
Implementing a Microservices Architecture
for Predicting the Opinion of Twitter Users

on COVID Vaccines

Guillaume GUERDOUXa, Bissan AUDEHc, Théophile TIFFETb and
Cédric BOUSQUETb,c,1
a

 Geegz, Paris, France
b

 Unit of Public health, University hospital of Saint-Etienne, France
c

 Sorbonne Université, INSERM, Univ Paris 13, Laboratoire d'Informatique Médicale
et d'Ingénierie des Connaissances pour la e-Santé, LIMICS, 75006, Paris, France

Abstract. A strong trend in the software industry is to merge the activities of
deployment and operationalization through the DevOps approach, which in the case
of artificial intelligence is called Machine Learning Operations (MLOps). We
present here a microservices architecture containing the whole pipeline (frontend,
backend, data predictions) hosted in Docker containers which exposes a model
implemented for opinion prediction in Twitter on the COVID vaccines. This is the
first description in the literature of implementing a microservice architecture using
TorchServe, a library for serving Pytorch models.

Keywords. Artificial Intelligence, MLOps, COVID-19, Social Media, Vaccines

1. Introduction

The remarkable performance of deep learning and its ongoing improvements raises the
question of its usability in real life in the medical context. In this paper, we evaluate the
feasibility of implementing a microservices architecture for the deployment of a deep
learning model to classify Twitter users’ opinion about COVID-19 vaccination that was
implemented in a previous work [1]. In a nutshell, a deep learning model was
implemented with PyTorch and CamemBERT [2], a French variant of Bidirectional
Encoder Representations from Transformers (BERT) [3].

2. Method

We implemented an architecture based on three components within Docker containers,
NGINX and two microservices: a backend implemented with Django-uWSGI and a
prediction application programming interface deployed with TorchServe. We
customized an inference handler and started TorchServe to serve the model, listening for
clients’ requests, and processing these requests. Docker-compose was used to define,

1 Corresponding Author, Dr Cedric Bousquet, SSPIM, Bâtiment CIM42, chemin de la Marandière,

Hôpital Nord, 42055 Saint Etienne, France; E-mail: cedric.bousquet@chu-st-etienne.fr.

Challenges of Trustable AI and Added-Value on Health
B. Séroussi et al. (Eds.)
© 2022 European Federation for Medical Informatics (EFMI) and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/SHTI220417

135

build and manage the containers providing the services. Communications between
clients and the server are managed through a RESTful API without maintaining the
session state, hence the use of a JSON web token each time the client requests a service
requiring authentication. The architecture is shown in figure 1.

Figure 1. The microservices architecture.

3. Results and Discussion

As a proof of concept, we have implemented a simple web interface that allows the user
to request the analysis of a sentence using our model. This request is then forwarded to
Django via NGINX and uWSGI, then validated (format, authorization, etc.) and finally
sent to our TorchServe service for prediction. Finally, the result is presented to the user
in the same web interface. This interface was implemented using Vue.js, an open source
JavaScript framework for building user interface and single-page applications. The F-
Score of the classifier was 0.75 (precision: 0.74; recall: 0.75) [1].

This work demonstrates the feasibility of integrating a deep learning model with
other applications once it is served using the proposed architecture. Furthermore, it is
quite flexible, and it can be modified to meet various requirements. To our knowledge,
this is the first description of a microservices architecture using TorchServe in the
medical literature. This library presents two benefits: First, TorchServe keeps the deep
learning model in memory and doesn’t necessitate to reload it every time a new request
arrives. It can also handle requests in parallels. Second, TorchServe can manage a pre-
processing and a post-processing function that are defined in handlers. The main
limitation of this work is that it does not take into account all the constraints related to
production such as scaling, management of versions of the model, and verification of the
stability of predictions over time.

This preliminary work is a first step for a research program on best practices related
to the deployment of deep learning algorithms using Machine Learning Operations
(MLOps), their advantages and disadvantages. It can serve as a basis for future
comparisons with other types of architectures.

References

[1] Dupuy-Zini A, Audeh B, Gagneux-Brunon A, Bousquet C. Users’ Reactions on Announced Vaccines
against COVID-19 Before Marketing in France: Analysis of Twitter posts. medRxiv
2022.02.14.22268832; doi: https://doi.org/10.1101/2022.02.14.22268832

[2] Martin L, Muller B, Suárez PJO, Dupont Y, Romary L, de La Clergerie ÉV, et al. CamemBERT: a tasty
French language model. arXiv preprint. 2019. arXiv:1911.03894. 2019.

[3] Devlin J, Chang MW, Lee K, Toutanova K. Bert: Pre-training of deep bidirectional transformers for
language understanding. arXiv preprint. 2018. arXiv:1810.04805. 2018.

TorchServe

G. Guerdoux et al. / Implementing a Microservices Architecture for Predicting the Opinion136

https://doi.org/10.1101/2022.02.14.22268832

