variables, and we aim 

to select the features that are significantly dependent on the out-

come variable. Features with p-value < 0.05 were included in 

the analysis. Feature importance thresholding is where scores 

are assigned to input features to estimate the relative im-

portance of a feature when making a prediction and scores 

above a set threshold are selected for the model. Greedy for-

ward selection is the process of iteratively adding a single fea-

ture to identify the feature set that maximizes performance. 

Both feature importance thresholding and greedy forward se-

lection use 10-fold cross-validation to produce different feature 

sets for each classifier, where features are iteratively added in 

every fold and optimal feature sets are selected based on per-

formance on each cross-validation subset. Mutual information 

and chi-square test are applied to the dataset, producing a single 

feature set each that is inputted into all classifiers. 

Different classifiers were selected to compare performance. 

Random forest, support vector machine (SVM), an adaptive 

boosting classifier (adaboost), and logistic regression were used 

for prediction. As SVM does not have a feature importance pa-

rameter, feature importance thresholding was not conducted for 

SVM. All other feature selection methods were compared 

across the algorithms. 

Results 

The five feature selection methods were applied to predict de-

gree of difficulty with four classifiers. Accuracy, area under the 

Receiver Operating Characteristic curve (AUC), precision and 

recall were used to evaluate performance on the test set with 

and without SMOTE oversampling. Table 2 shows accuracies 

of classifiers using and not using feature selction methods with 

the highest accuracy for each feature selection method in bold 

and the highest accuracy for each algorithm highlighted. With-

out oversampling, not using feature selection resulted in better 

accuracy for all algorithms. However, SVM and logistic regres-

sion showed equal accuracy without feature selection and using 

greedy feature selection. With oversampling, not using feature 

selection resulted in the highest accuracy for the random forest 

classifier. For SVM and adaboost, using greedy feature selec-

tion resulted in the highest accuracies. When comparing algo-

rithm accuracies on the test set between using and not using 

oversampling, random forest and logistic regression had higher 

accuracies after oversampling. Random forest achieved the 

highest accuracy with oversampling and without feature selec-

tion (i.e., using all features) (0.84). Across all feature selection 

methods, random forest also consistently outperformed all 

other classifiers in terms of accuracy. The highest accuracy for 

logistic regression was with oversampling and using chi-square 

for feature selection (0.77). The highest accuracies for SVM re-

mained the same before and after oversampling. Without over-

sampling, SVM achieved 0.71 accuracy without feature selec-

tion, and with oversampling, SVM achieved 0.71 with greedy 

feature selection. Adaboost accuracy was highest without over-

ampling and without feature selection (0.76). Thus, in all clas-

sifiers, using all features resulted in highest accuracies. 

Table 2– Accuracy for Classifiers with and without Feature Selection Methods on Test Set 

Without SMOTE Oversampling 

Algorithm 
All features 
used 

Chi-
Square 

Mutual 
Information 

Feature Importance 
Thresholding 

Greedy Feature 
Selection 

Random Forest 0.83 0.81 0.80 0.80 0.79 
SVM 0.71 0.71 0.71 N/A 0.71 

Adaboost 0.76 0.75 0.73 0.72 0.73 

Logistic Regression 0.75 0.74 0.73 0.70 0.75 

With SMOTE Oversampling 

Algorithm 
All features 
used  

Chi-
Square 

Mutual 
Information  

Feature Importance 
Thresholding 

Greedy Feature 
Selection 

Random Forest 0.84 0.78 0.80 0.82 0.78 
SVM 0.70 0.70 0.70 N/A 0.71 
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Adaboost 0.72 0.74 0.72 0.72 0.75 

Logistic Regression 0.76 0.77 0.73 0.72 0.74 

After evaluating the algorithms on accuracy, ROC curves were 

created to evaluate all classifiers without feature selection and 

with greedy feature selection before and after oversampling. 

Greedy feature selection and not using feature selection were 

selected because they had the highest performance. Random 

forest had the highest AUC out of all classifiers without over-

sampling and using all features (0.87) as well as with over-

sampling, using all features (0.87) and using mutual infor-

mation (0.87). SVM had the highest AUC with oversampling 

and greedy feature selection (0.79). Adaboost had the highest 

AUC without oversampling using chi-square feature selection 

(0.78) and feature importance thresholding (0.78) as well as 

with oversampling and greedy feature selection (0.78). Logistic 

regression had the highest AUC with oversampling and mutual 

information (0.77) (Table 2).  

Algorithm performance was analyzed with precision and recall 

due to the class imbalance (Table 2). Without oversampling, 

random forest had the highest precisions (0.87) and recalls 

(0.79) compared to all other classifiers. With oversampling, 

random forest also had the highest precisions and recalls. For 

precision, random forest performed equally with mutual infor-

mation and with feature importance thresholding (0.80). For re-

call, random forest performed best with mutual information 

(0.80). 

Without oversampling, using random forest achieved its best 

performance in terms of precision and recall after using all fea-

tures. SVM achieved equal recalls (0.58) after using all fea-

tures, chi-square, and mutual information feature selection. It 

achieved highest precision using mutual information (0.65).  

Adaboost achieved the highest precision and recall after using 

all features, like random forest. Logistic regression using all 

features and using greedy feature selection had a recall of 0.65. 

After greedy feature selection, it also achieved its highest pre-

cision (0.72).  

With oversampling, algorithm performance in terms of preci-

sion and recall varied more. Random forest performed the best 

across all feature selection methods except for chi-square fea-

ture selection. Using chi-square, logistic regression had the 

highest precision (0.73) and recall (0.73). Greedy feature selec-

tion allowed SVM and adaboost to perform their best with 

SVM having 0.68 precision and 0.71 recall and adaboost hav-

ing 0.71 precision and 0.71 recall. SVM also achieved 0.68 pre-

cision using mutual information. 

When compared with accuracy, using AUC, precision and re-

call metrics provides a more detailed evaluation of algorithm 

performance across feature selection methods. While using all 

features produced the best accuracies, it did not produce the 

best AUC, precision, and recall after oversampling. Notably, 

the highest recall overall was from random forest using mutual 

information (0.80). The highest precision overall was from ran-

dom forest using all features (0.81).

Table 2– ROC AUC, precision (P), and recall (R) values with and without SMOTE oversampling

Without SMOTE Oversampling 

Algorithm Using all features  Chi-Square 
Mutual 
Information  

Feature 
Importance 
Thresholding 

Greedy Feature 
Selection 

 AUC P R AUC P R AUC P R AUC P R AUC P R 
Random 

Forest 0.87 0.81 0.79 0.81 0.73 0.68 0.86 0.79 0.72 0.86 0.79 0.76 0.84 0.76 0.74 
SVM 0.73 0.64 0.58 0.72 0.64 0.58 0.69 0.65 0.58 N/A   0.74 0.64 0.57 

Adaboost 0.77  0.72 0.68 0.78 0.71 0.67 0.77 0.68 0.65 0.78  0.66 0.63 0.77  0.68 0.66 

Logistic 

Regression 0.74  0.71 0.65 0.74  0.70 0.64 0.75 0.68 0.63 0.67  0.62 0.57 0.76  0.72 0.65 

With SMOTE Oversampling 

Algorithm Using all features  Chi-Square  
Mutual 
Information  

Feature 
Importance 
Thresholding 

Greedy Feature 
Selection 

 AUC P R AUC P R AUC P R AUC P R AUC P R 
Random 

Forest 0.87 0.79 0.77 0.72 0.70 0.69 0.87 0.80 0.80 0.85 0.80 0.78 0.84 0.75 0.73 
SVM 0.78 0.66 0.68 0.78 0.66 0.68 0.78 0.68 0.70 N/A   0.79 0.68 0.71 

Adaboost 0.76 0.67 0.66 0.77 0.70 0.69 0.76 0.68 0.68 0.76 0.67 0.67 0.78 0.71 0.71 

Logistic 

Regression 0.75 0.71 0.71 0.75 0.73 0.73 0.77 0.69 0.69  0.67 0.66 0.65 0.76 0.69 0.70 
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Discussion 

Machine learning methods have increasingly been used in radi-

ation oncology to improve effectiveness of radiation treatment 

planning QA. While efforts to automate the QA check process 

are ongoing, manual checks are still the primary method for 

chart review. The average physics QA check has approximately 

170 items and can take multiple hours to complete [3]. The 

overall goal for this work is to create a data-driven aid to help 

physicists understand what kind of plan they are going to work 

on so they can budget their time more effectively and be more 

vigilant with plans that are deemed difficult. Currently, physi-

cists depend on prior experience to assess the difficulty of a 

plan and approximate how long a chart check will take. The task 

for the current study was to predict degree of difficulty of pre-

treatment chart checks, but more specifically, it was to survey 

feature selection methods to ensure that the final models are 

parsimonious, interpretable and transparent. Any future aid cre-

ated for physicists will need to fit into their current workflow, 

and for a machine learning tool to be useful to them, it must 

provide reasoning behind predictions. By using feature selec-

tion methods, we can identify the most important features for 

prediction and thereby demonstrate why a plan was classified 

as difficult or not difficult.  

This study analyzed performance using four different metrics 

in a classification with an imbalanced dataset. Oversampling 

was used to reduce the class imbalance in the dataset and im-

prove performance. Results showed that on the test set, over-

sampling did not increase accuracy for all algorithms, and for 

algorithms with higher accuracies after oversampling, the dif-

ference was marginal. However, when comparing with AUC, 

precision and recall, using oversampling resulted in higher per-

formance in many cases. For an imbalanced classification, pre-

cision and recall can be more useful to evaluate performance 

because accuracy values can be skewed by the majority class, 

as shown in this study. The limitation of oversampling is that it 

can increase the likelihood of overfitting and reduce generali-

zability on the test set, which was likely the case in this study. 

However, some algorithms could suffer more when faced with 

class imbalance, which could be why SVM performance is 

much higher with oversampling compared to without. Classifi-

ers performed the best without using feature selection and using 

greedy feature selection. 

A similar study was conducted by Brown et al.[1], where an 

undersampling framework was used to support imbalanced data 

classification with SVM variants. The study used AUC and 

false positive rate at two thresholds to evaluate performance. 

However, they did not evaluate their approach on a test set and 

only provided metrics for cross-validation performance. We 

used cross-validation for hyperparameter selection but reported 

metrics on the validation set in this work. 

A key limitation of this work was the limited dataset size. Also, 

all data were collected in a single academic institution, and the 

outcome variable, degree of difficulty, was a subjective rating 

by physicists with different experience levels. The attributes se-

lected by the team were double the number included in the 

study due to data accessibility issues. Therefore, adding more 

attributes that could contribute to plan check difficulty would 

make the analysis more robust. 

For future work, we plan to optimize prediction of more diffi-

cult cases and better the imbalanced data classification by using 

a voting schema to classify cases based on agreement across 

multiple algorithms. We also intend to implement the machine 

learning algorithms in the clinic, allowing physicists to rank 

treatment plans based on the predicted degree of difficulty. 

Conclusions 

The findings from this study demonstrate that feature selection 

methods improve the transparency and interpretability methods 

of ML algorithms. With respect to interpretability, being able 

to identify the most important features will improve physicist 

adoption of these classifiers in a future clinical implementation. 

When physicists make decisions on how to budget their time, 

seeing the factors contributing to a classification can be less dis-

ruptive and potentially reduce cognitive workload and errors, 

which will in turn improve patient safety. 
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