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Abstract. The integration of routine medical care data into research endeavors 
promises great value. However, access to this extra-domain data is constrained by 
numerous technical and legal requirements. The German Medical Informatics 
Initiative (MII) – initiated by the Federal Ministry of Research and Education 
(BMBF) – is making progress in setting up Medical Data Integration Centers to 
consolidate data stored in clinical primary information systems. Unfortunately, for 
many research questions cross-organizational data sources are required, as one 
organization's data is insufficient, especially in rare disease research. A first step, 
for research projects exploring possible multi-centric study designs, is to perform a 
feasibility query, i.e., a cohort size calculation transcending organizational 
boundaries. Existing solutions for this problem, like the previously introduced 
feasibility process for the MII’s HiGHmed consortium, perform well for most use 
cases. However, there exist use cases where neither centralized data repositories, 
nor Trusted Third Parties are acceptable for data aggregation. Based on open 
standards, such as BPMN 2.0 and HL7 FHIR R4, as well as the cryptographic 
techniques of secure Multi-Party Computation, we introduce a fully automated, 
decentral feasibility query process without any central component or Trusted Third 
Party. The open source implementation of the proposed solution is intended as a 
plugin process to the HiGHmed Data Sharing Framework. The process's concept 
and underlying algorithms can also be used independently.  
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1. Introduction 

1.1. Background 

The era of big data promises vast advancements in nearly all research fields, be it chronic 

disease management [1], personalized medicine [2], psychiatry [3], or intensive care 

research [4]. One way to incorporate this paradigm into medical research is to unlock the 

use of routine medical care data for research purposes [5]. For this reason, the Medical 

Informatics Initiative (MII) [6] was established by the German Federal Ministry of 

Education and Research, aiming to connect Germany’s university hospitals with research 

institutes and health-care businesses. The initiative’s primary goal is the development of 

suitable infrastructures and processes to meet the paradigm. The involved university 

hospitals are establishing so-called Medical Data Integration Centers (MeDICs), in 

which data from primary medical information systems’ are integrated into research 

repositories using open standards as well as harmonized interfaces and processes [7,8]. 

The MII’s infrastructure tries to aid medical researchers in many steps of the 

research process. This work is especially concerned with the step of feasibility queries, 

a preparatory step for clinical studies in order to determine the size of an available cohort. 

Many research projects require cohort sizes only achievable by consolidating data of 

multiple organizations. Unfortunately, even if no identifying patient data are processed, 

disclosure of aggregated data can still become a privacy risk. Especially for studies 

dealing with rare diseases, the geographical data of organizations can be used for re-

identification, due to the very small number of patients treated at each hospital. Hence, 

a distributed, privacy-preserving feasibility process based on the cryptographic 

techniques of secure Multi-Party Computation (MPC) is designed, implemented, and 

tested. 

1.2. Objective and Requirements 

The MII Taskforce for Process Modeling, on behalf of the National Steering Committee 

(NSG), developed a high-level process template describing feasibility queries [9]. 

Additionally, the MII Data Protection Concept (DSK) [10] describes the legal 

requirements and gives concrete recommendations. Based on these two documents, a 

fully decentralized process for feasibility queries in small cohort sizes was developed to 

meet the more specific requirements of the MII’s HiGHmed [11] consortium. These 

requirements are: 

1. An automated, fully decentral process should be employed. 

2. Patients’ sensitive data must be protected with highest privacy guarantees. 

3. The privacy of very small (local) cohort sizes should be protected, no Trusted 

Third Party (TTP) must be used. 

4. The process must be deployable on the HiGHmed framework for data sharing. 

5. Interoperability should be ensured by using open standards and data models. 

To meet these requirements, the process presented in this work was designed and 

implemented as a deployable plugin for the HiGHmed Data Sharing Framework (DSF) 

[12]. It was tested using sample data across three MeDIC organizations. The important 

steps of this process, the sharing and aggregation of distributed cohort sizes, utilize 

secure Multi-Party Computation techniques in order to render a TTP superfluous. 
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2. State of the art 

As the task of distributed feasibility queries is a common and necessary step in many 

medical research endeavors, various platforms that address this question exist. For 

example, the Clinical Communication Platform implemented by the German Cancer 

Consortium (DKTK) provides a central search function to request case numbers across 

the members’ patient databases [13]. These requests await approval by the local use and 

access committees and are released via locally deployed software components. The 

results, however, disclose the number of patients on an organizational level. 

The German Centre for Cardiovascular Research (DZHK) operates an architecture 

with an orthogonal approach by their Clinical Research Platform, providing a searchable 

central data repository [14]. 

In MII’s Collaboration on Rare Diseases (CORD-MI) the MPC based analysis tool 

EasySMPC3 was developed, aiming for a no-code solution. Its GUI driven usage is well 

suited for physician-led one-off analyses, however, its application for pipeline 

integration is limited. 

One recent solution, able to meet most requirements, is the HiGHmed Data Sharing 

Framework (DSF) [12]. It uses a decentralized task queueing system and a process 

engine based on the open standards HL7 Fast Healthcare Interoperability Resources 

(HL7 FHIR R4) 4  and Business Process Model and Notation (BPMN 2.0) 5 . These 

components are deployed at every participating organization – the HL7 FHIR Endpoint 

as a publicly reachable authentication, authorization, and task queueing system and the 

Business Process Engine (BPE) in the internal network to execute the requested 

processes and communicate with local services, e.g., patient data repositories, master 

patient indices, or consent management services. The existing HiGHmed feasibility 

process [15] allows decentralized feasibility queries with optional consent checking and 

optional record linkage. It uses a TTP for data aggregation and record linkage purposes. 

A similar system, based on the HiGHmed DSF as well, is employed in the network for 

clinical medicine’s (NUM) Covid-19 project CODEX [16]. 

While the DSF based solutions fulfil most of the given requirements, all of them fail 

to provide a high level of privacy protection for small local cohort sizes, by requiring a 

TTP, which might be dealing with few patient data posing a re-identification risk. 

In this work, we develop, implement, and test a distributed process for the HiGHmed 

DSF which enables researchers to perform feasibility queries without a TTP, hence 

increasing both the privacy level for small local cohort sizes and the overall privacy level 

by utilizing mathematically provable cryptographic techniques for data protection. 

3. Concept 

Andrew C. Yao’s seminal work [17] started the field of MPC in 1986. It was considered 

a theoretical technique, until the introduction of the “Fairplay” compiler [18] in 2004 and 

advancements in computing hardware and protocol optimizations allowed practical 

applications. Since then, MPC is an active research field, enabling an ever-increasing 

number of use cases to perform computations over distributed data sets in a privacy-

 
3 https://github.com/prasser/easy-smpc 
4 https://www.hl7.org/fhir/R4 
5 https://www.omg.org/spec/BPMN/2.0 

R. Wettstein et al. / Secure Multi-Party Computation Based Distributed Feasibility Queries 43



preserving manner. In principle, every calculation that is achievable using a TTP is 

achievable without a TTP using MPC protocols. However, the performance of MPC 

protocols is often multiple orders of magnitude slower than plain text analyses. The 

process is based on an extension of the GMW protocol [19] (named after its authors 

Goldreich, Micali, and Wigderson) to algebraic rings in order to calculate the total cohort 

size. Both variants work on secret shares, i.e., the secret input data is “broken up” into 

two or more parts. These shares do not contain any information in themself. To 

reconstruct the secret value, all shares must be recombined. Even with only one share 

missing no recombination is possible. By representing the computation functionality as 

an Arithmetic Circuit consisting of additions and multiplications, any (bounded) 

computation can be performed. 

As feasibility queries only require the addition of values, we can exploit the additive 

homomorphic property of the arithmetic shares to design a comparatively simple 

communication protocol, suitable for the implementation into the task- and business 

process based DSF. The usual bottleneck in MPC performance, the available network 

bandwidth, does not pose a restriction for feasibility queries, as only small messages 

need to be transmitted. 

Figure 1 illustrates the BPMN model, developed for this task. The topmost pool 

represents the coordinating organization, the two other pools show subprocesses 

executed at every participating organization. The final cohort size is calculated in an 

interactive protocol, the arithmetic shares are reconstructed at the coordinating 

organization, thus revealing the result. The complete TTP-less feasibility query process 

consists of the following steps: 

First, a researcher defines his feasibility query at the leading organization by 

providing inclusion and exclusion criteria for cohort size calculation as well as whether 

consent checking should be performed. Currently the targets of the feasibility query 

process include all organizations belonging to a consortium in order to mitigate the attack 

scenario of disclosing individual organizations cohort sizes by performing successive 

feasibility queries, differing in only one excluded organization. 

After the feasibility query has been created, two requests are sent to each 

participating organization, starting two different subprocesses. Note that both 

subprocesses, the lower two pools in Figure 1, are logically sequential, dividing the 

feasibility query execution in two stages. However, to handle network latencies and other 

artifacts in distributed, concurrent executions, two simultaneously executed 

subprocesses are involved with one waiting for the results of the other. 

The logical first stage consists of the subprocess displayed in the lowest pool. After 

various validity checks against local and global constraints, the feasibility query is 

executed. If the researcher indicated to perform consent checking, the query is modified 

before execution to collect the Patient Identifier (PID) for each queried patient. These 

PIDs are used, to query the local Policy Decision Point (PDP), whether access to the 

patient’s data has been restricted. Both cases, consent checking or not, result in the local 

cohort size, which is then secret shared (as explained above). For each participating 

organization one share is generated. One is held locally, the others are transmitted to all 

other organization, initiating the second stage, illustrated in the middle pool. Note that 

by withholding one share, no other participating organization can extract any information 

from the received shares. 

In the second stage, all participating organizations wait to receive the respective 

shares from all other participants. If one or more organization fails to send their share, 

the process times out and terminates, as there is no possibility to maintain computational 
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Figure 1. BPMN process diagram of the MPC feasibility process with optional consent checking 
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correctness with incomplete sets of shares. After all shares have been received, each 

organization combines the received shares, including their own, withheld one. This 

combination uses the homomorphic properties of the secret shares: adding all up and 

performing a modulo operation with the size of the used arithmetic ring, generating a 

valid secret share of the sum, i.e., of the desired total cohort size. This multi-MeDIC 

result share is sent to the leading organization, ending the computation. 

In the last step, the leading organization awaits the multi-MeDIC result shares from 

all participating organizations. Upon receiving all of them, the shares can be recombined 

to reveal the clear text result, the total cohort size. The computation itself is secure against 

malicious adversaries, i.e., corrupted parties can only prohibit the correct calculation of 

the result (by injecting wrong input data or failing to send their shares), but not gain any 

information regarding the other parties’ inputs. 

4. Implementation 

The proposed MPC feasibility process was implemented as a plugin process for the 

HiGHmed DSF in the Java programming language, using HL7 FHIR R4 resources as 

data model as well as BPMN 2.0 as process model, in order to remain agnostic of an 

organization’s data repository choices and to establish semantic interoperability. The 

data and process model specific implementations, such as the profiled FHIR resources 

ResearchStudy, Group and Task, do not differ from those used in the feasibility process 

using a TTP for data aggregation [15]. Therefore, we would like to refer the interested 

reader to [15] for detailed explanations and focus on the employed cryptographic 

primitives and protocols in the following paragraphs. 

For the secret sharing scheme, we chose a ring size of � = 2�� − 1 to fit all shares 

in a 32-bit integer type. As we expect cross-organizational cohort sizes of less than 

around 4.3 billion for virtually all use cases, this size is sufficient. However, a variant 

using Java’s BigInteger data type is implemented, allowing arbitrary ring sizes and 

values. Each party in a computation with � participants generates � shares by sampling 

� − 1  uniformly independent and identically distributed Integers: �� ←$ {0,1,2, … , 

2�� − 1}. The last share is generated by mixing the secret value � with all previously 

(randomly) generated shares, such that � = ∑ ��� mod r ∀� . Due to the modular 

arithmetic on the algebraic ring, the last share, even though containing the secret value, 

is indistinguishable from a random value.  

Without loss of generality, consider an addition between two parties ��  and �� , 

wanting to securely add their secret inputs ��  and �� , respectively. The sampled 

randomness during secret sharing is denoted as �	�
� and �	�
�. The parties withheld 

one share and exchanged the other, say ��
� . Both parties add their locally held shares, that 

is for �� : �� = ��
� + ��

� �
 � = �	�
� + ���– rand�� �
 �  and for �� : �� = ��
� +

��
� �
 � = �	�
� + ���– �	�
�� �
 �. If they both now recombine these new two 

shares � = �� + �� �
 � = �	�
� + ���– �and�� + �	�
� + ���– �	�
�� �
 � 

= �� + �� �
 �, the randomness cancels out and the clear text sum is revealed. Of 

course, the two-party case is purely instructional, as knowledge of the result and the own 

secret value always allows to calculate the secret value of the other party. 
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The process was tested on three DSF instances representing three different 

organizations belonging to the same consortium, each containing a small data set of 

synthetic patient data. The open source code can be found on GitHub6. 

5. Lessons learned (Discussion) 

All five previously defined requirements were met by the purposed MPC feasibility 

query solution. As a research advancement based on the HiGHmed DSF feasibility 

process, existing advantages such as fully decentralized computation without central 

components were retained while simultaneously advancing the state-of-the-art by 

significantly raising the patients’ data privacy level and addressing the additional 

requirements of new use cases, mainly the elimination of the TTP. 

The usage of open standards simplifies the integration of local systems, including 

the translation of cohort queries into a suitable format for each repository. This was an 

important consideration, as HiGHmed organizations employ a local OpenEHR 

repository, while NUM institutions may incorporate i2b2 7  data warehouses besides 

FHIR stores. Using FHIR resources as a linking data model, we provide semantic 

interoperability and built-in audit capabilities. 

Allowing researchers to optionally perform consent checks enables additional use 

cases, like consent-less epidemiological studies, and creates concise interfaces for the 

adoption of changing legal consent requirements. In comparison to the TTP-based 

feasibility query process, this work does currently not support the incorporation of 

Record Linkage (RL). Solutions for MPC-based TTP-less RL were developed in the 

HiGHmed consortium [20]. The complexity and performance requirements pose a future 

challenge when direct integration of RL within the DSF is required. Furthermore, the 

development of bidirectional communication interfaces is an interesting research 

possibility for future work. 

As no central components are employed and authorization between organizational 

DSF instances are handled on a pipeline- and framework level, only local user and 

process authorization is required to perform user authentication. This enables 

organizations to deploy and integrate authorization and authentication solutions of their 

own choosing. The complexity of inter-domain user management is avoided.  

As MPC only provides input privacy, the output might pose a privacy risk. One 

example was already described in the “Concept” section, extracting an organization’s 

individual cohort size by performing multiple queries, excluding one organization at a 

time. We mitigated this specific attack vector by forbidding the selection of individual 

target organizations. Other attack scenarios might be mitigated using, e.g., rate-limiting. 

In all cases, an audit trail is maintained by the DSF, thus adversarial behavior is 

identifiable. 

Testing was performed on a setup with three DSF instances representing three 

organizations operating on small, synthetically generated data sets. While this assures 

correct operation, optimizing parameter values e.g., timeout durations and retry counts, 

must be dealt with in real, operating systems. The choice of these parameters are heavily 

influenced by network- and bandwidth settings, as well as the deployed hardware and 

firewall specifications. 

 
6 https://github.com/highmed/highmed-processes 
7 https://www.i2b2.org 
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This work is intended as a pragmatic starting point to introduce MPC protocols and 

analysis processes into real-world applications. It solves a real-world demand not 

achievable with traditional distributed computation techniques, while maintaining a 

reasonable scope. 

6. Conclusion 

To provide a decentralized feasibility process for calculating multi-centric cohort sizes 

with highest data privacy guarantees and without a Trusted Third Party, this work 

proposes a secure Multi-Party Computation based implementation using the open 

standards BPMN 2.0 and HL7 FHIR R4. The solution is provided as a plugin process to 

the HiGHmed Data Sharing Framework, allowing the easy usage for all organizations 

employing the HiGHmed and MII infrastructure. The process is based on the principle 

of data minimization by avoiding central components and, additionally, allows (optional) 

consent validation procedures. Identifying data never leaves organizational boundaries 

and data privacy regulations are acknowledged, even for small (local) cohort sizes, i.e., 

in rare disease research. By providing a freely available implementation under a 

permissive open source license, this process can be used outside the HiGHmed 

consortium and is easily adaptable to specific use cases. 
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