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Abstract. Machine learning algorithms become increasingly prevalent in the field 

of medicine, as they offer the ability to recognize patterns in complex medical data. 
Especially in this sensitive area, the active usage of a mostly black box is a 

controversial topic. We aim to highlight how an aggregated and systematic feature 

analysis of such models can be beneficial in the medical context. For this reason, we 
introduce a grouped version of the permutation importance analysis for evaluating 

the influence of entire feature subsets in a machine learning model. In this way, 

expert-defined subgroups can be evaluated in the decision-making process. Based 
on these results, new hypotheses can be formulated and examined. 

Keywords. explainable AI, permutation importance, grouped variable analysis 

1. Introduction 

Whether in clinical research or risk factor calculations, machine learning algorithms can 

be found in many medical fields. This results in important challenges for the usage of 

these algorithms - especially regarding the ethical background - like regulatory aspects, 

interpretability, or interoperability [1]. For this work, we present a particular perspective 

on interpretability of feature contributions. Namely, this should not be seen as just a 

means of application, but rather a way to better understand the underlying problem. Our 

focus is on the combination of humanly understandable feature subgroups and their 

respective importance scores. 

Feature importance analysis is a major component in the examination and 

interpretation of machine learning models. The question arises on which basis a problem 

was solved, e.g., in classification, why the decision for a class was made the way it was. 

The methodology behind such an analysis can vary widely depending on the problem 

and model. We focus in the following on the permutation importance analysis [2]. Here, 

the variation of predictive accuracy is analyzed based on the test set. The feature under 

investigation is permuted and the prediction is compared with the unmodified one. 

Therefore, this method is not dependent on a specific implementation of the prediction 

process and thus can be applied to any feature-based supervised machine learning model. 
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This allows a wide range of application of this method, even for more complicated 

architectures such as deep neural networks. 

In this paper we are concerned with a particular adaptation of the permutation 

importance analysis. Many data sets consist of features that can be grouped to clinically 

meaningful subsets. An arrangement into such subsets does not have to be unambiguous 

at all but still relevant for the domain. We present a methodology to determine the 

information gain for each of these groups. In particular, for tree-based classifications, 

analyses on grouped feature importance and terms like group permutation importance 

measures have been described previously [3]. Their research supports the theoretical 

aspect of our application. As a complement to this, we intend to focus more on 

interpretation - by using expert-defined feature subsets - than optimization of the model. 

To this end, we present an explicit algorithm that uses cross-validation to provide a fast, 

stable, and meaningful analysis based on the test performance. In doing so, we shed some 

light on a black box prediction. In addition to the method itself, we focus on an 

application in neuroimaging where we evaluate the impact of a brain region depending 

on the target variable. 

2. Methods 

In the context of grouped characteristics, it is not advisable to simply add up individual 

feature importance scores. The reasons depend on the method of calculating scores. For 

example, in the univariate permutation importance analysis, it is assumed that all other 

features are known at the time of permutation. This does not provide adequate insight 

into the influence of a specific feature group. Other feature importance methods, such as 

a tree-based calculation, tend to overfit, often boosting features that contribute hardly 

any information to the problem [4]. Thus, a sum of these feature weights overestimates 

the group with substantially more features, while the mean or median discriminates 

against this group. 

For this reason, we adjust the calculation as follows: First, a machine learning model 

is trained based on the training set and a feature subset is specified. Then, a predefined 

number T  ℕ of test set permutations are created. Here, it is important that only the 

features within the subset are permuted. Predictions are then created based on these 

modified test sets. By matching the correct labels, the change in performance is estimated 

(averaged over all permutations). This process is illustrated in Figure 1 and is repeated 

for every feature subset, starting with the existing trained model. 

 

Figure 1. The permutation process of a specific feature subset is shown. The columns that are affected by the 

permutation are marked in green, the remaining columns remain unchanged. 
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To stabilize the validity, this process is repeated over several cross-validation folds. 

The final value is then composed of the mean between these folds. Algorithm 1 

summarizes the whole method. The corresponding code is published as open source2. 

The grouped permutation importance (GPI) describes the direct influence compared to 

the respective overall performance. Thus, it represents the absolute information gain per 

group. However, these analyses are particularly interesting in comparison with the same 

data set but different target variables. Since the maximum performance of a model 

depends strongly on the underlying target, a relative value should be preferred to an 

absolute one in these cases. For this purpose, the GPI is set in relation to the unpermuted 

performance to be able to analyze a relative information gain. 

3. Experiment: Brain region impact depending on the target variable 

The explanation of machine learning algorithms in the field of neuroimaging is a 

widespread analysis. One is interested in specific brain markers to gain a more detailed 

insight into the functionality of the brain. In the following, we see that depending on the 

target variable, expert-defined brain areas are incorporated as feature groups into the 

machine learning model on very different weights. 

Based on a predefined atlas, the measured voxels were clustered and averaged into 

feature subgroups that we can evaluate by applying Algorithm 1. For the simulation, we 

use the public data set OASIS [5]. In addition to the T1-weighted magnetic resonance 

imaging (MRI) scans of 403 subjects, this data set provides three target variables: age, 

biological sex, and the clinical dementia rating (CDR), which is used for the diagnosis  

 
2  The code is available on GitHub and the installation is possible via pip:  

pip install git+https://github.com/lucasplagwitz/grouped_permutation_importance 
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Figure 2. Brain region influence depending on the target variable. The displayed relative scores are calculated 

based on the balanced accuracy score. The following performances depending on the classification task were 

obtained: age 87%, Alzheimer’s 82%, and biological sex prediction 72 %. 
 

of Alzheimer’s disease. For simplicity, we change the target variables to binary values. 

We only distinguish between CDR zero or greater than zero for Alzheimer’s prediction 

and age more or less than 50 for an age-based classification task. By applying the 

Harvard-Oxford 2mm Subcortical Atlas, we obtain several volumes for different brain 

areas as seen in Table 1.  

 

Cerebral 
Cortex 

Cerebral 
White Matter Putamen Pallidum Background Lateral 

Ventrical 
4 13 2 2 2 1 

 
Brain-Stem Amygdala Hippocampus Thalamus 

1 2 2 2 

Table 1. Havard-Oxford (Subcortical) Atlas – volumes per region. 

All atlas calculations are based on the Python package nilearn [6]. We then 

determine the GPI of each brain region given a balanced support vector classifier, 5-fold 

cross-validation (randomized in 10 replicates), and a permutation value T = 100 by using 

the Python package scikit-learn [7], which is visualized in Figure 2. It is noticeable that 

the information about age and Alzheimer’s disease is mainly located in the cerebral 

cortex. However, the cerebral white matter contains much more information about age. 

In contrast, the prediction of biological sex, this is based mainly in the white matter and 

hardly in the cerebral cortex. Moreover, the influence of the putamen as well as the 

hippocampus should be emphasized. While these regions provide no additional benefit 

for the prediction of age or biological sex, a positive impact on predicting Alzheimer’s 

disease can be determined. Findings such as these could lead to a better differentiation 

of Alzheimer’s disease from the normal aging process. 

4. Discussion 

We have seen that an analysis of predefined feature subsets can provide new insights into 

brain feature discrimination. This expands the utility of a classification algorithm from a 

final output to an investigative process. The consideration of other data structures is 

equally conceivable: As an example, time series usually offer the possibility to divide 

them into subsets. On the one hand, there are multivariate time series, which represent 

several signals over time. Medical examples are the electrocardiogram (ECG) or 
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electroencephalography (EEG), where information is obtained from various leads or 

multiple electrodes on the scalp. If we build a machine learning model that extracts 

features from each signal independently (e.g., sliding-window approaches), we are able 

to describe the information gain of every signal. With this knowledge, the cardiologist’s 

focus could be directed to a specific lead in the ECG - or the neurologist to a specific 

EEG-channel. On the other hand, a subdivision into phases is also conceivable for 

univariate time series. 

However, it is precisely at this point that a limitation of our method becomes 

apparent. The features must be extracted independently of the subsequences. Modern 

end-to-end algorithms, such as convolutional neural networks, cannot be measured with 

the presented approach. Furthermore, a more in-depth analysis of the method based on a 

comparison to alternative algorithm (e.g., grouped SHAP values), different metrics, or 

multiclass problems are still pending for the future. 

Nevertheless, the additional benefit of analyzing the importance of entire subsets 

through feature-based methods should not be ignored. In contrast to time series, all 

groupable types of data are conceivable, whether a questionnaire according to categories 

or a clinical examination according to organ parameters.  

5. Conclusion 

We presented the grouped permutation importance to achieve a better understanding of 

the underlying problem by examining subsets of features. In this context, better 

localization of information in the data produces new insights. Through an example from 

brain research, we have shown how different brain regions are involved in a decision-

making process depending on the target variable. In addition, many applications are 

conceivable since, especially in medicine, data sets usually consist of a large number of 

characteristics that can be grouped together in clinically meaningful categories. 

Determining their impact on a predictive algorithm opens entirely new possibilities in 

understanding, detecting, and treating diseases. 
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