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Abstract. Adverse Drug Reactions (ADRs) are an important public health issue as 

they can impose significant health and monetary burdens. This paper presents the 

engineering and use case of a Knowledge Graph, supporting the prevention of ADRs 
as part of a Clinical Decision Support System (CDSS) developed in the context of 

the PrescIT project. The presented PrescIT Knowledge Graph is built upon Semantic 

Web technologies namely the Resource Description Framework (RDF), and 
integrates widely relevant data sources and ontologies, i.e., DrugBank, SemMedDB, 

OpenPVSignal Knowledge Graph and DINTO, resulting in a lightweight and self-

contained data source for evidence-based ADRs identification. 
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1. Introduction 

Adverse Drug Reactions (ADRs) have been identified as a major public health issue as 

they lead to huge healthcare costs and they can also be considered a significant causal 

factor for health morbidity and mortality [1]. Indicatively, it has recently been quantified 

that more than 20% of hospitalizations in a random selection of multiple hospital records 

is related with ADRs. 

As Artificial Intelligence (AI) and other relevant technical paradigms have emerged, 

they have also been widely investigated to support Drug Safety (DS) [2,3]. Focusing on 

symbolic AI, i.e., the branch of AI which is oriented on “rule-based” knowledge schemes 
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and automatic reasoning upon them, Knowledge Engineering (KE) has been highlighted 

as a key scientific domain used to support relevant decision support systems [4]. KE 

includes the use of Natural Language Processing (NLP) to extract knowledge from free-

text, the use of ontologies and specific data formalisms to represent knowledge - typically 

in the form of Knowledge Graphs (KGs) - and the use of reasoning algorithms to infer 

new knowledge upon the explicit statements stored in the respective knowledge base.  

Clinical Decision Support Systems (CDSS) have also been developed and are 

currently used to support the prevention of potential ADRs during various aspects of the 

clinical practice (e.g., ePrescription, clinical orders etc.). Typically, CDSSs are 

integrated in larger healthcare systems like Electronic Health Record (EHR), 

Computerized Physician Order Entry (CPOE), ePrescription systems etc. The PrescIT 

project2 is a nationally funded research and development initiative aiming to develop a 

CDSS platform to support safe ePrescription via the prevention of ADRs. To this end, a 

CDSS is developed and will be pilot tested in the clinical context – the consortium 

includes three clinical partners. PrescIT employs KE as one of its main technical 

paradigms and the deployment of a KG, as well as other technical components, e.g., a 

dynamic workflow module using Business Process Management Notation (BPMN) to 

employ clinically validated Therapeutic Prescription Protocols [5,6]. 

This paper focuses on the description of the PrescIT KG, the main module used to 

deploy the rules upon which the CDSS builds its “alerts” to prevent potential ADRs. 

2. Methods 

A modular architecture is employed for the PrescIT CDSS, according to which each 

module can be considered a standalone service integrated with other modules via HTTP 

calls. The main module elaborated in this paper is the PrescIT KG, consisting of several 

openly available data sources. The core of the system are the 4 major knowledge sources 

which are represented as KG using OWL/RDF as the main data formalism: 

1. SemMedDB: A knowledge base containing information extracted from 

thousands of PubMed papers via NLP [7]. 

2. OpenPVSignal KG: More than 100 pharmacovigilance signal reports published 

by Uppsala Monitoring Centre, using OpenPVSignal as the main ontological 

model to represent them [8].  

3. DrugBank: An up-to-date, widely used and free-to-access online database 

containing information on a variety of drugs and drug targets. It combines 

general useful information regarding drugs such as chemical, pharmacological 

and pharmaceutical data [9]. 

4. The DINTO ontology: An RDF based knowledge source integrating various 

data sources containing information about drug-drug interactions [10]. 

OpenPVSignal KG was created via a manually curated process with various stages 

of quality control, while the SemMedDB/DrugBank KGs were populated via scripts with 

a subset of the data retrieved from their respective data sources. This process of 

converting already existing data in RDF/OWL format, required significant engineering 

work directly related with each data source’s specifics. Indicatively, for SemMedDB the 

original data are presented in a relational triple-based format (SQL) i.e., subject-

predicate-object (s, p, o). In order to extract the desired information, the fields 
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“PREDICATE”, “SUBJECT_SEMTYPE” and “OBJECT_SEMTYPE” were filtered. 

For PREDICATE only the “CAUSES” records were selected, for SUBJECT_SEMTYPE 

all terms that may allude to drugs were selected, whilst for OBJECT_SEMTYPE all 

terms that may refer to an ADR were selected. In the end, the selected (s, p, o) were 

equivalent to a pattern logic like similar to “biochemical substance” “causes” “condition”, 

also pointing to the relevant article’s PubMed id. It should be noted that the SemMedDB 

KG also interlinks with other widely used terminologies (e.g., ATC, MedDRA, etc.) via 

the concept unique identifier, part of the UMLS Metathesaurus. 

A simple ontological model, which also has the potential to minimize reasoning 

execution times, was selected for the KG design since its goal is to be utilized mostly as 

a data source for ADRs, DDIs and their evidence. The KG is annotated and interlinked 

with other data sources ontologies, not only unifying the PrescIT KG, but also for 

providing additional querying options to the end users (i.e., either name of a disease or 

MedDRA/SNOMED codes etc.). For each such aspect of the KG, the most suitable data 

sources were selected. 

3. Results 

The PrescIT KG is hosted in two triple stores, based on Virtuoso and Ontotext GraphDB 

platform (fig. 1). The data are consumed using a set of SPARQL queries. Indicative 

queries can be outlined as follows: “List known/suspected ADRs for drug A”, “Given 

drugs A and B, list all known/suspected ADRs” etc. The produced responses include the 

evidence in which each data source base these claims. 

 

 

 

Figure 1. PrescIT architecture 

 

 

To avoid direct access and enforce technical security controls, in the case of the 

Virtuoso database, it is exposed via an additional proxy server which was developed 

using FLASK, a python-based web application framework, while a similar approach is 

applied for the GraphDB data which are accessible via a REST API. Predefined 

SPARQL queries were encapsulated and exposed via specific endpoints while an 
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additional endpoint was created that enabling the submission of custom SPARQL queries. 

The predefined query endpoints facilitated the data utilization without prior knowledge 

of the KG “schema” (TBox). 

The query results are meant to be consumed by the PrescIT CDSS’ front-end where 

they are consolidated and presented to the end-user, typically a healthcare professional. 

The total amount of triplets across the entire PrescIT KG is 22.5M (16M triplets from 

DrugBank, 108k from OpenPVSignal, 5.4M from SemMedDB+UMLS and 1M from 

DINTO). The KG is available upon request.  

4. Discussion 

Despite the hype of AI and data science, relevant technical developments have not yet 

been widely adopted in the clinical context. Hence, there is an increasing need for the 

development of new tools aiming to integrate “intelligent” technical paradigms to 

support drug safety. 

However, the integration of “intelligent” tools in the clinical context comes with 

several challenges. Testing, validation and certification of such systems come with 

ethical, administrative, legal and technical difficulties [11]. To this end, there is an active 

discussion regarding how AI could be “trustable” in terms of supporting clinical 

operations. The PrescIT project will soon enter the pilot testing phase, evaluating the 

impact of the proposed CDSS and the relevant challenges, currently the technical aspects 

are under validation while the clinical evaluation will take place the following months. 

Regarding the implementation and integration of the PrescIT KG, these challenges 

can be summarized as follows: 

- Testing, validation and integration in the clinical environment: Clinical 
environments are complex and difficult to be standardized as flows of 

information could heavily vary, even in the same hospital. Three clinical 

partners have been involved during the KG development to support the 

definition of the relevant data sources and the PrescIT CDSS design and 

evaluation as a whole. For an effective integration, the PrescIT CDSS provides 

various flexible  levels of integration with local EHRs via vendor “neutral” 

interfaces (e.g., SPARQL and REST APIs). Beyond the technical integration 

difficulties, challenges such as KG’s usability and information comprehension, 

i.e., how well are the “alerts” received etc., due to various issues (e.g., cultural, 

language barriers etc.) are going to be evaluated during the pilot phase. 

- Reasoning and data volume: A technical challenge directly related with the use 

of the KG, has to with the ability to use a “reasoner”, i.e., software which is able 

to infer RDF statements beyond the ones which are explicitly stated in the KG. 

This reasoning process is computationally intensive and it has been identified 

as significant performance bottleneck. In order to avoid this, it was decided that 

no “reasoner” will be used and the “intelligence” required (e.g., the need to 

identify relevant RDF individuals based on subclass relationships) will be 

integrated in the respective SPARQL queries. 
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5. Conclusion 

The PrescIT project aims to support ePrescription process via an integrated CDSS 

facilitating the prevention of potential ADRs. The PrescIT CDSS is based on the use of 

an RDF-based KG and its integration in the clinical environment comes with several 

challenges, also discussed in the paper while the impact of the proposed system and 

potential gaps are going to be evaluated during the pilot phase. As part of the future work 

there are plans of extending the KG with biochemical and pathway information which 

might be clinically relevant. More specifically, pharmacogenomics has been identified 

as a potential use case for the PrescIT KG. 
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