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Abstract 

Dementia is one of the most prevalent health problems in the 
aging population. Despite the significant number of people 
affected, dementia diagnoses are often significantly delayed, 
missing opportunities to maximize life quality. Early 
identification of older adults at high risk for dementia may help 
to maximize current quality of life and to improve planning for 
future health needs in dementia patients. However, most 
existing risk prediction models predominantly use static 
variables, not considering temporal patterns of health status. 
This study used an attention-based time-aware model to predict 
incident dementia that incorporated longitudinal temporal 
health conditions. The predictive performance of the time-
aware model was compared with three traditional models using 
static variables and demonstrated higher predictive power. 
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Introduction 

Aging of the population has led to an increase in dementia. 

Alzheimer's disease is the most common cause of dementia, 

with more than 6 million people in the United States currently 

affected, and cases are expected to increase to 15 million by 

2060 [1]. These trends have resulted in a tremendous burden for 

patients, their families, society, and healthcare systems, with an 

annual estimate of 18.5 billion hours of unpaid care at a value 

of $234 billion [2]. Despite the huge number of people affected 

by dementia, clinicians are not aware of relevant cognitive 

impairment (i.e., mild cognitive impairment [MCI] and 

dementia) in more than 40% of their patients [3]. Further, 

clinical diagnoses often occur late in the process of cognitive 

decline or after opportunities for maximizing quality of life 

have long passed [4, 5].  Given this imminent growth of older 

adults with dementia and its significant underdiagnosis, 

predicting dementia risk and understanding its progression is 

crucial to help the aging population with their health needs. 

Dementia is usually a slowly progressing disease over time. 

One promising approach for dementia prediction is to examine 

longitudinal trajectories of various clinical assessments (e.g., 

gait speed, activities of daily living, neuropsychological 

characteristics) among cognitively normal patients and patients 

with dementia. Studies have shown that trajectory analyses may 

detect signals much earlier than the dementia is first clinically 

diagnosed [6, 7]. Our preliminary studies also demonstrated 

distinct temporal patterns of activities of daily living between 

cognitively normal and impaired older adults years before 

clinical diagnosis [8, 9].  

Existing models for risk prediction have been largely static-

time models (i.e., not considering temporal patterns of health 

status) [10-12]. Despite some early success in modeling 

patients’ future risk, the informative longitudinal patterns and 

dynamic changes in patient's health status were not captured. 

With the recent advancement in sequential learning, recurrent 

neural networks (RNN) and its variants have been applied to a 

wide range of temporal-based datasets leveraging their 

advantage of learning complex nonlinear relationships and 

sequential patterns [13].  

One important characteristic of electronic health record (EHR) 

data is the availability of a detailed record of longitudinal 

disease progression. Because dementia is a slowly progressing 

disease, the changes in patients' clinical assessment during their 

long-term follow-up visits may provide crucial information to 

predict dementia. However, since previous experiments only 

considered diagnosis codes as the model input in the 

experiment [14-16], the applicability and feasibility of these 

models may be limited in a real-world EHR setting given the 

fact that patient information can be multimodal, diverse, and 

dynamic [17]. 

A well-known model incorporating time information includes 

time-aware long short-term memory neural network (T-

LSTM), a variation of LSTM proposed by Baytaş et al that can 

capture the time interval between two consecutive elements of 

a visit [14]. Another approach is through the attention 

mechanisms for risk prediction, such as RETAIN [15] and 

RetainEX [18], which leveraged the reverse-time attention 

mechanism to consolidate historical visits and significant 

clinical variables.  

The recent advancement in hierarchical learning and 

Transformer architecture, hierarchical deep sequence models 

with attention mechanisms, has shown some early success in 

various EHR-related prediction tasks [16, 19, 20]. Therefore, 

this study used state of the art hierarchical attention-based time-

aware model incorporating temporal patient health status to 

predict dementia. In addition, to address previous model 

limitations, the model used in this study considers 

heterogeneous input features in both static and dynamic 

characteristics. Finally, we evaluated the model in a population-

based cohort with a comprehensive periodic cognitive 

assessment of MCI and dementia. 
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Materials and Methods 

A. Data 

This study was approved by the Mayo Clinic Institutional 

Review Board and the Olmsted Medical Center Institutional 

Review Board. We used data from the Mayo Clinic Study on 

Aging [21]. The MCSA is a prospective population-based 

cohort study with comprehensive periodic cognitive 

assessments (at baseline and repeated every 15 months), 

initiated in 2004 to investigate the epidemiology of MCI. 

Eligible persons from Olmsted County, Minnesota, population, 

were randomly selected and evaluated comprehensively in 

person using the clinical dementia rating scale, a neurological 

evaluation, and neuropsychological testing. A consensus 

committee used previously published criteria to diagnose the 

participants with normal cognition, MCI, or dementia. MCI is 

diagnosed according to published criteria [22] and dementia is 

diagnosed according to DSM-IV criteria [23]. In addition to 

cognitive assessment, other data elements are abstracted from 

the medical records or through interviews and questionnaires 

(e.g., education, body mass index, comorbid conditions, 

neuropsychiatric symptoms, vascular risk factors). The MCSA 

cohort comprises 6,185 unique patients with total 26,807 visits 

(4.3 average visits per patient). Among these, 3,070 patients 

were female (49.6%) and 729 patients (11.6%) have progressed 

to dementia. The median age of the cohort is 73.  

The variables collected from the MCSA were used to predict 

the status of dementia. Table 1 summarizes 40 input variables 

into five different categories, including patient demographics, 

physical characteristics, psychological characteristics, social 

characteristics, and functional status. All physical 

characteristics,  psychological characteristics, and functional 

status were considered time-dependent variables.  

Table 1– Input Variables  

B. Model 

Transformer, originally proposed in the tasks in natural 

language processing, has demonstrated robustness and 

capability to capture long-term sequential events [24]. With 

recent research applying Transformer to model EHR data, the 

model can capture the dynamic interaction between consecutive 

visits for risk prediction leveraging the self-attention 

mechanism. We used time-aware Transformer to predict the 

risk of progression to dementia in the future state. In our study, 

we explored three different transformer-based architectures, 

including the original HiTANet (Hierarchical Time-Aware 

Attention Networks - H-Net) proposed by Luo et at [16] and its 

variants Transformer Time Embedding (T-EMD) and 

Transformer Time Attention (T-ATT). For the given visit, the 

H-Net considers two vector representations: a diagnosis code 

vector xt and time interval δt. This representation is able to learn 

a visit-specific weight through local attention score αt. At the 

global level, H-Net uses a time-aware key-query attention 

mechanism to study the overall disease progression. 

Additionally, the model uses dynamic attention fusion (DAF), 

the fusion mechanism to combine the local and global level 

attention score αt and βt for each visit. T-EMD, and T-ATT are 

the simplified version of H-Net that only used either time 

embedding (local visit analysis) or time-aware key-query 

attention for global weight adjustment (Figure 1). 

Figure 1– Architecture of H-Net 

 

The original HiTANet was designed for risk prediction based 

on terminology codes only. To comprehensively capture the 

complex patient disease status, we used the input representation 

as time-dependent generic features. Let p = {1, 2, … , P} where 

the input vector consists of a sequence of follow-up visits and 

each visit contains concepts such as functional status, 

comorbidities, and demographic information (Figure 2). All 

variables were then converted to ordinal scales using either 

integer encoding or a binary vector.   

Figure 2– Illustration of Longitudinal Disease Progression 
Patterns 
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Incident Dementia

Patient Demographics 
Age, Sex, Race, Ethnicity 

Physical characteristics 
BMI, Smoking status, Alcohol problem 

Sleep apnea, Hypertension, Dyslipidemia, Atrial 

fibrillation, Angina, Congestive heart failure, Cor-

onary artery disease, Myocardial infarction, Coro-

nary artery bypass graft, Diabetes, ESSscore 

Psychological characteristics 
Delusions, Hallucinations, Agitation, Depression, 

Anxiety, Euphoria, Apathy, Disinhibition, Irrita-

bility/lability, Motor behavior, Nighttime behav-

ior, Appetite/eating change, BDI-II grand total, 

BDI depression (Total >=13), BAI total (0-63)  

Social characteristics  
Education, Occupation, Marital status, Personal 

care 

Functional status 
FAQ Total Score (0-30), ECog-12 

 
Abbreviations: ESSscore: Hypersomnolence ESS score 

(0-24), BDI: Beck Depression Inventory scores, BAI: 

Beck Anxiety Inventory, FAQ: 10-item questionnaire on 

instrumental activity of daily living, ECog-12: scales to 

measure multiple cognitively relevant everyday abilities, 

covering six domains 
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C. Patient Representation (temporal vs. static) 

We used variables in all MCSA visits prior to incident dementia 

and all visits for non-dementia cases to develop temporal-based 

models incorporating dynamic changes of health status (H-Net, 

T-EMD, T-ATT). Static models, which used variables in the 

last visit prior to incident dementia and the last visit for non-

dementia cases, were implemented for comparison (see D. 

Experiment section).  

D. Experiments 

To evaluate the effectiveness of the proposed model, three 

baseline models (static models using static variables) were 

developed, such as multilayer perceptron (MLP), random forest 

(RF), and gradient boosting machine (GBM). For all models, 

we used a random split of 70% for development (8:2 ratio of 

training and validation) and 30% as the test set for evaluation. 

We used accuracy, precision, recall, the area under the ROC 

curve (AUC), and F1-score as a performance metric. F1-score 

is a popular metric for imbalanced data with a focus on the 

positive class by combining precision and recall. Missing 

values were imputed using missForest [25]. 

Results 

The summarized performances for experiments across different 

models are shown in Table 2. We observed that the temporal 

models (H-Net and T-ATT) yielded higher performance than 

static models in recall, AUC, and F1-score, except for very 

close AUC to RF. T-EMD  yielded the highest performance in 

accuracy, however, given that the distribution of the data set 

was imbalanced (dementia cases < 12%), accuracy may not 

reflect the overall performance reasonably. The temporal 

models produced relatively higher recall but lower precision 

than those of static models. The use of temporal information 

(i.e., use of all visit information over time) in temporal models 

may enable to capture more dementia cases despite the sacrifice 

of the model precision.   

Table 2 – Model Performance in Dementia Prediction 

 Acc Pre Rec AUC F1 
 

Static Model 

      

MLP 0.784 0.710 0.420 0.658 0.528 

      

RF 0.781 0.750 0.398 0.684 0.520 

      

GBM 0.786 0.708 0.391 0.665 0.504 

 

Temporal Model 

H-Net 0.773  

          

0.662  

          
0.463  

          
0.681  

          
0.545  

T-

EMD 0.827  
          

0.676  

          

0.401  

          

0.673  

          

0.503  

T-

ATT 0.757  

          

0.595  
          
0.501  

          
0.681  

          
0.544  

*Acc: accuracy, Pre: precision, Rec: recall, F1: F1-score, AUC: 

Area under the ROC Curve, bold font denotes top two highest 

performed models  

Discussion 

Dementia is highly prevalent and associated with severe health 

outcomes in the aging population. However, its diagnoses are 

often significantly delayed. To facilitate the early detection and 

risk prediction of dementia using patients’ longitudinal health 

conditions, we have explored an attention-based time-aware 

mechanism and transformer architecture and compared them 

with other traditional models.  

The evaluation results indicated the importance of leveraging 

time-variant information for modeling dementia risk in 

longitudinal data. Transformer-based models performed higher 

than other models in an F1-score, which is more appropriate 

than accuracy or AUC to measure the performance in 

imbalanced data. Compared to other studies for prediction of 

incident dementia, our models produced promising results; 

other studies using deep neural networks [26] produced an F1-

score of 25% – 30% (3 to 8 years prior to the index date), and 

using Lasso logistic regression had an AUC 0.69 (1.5% 

dementia cases), sensitivity 9.9% and specificity 99.9% (4 to 5 

years in advance) [27]. 

To further understand the impact of different attention (local vs. 

global) mechanisms on the attention weights learned by three 

Transformer models, we compared and visualized three 

attention weights in the training process: 1) self-weight, 2) self-

weight adjusted by the local attention (allow to focus on local 

region), and 3) self-weight adjusted by the global attention 

(trained based on global time vector). As shown in Figure 3, all 

three representations demonstrated a non-linear decreasing 

order of the weights from the most recent visit to the first visit. 

The local attention demonstrated a more aggressive pattern of 

adjusting the weight sequence for both recent and long-distance 

visits. The global attention alleviates some high degree 

adjustments (areas with color changes) such as v1, v9, and v10 

and neutralizes the overall attention weights. Based on the 

performance evaluation (Table 2), we believe that the 

combination of two attention mechanisms may potentially 

improve the generalizability of the model. 

Figure 3 – Architecture of H-Net 

 

*V1-12: visit sequence prior to the incident dementia, color red: 

lower weight assigned, color green: higher weight assigned, 

blue bar: weight value 

We also tested an unsupervised stacked denoising autoencoder 

[28]  – i.e., a deep patient representation to reconstruct the input 

vector from noisy and sparse data using a deep sequence of non-

linear transformations – to examine its efficacy on the models. 

However, we did not observe a performance gain compared 
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with the original vector representation. This may be due to 

relatively less complexity/variability of the MCSA data that can 

be benefited by denoising transformation. 

The limitation of this study includes the use of variables in the 

MCSA based on comprehensive assessments that may not be 

readily available in other institutions. We plan to extract 

relevant variables from routine EHRs to facilitate broad 

applicability. The model was developed using the data in a 

single institution and thus the external validity is warranted to 

assess its generalizability.    

Conclusions 

The transformer-based time-aware models using longitudinal 

visit information demonstrated higher performance in dementia 

prediction compared to traditional models that used static 

variables. This warrants the use of temporal patterns of health 

conditions in dementia prediction, reflecting the nature of a 

slowly progressing disease over time. In the future, we also plan 

to explore a cohort-specific model (i.e., age, sex, and 

socioeconomic status) to investigate its efficacy in dementia 

prediction. Considering the significant growth of dementia and 

its underdiagnosis, this predictive model of dementia risk could 

help the aging population with their health needs and better 

planning.  
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