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Abstract. The spread of wearable fitness trackers has contributed to the increase of
various fitness studies, utilizing such devices to collect data from a group of users.
When these data are disclosed, the lack of sanitization can lead to severe privacy
risks. In this paper, we discuss the various threats that are posed by disclosing
unaltered information from wearable devices. We also dismiss common fallacies of
fitness data sharing and present practical guidelines to preserve user privacy.
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1. Introduction

In lifelogging experiments the activity of a small group of people is monitored through
wearable fitness trackers for a number of days. During this period, the participants pro-
vide a considerable amount of information, including surveys of microdata (e.g., age,
gender, height, weight), as well as activity logs of steps, burned calories, heart rate, and
more. When these data are aggregated and published, often little effort is put to really
make the disclosed information “anonymous”. As a result, details about the participants’
activity and habits can potentially be leaked, compromising their privacy.

2. Privacy aspects of sharing data from wearables

Albeit well-known in privacy literature, sensitiveness of quasi-identifiers tends to be ne-
glected by data publishers, likely with the intent of providing useful information about
the dataset population. For example, most participants of prominent public life-logging
datasets [1,2] can be de-anonymized based on quasi-identifiers, such as personal and
physical characteristics. Applying standard anonymization to these attributes (e.g., using
k-anonymity [3] or personalized privacy [4]) is thus a first step to protect users’ privacy.
However, this may not be enough to guarantee that a target is not found in the dataset.
Activity logs themselves often contain information that is derived from an individual’s
attributes: calories, for instance, are often estimated by combining activity information
with physical characteristics such as age, gender, height, and weight [5]. Thus, an ad-
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versary can leverage additional records that she possesses to find a target user in the
dataset, even when personal attributes are removed [6], and glean insights about them.
Such insights may include:

• Whether he has an active nightlife (on what days, what times)
• When he commutes to the workplace. Whether he is active during office hours.
• When he gets back home, the time he usually leaves the house.

Needles to say, such information is extremely sensitive, and may be utilized by a
wide variety of malicious actors such as thieves, burglars, stalkers, employers, etc.

Fallacies and pitfalls In order to effectively mitigate the above-mentioned threats, the
following common misconceptions must be dispelled.
Fallacy: Removing participants’ identifiers (name, phone number, email address, etc.)
is enough to protect their privacy.
Since fitness data themselves carry a wealth of information about the person who produce
them, it might be possible to identify the users based solely on their activity information.
Fallacy: Removing physical attributes (age, weight, height, etc.) fully protects privacy.
Some of the data produced by the fitness trackers depend on physical parameters of the
wearer. Therefore, it may be feasible to reconstruct those characteristics.
Pitfall: Publishing all the fitness information collected by the wearable device.
The more fitness data are published, the likelier the attacker infers sensitive insights.

Guidelines for privacy protection. Besides traditional anonymization approaches,
user-specific information carried by time series of fitness records (steps, calories, etc.)
must be limited via the following approaches:

• Re-sampling/sub-sampling, which consists in reducing the amount of samples of
a time series by aggregating the data at a lower frequency. For instance, the total
calories burned in a day could be published instead of 24 hourly records.

• Reducing the granularity in a similar fashion to the generalization principle ap-
plied for microdata. This means, e.g., binning daily steps in a range 8000−8500
instead of storing a more precise value such as 8361.

Finally, fitness datasets should be published with a specific purpose in mind (e.g., show-
ing how a physical activity intervention affected certain parameters), and all the infor-
mation which is irrelevant to that purpose should be discarded.

References

[1] Thambawita V, Hicks S, Borgli H, Pettersen SA, Johansen D, Johansen H, et al.. PMData: A sports
logging dataset. OSF Preprints; 2020. Available from: https://osf.io/k2apb.

[2] Open Humans Fitbit Connection. OpenHumans; 2016. Available from: https://www.openhumans.
org/activity/fitbit-connection/.

[3] Sweeney L. Achieving k-anonymity privacy protection using generalization and suppression. Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-Based Systems. 2002;10(05):571-88.

[4] Xiao X, Tao Y. Personalized privacy preservation. In: Proceedings of the 2006 ACM SIGMOD interna-
tional conference on Management of data; 2006. p. 229-40.

[5] Fitbit help;. Available from: https://help.fitbit.com/articles/en_US/Help_article/1141.
[6] Marchioro T, Kazlouski A, Markatos E. User Identification from Time Series of Fitness Data. In: Pro-

ceedings of the 18th International Conference on Security and Cryptography - SECRYPT,. INSTICC.
SciTePress; 2021. p. 806-11.

T. Marchioro et al. / How to Publish Wearables’ Data950

https://osf.io/k2apb
https://www.openhumans.org/activity/fitbit-connection/
https://www.openhumans.org/activity/fitbit-connection/
https://help.fitbit.com/articles/en_US/Help_article/1141

