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Abstract. A strong trend in the software industry is to merge the activities of 
deployment and operationalization through the DevOps approach, which in the case 
of artificial intelligence is called Machine Learning Operations (MLOps). We 
present here a microservices architecture containing the whole pipeline (frontend, 
backend, data predictions) hosted in Docker containers which exposes a model 
implemented for opinion prediction in Twitter on the COVID vaccines. This is the 
first description in the literature of implementing a microservice architecture using 
TorchServe, a library for serving Pytorch models.  
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1. Introduction 

The remarkable performance of deep learning and its ongoing improvements raises the 
question of its usability in real life in the medical context. In this paper, we evaluate the 
feasibility of implementing a microservices architecture for the deployment of a deep 
learning model to classify Twitter users’ opinion about COVID-19 vaccination that was 
implemented in a previous work [1]. In a nutshell, a deep learning model was 
implemented with PyTorch and CamemBERT [2], a French variant of Bidirectional 
Encoder Representations from Transformers (BERT) [3]. 

2. Method 

We implemented an architecture based on three components within Docker containers, 
NGINX and two microservices: a backend implemented with Django-uWSGI and a 
prediction application programming interface deployed with TorchServe. We 
customized an inference handler and started TorchServe to serve the model, listening for 
clients’ requests, and processing these requests. Docker-compose was used to define, 
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build and manage the containers providing the services. Communications between 
clients and the server are managed through a RESTful API without maintaining the 
session state, hence the use of a JSON web token each time the client requests a service 
requiring authentication. The architecture is shown in figure 1. 

Figure 1. The microservices architecture. 

3. Results and Discussion 

As a proof of concept, we have implemented a simple web interface that allows the user 
to request the analysis of a sentence using our model. This request is then forwarded to 
Django via NGINX and uWSGI, then validated (format, authorization, etc.) and finally 
sent to our TorchServe service for prediction. Finally, the result is presented to the user 
in the same web interface. This interface was implemented using Vue.js, an open source 
JavaScript framework for building user interface and single-page applications. The F-
Score of the classifier was 0.75 (precision: 0.74; recall: 0.75) [1].  

This work demonstrates the feasibility of integrating a deep learning model with 
other applications once it is served using the proposed architecture. Furthermore, it is 
quite flexible, and it can be modified to meet various requirements. To our knowledge, 
this is the first description of a microservices architecture using TorchServe in the 
medical literature. This library presents two benefits: First, TorchServe keeps the deep 
learning model in memory and doesn’t necessitate to reload it every time a new request 
arrives. It can also handle requests in parallels. Second, TorchServe can manage a pre-
processing and a post-processing function that are defined in handlers. The main 
limitation of this work is that it does not take into account all the constraints related to 
production such as scaling, management of versions of the model, and verification of the 
stability of predictions over time.  

This preliminary work is a first step for a research program on best practices related 
to the deployment of deep learning algorithms using Machine Learning Operations 
(MLOps), their advantages and disadvantages. It can serve as a basis for future 
comparisons with other types of architectures. 
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