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Abstract. Glaucoma is one of the leading causes of blindness worldwide. Therefore, 

early detection and diagnosis are key to preserve full vision in patients. As part of 
the SALUS study, we create a blood vessel segmentation model based on U-Net. 

We trained U-Net on three different loss functions and used hyperparameter tuning 

to find their optimal hyperparameters for each loss function. The best models for 
each of the loss functions achieved an accuracy of over 93%, Dice scores around 

83% and Intersection over Union scores over 70%. They each identify large blood 

vessels reliably and even recognize smaller blood vessels in the retinal fundus 
images and thus pave the way for improved glaucoma management. 
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1. Introduction 

Glaucoma is one of the most common chronic eye diseases worldwide, causing 

irreversible visual field defects and blindness. One of the major risk factors for glaucoma 

progression is an elevated intraocular pressure (IOP) [1]. In medical practice, monitoring 

of chronic diseases usually requires multiple, repetitive measurements over long time 

periods in order to adequately evaluate the activity level of a disease and to adjust 

treatment schemes accordingly. SALUS (“Selbsttonometrie und Datentransfer bei 
Glaukompatienten zur Verbesserung der Versorgungssituation”) is a two-arm, 

multicenter, randomized clinical trial evaluating the state of medical care of glaucoma 

patients in Germany [2]. In short, glaucoma patients were randomly assigned to one of 

two groups: 1. inpatient cohort, 2. outpatient cohort. The inpatient group received 

standard Goldmann applanation tonometry over the course of three consecutive days to 

assess IOP. Individuals in the outpatient cohort were given iCare Home devices [3], 

which they used to assess IOP by themselves. The SALUS trial will follow-up on 

participants until May 2023 and aims to publish results of the comparison of both study 

arms by the end of 2023. As part of this study, a multi-step deep learning framework is 

created to assist ophthalmologists with the diagnosis of glaucoma. Although glaucoma 

is often associated with increased IOP, it is also important to look at physiological 

changes in the retina. As one-third to half of all patients with early-stage glaucoma 
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experience progressing visual field loss despite having adequate IOP compared to control 

groups [4]. Therefore, non-IOP-dependent methods like evaluating the retinal 

vasculature are needed since vascular changes can be observed in early stages in the 

glaucoma’s pathogenesis [5]. The segmentation of blood vessels in the papillary region 

of the retina can aid ophthalmologists in this task. This research aims to contribute to 

non-IOP-dependent methods by developing models for blood vessel segmentation as 

means of observing vascular changes more efficiently. 

2. Methods and Material 

Data. We used the DRIVE dataset [6] to train and test our models. It contains 40 images 

taken from the retinas of human subjects with corresponding expert generated ground 

truth segmentation maps indicating the location of blood vessels in each image. It is split 

into 20 training and 20 test images. The dataset is commonly used in medical image 

analysis and has been widely used to research automated blood vessel segmentation. We 

additionally used 5 random images from the STARE dataset [7] as a validation dataset 

for hyperparameter tuning.  

Preprocessing and Data Augmentation. All images were first preprocessed using 

contrast limited adaptive histogram equalization (CLAHE). Since the dataset is very 

small, we enlarged the dataset by using different combinations of image augmentation 

techniques, namely, rotating the images by at most 10° as well as changing the brightness, 

contrast, and saturation of the fundus images using the albumentations package [8]. Thus, 

we created 60 additional images for training, totaling 80 training images. No image 

augmentation techniques were applied to the test and validation images. 

U-Net is a powerful convolutional neural network commonly used for biomedical 

image segmentation [9]. Its architecture is based on an encoder-decoder network. The 

encoder which is also sometimes called the contractive path downsamples the input 

image, while the decoder, also sometimes called the expansive path, upsamples the 

encoded representation producing a segmentation mask. U-Net’s encoder and decoder 

networks are connected by a series of skip connections which help to preserve spatial 

information and improve accuracy of the segmentation. These connections pass 

information from the encoder to the decoder at multiple scales which allows the decoder 

to make more accurate predictions by taking into account both global and local 

information from the input image [10]. U-Net can already achieve results comparable 

with sliding-window based convolutional networks when trained on an extremely small 

dataset of a few hundred images. When adding data augmentation, preprocessing and 

enhancement techniques, it outperforms existing state-of-the-art methods on several 

biomedical image segmentation challenges [9]. A pretrained architecture can be 

employed as U-Net’s encoder path to improve the model’s general performance as 

measured by accuracy and Intersection over Union (IoU) score [11]. We chose a ResNet-

34 architecture pretrained on the ImageNet dataset as our encoder path.  

Training. To segment the blood vessels, we employed a U-Net network with a 

ResNet-34 encoder pretrained on the ImageNet dataset using the Segmentation Models 

package [12]. We decided to use a mini-batch approach. We further used the Adam 

optimizer with a learning rate of 0.001. We compared three different loss functions for 

training the model, namely, Tversky Loss, Dice Loss, and Focal Loss.  To find the best-

performing versions of our model for all three loss functions, we employed 
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hyperparameter tuning using Ray Tune [13] during which we also investigated the effect 

of the number of epochs on the maximum IoU score of our models. 

Hyperparameter tuning. As already mentioned, we decided to use the number of 

epochs and the alpha values of the Tversky and Focal Loss for hyperparameter tuning. 

The Dice Loss has no tunable hyperparameters. The Tversky Loss's alpha value is used 

to weigh the relative importance of false positives and false negatives. Since blood vessel 

segmentation is a very complex task due to the widely ranging sizes of blood vessels in 

the retina, we want to penalize false negatives more than false positives [14]. A similar 

reasoning can be applied to the Focal Loss's alpha value. They weigh the different classes 

of the segmentation task. Since we were more interested in the correct identification of 

our foreground class (the blood vessels) than the background class, we weighed them 

more strongly. For finetuning the number of training epochs, we decided to keep the 

number of epochs trained relatively narrow to avoid overfitting and keep training times 

short. An overview of which hyperparameter values were tested for which loss can be 

found in Table 1. The hyperparameter tuning was evaluated for all three loss functions 

separately. We searched the hyperparameter space with respect to maximizing IoU 

scores using grid search evaluating the performance of each model on the validation 

dataset. 

Table 1. All possible hyperparameters used during hyperparameter tuning. 

Loss function Hyperparameter Range 
Tversky loss Epochs 10, 15, 20, 25, 30, 35, 40 

 Alpha   0.5, 0.6, 0.7, 0.8, 0.9 

Dice loss      Epochs 10, 15, 20, 25, 30, 35, 40 
Focal loss     Epochs 10, 15, 20, 25, 30, 35, 40 

 Alpha   0.5, 0.6, 0.7, 0.8, 0.9   

  

3. Results 

After hyperparameter tuning, we used the best hyperparameters to retrain the models 

from scratch. The best Tversky Loss combination was trained for 25 epochs with an 

alpha value of 0.6. It achieved an IoU score of 0.8674 on the validation data. The best 

Dice Loss combination was trained for 35 epochs and achieved an IoU score of 0.8639 

on the validation data. Finally, the Focal Loss performed best during the tuning process 

with an IoU score of 0.8715. Its alpha value was 0.5 which implicitly results in an 0.5 

for the second class in the weighting vector. The model was trained for 30 epochs. The 

models were then evaluated on a held-out test dataset. The model trained with the Focal 

Loss function performed best with an IoU score of 0.718. Table 2 includes all test metrics 

computed for the three different loss functions with their best hyperparameter 

combination. 

 

Table 2. Best Hyperparameter combination and corresponding metrics during testing 

Model Hyperparameter 
Configuration 

IoU score Dice Score Accuracy 

Tversky Loss Alpha: 0.6, Epochs: 25 0.705 0.826 0.929 

Dice Loss         Epochs: 35  0.712 0.830 0.931 

Focal Loss       Alpha: 0.5, Epochs: 30 0.718 0.836 0.930 
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4. Discussion 

By using hyperparameter tuning, we created three models with solid performance on the 

task of blood vessel segmentation in fundus images. All three models achieve an 

accuracy of around 93%. However, an IoU score of just over 70% and a dice score of 

just over 82% is not necessarily considered satisfactory. Nevertheless, these results still 

attest a good performance of our models, especially given our small dataset. Looking at 

the predicted blood vessel segmentation masks and comparing them to the ground truth 

masks (see Figure 1), we can visually confirm a good performance.  

Nevertheless, the reliability of our validation metrics on which we base our decision 

during hyperparameter tuning on might be subject to improvements. Since we only used 

five images during validation, we cannot count on the same statistical properties that we 

normally count on with larger validation datasets. Therefore, we must regard our 

validation metrics more carefully than with larger datasets. This could be avoided by 

creating datasets with a larger number of data points, e.g., by merging multiple datasets 

together, acquiring more images with ground truth masks. 

Another error source could be the vast amount of image augmentation that was used 

to increase the size of the training dataset. By applying multiple augmentation techniques, 

we increased our training data size from 20 to 80. This can lead to overfitting and a worse 

performance [15]. Further experiments with differing amounts of image augmentation 

will be conducted in follow-up studies. 

Figure 1. Comparison of predicted segmentation masks (white) with the ground truth mask (blue). (a) Input 
image to the model (preprocessed with CLAHE) (b) Ground truth mask (c) Segmentation mask predicted by 

model trained with Dice Loss (d) Segmentation mask predicted by model trained with Tversky Loss (e) 

Segmentation mask predicted by model trained with Focal Loss 

5. Conclusion and Outlook 

Our experiments show that U-Net can accurately segment blood vessels, even with small 

datasets. Our models perform comparably to other approaches and correctly identify 

major blood vessels in the papillary region while also segmenting smaller vessels reliably. 

While segmenting the entire retinal fundus image would yield better results, we are 

constrained by our larger multi-step framework for diagnosing glaucoma as part of the 

SALUS study. 

In the future, we could extend our U-Net model to include data about arterial and 

venous blood vessels, which might be advantageous during the diagnosis process as 
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Chan et al. suggest [5]. The RITE dataset provides ground truth masks for the DRIVE 

dataset’s images with these classes. 
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