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Abstract. Making health data available for secondary use enables innovative data-
driven medical research. Since modern machine learning (ML) methods and preci-
sion medicine require extensive amounts of data covering most of the standard and
edge cases, it is essential to initially acquire large datasets. This can typically only
be achieved by integrating different datasets from various sources and sharing data
across sites. To obtain a unified dataset from heterogeneous sources, standard repre-
sentations and Common Data Models (CDM) are needed. The process of mapping
data into these standardized representations is usually very tedious and requires
many manual configuration and refinement steps. A potential way to reduce these
efforts is to use ML methods not only for data analysis, but also for the integration
of health data on the syntactic, structural, and semantic level. However, research on
ML-based medical data integration is still in its infancy. In this article, we describe
the current state of the literature and present selected methods that appear to have a
particularly high potential to improve medical data integration. Moreover, we dis-
cuss open issues and possible future research directions.
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1. Introduction

Insights generated through data-driven medical research methods based on the secondary
use of health data have the potential to make future medicine more predictive, preven-
tive and personalized [1]. This can improve cost efficiency and foster adoption to de-
mographic change. To make health data from a diverse set of sources available for re-
search and enable real-world evidence generation, they need to be integrated into com-
mon data models that facilitate comparability. Well-known models in the health field in-
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clude the OMOP Common Data Model [2], HL7 Fast Healthcare Interoperability Re-
sources [3] and openEHR [4]. When data was not collected in accordance to such models
at source – which is common to date – it needs to be harmonized and transformed.

Due to the large number of autonomous information systems within typical health IT
infrastructures, data is usually heterogeneous along three axes: (1) syntax (e.g. regarding
the meaning of symbols), (2) structure (e.g. regarding the organization of properties of
health-related data entities) and (3) semantics (e.g. regarding terminologies as well as
codes and their meaning).

Figure 1. Example for structural heterogeneity (left) and semantic heterogeneity (right).

An example for syntactical heterogeneity are the different possible encodings of the
character “μ” in the drug prescription “L-Thyroxine 150 μg oral tablet”, which can be
encoded as “\u03BC” in Unicode, as “230” in ASCII, and as “&#956;” in HTML. Figure
1 illustrates a simple example of structural and semantic heterogeneity. On the left, the
same information about the administration of a drug is structured in different ways. The
right side demonstrates that multiple terms can refer to the same concept.

To date, harmonization is mostly achieved by using manually specified rules and al-
gorithms in so-called Extract-Transform-Load (ETL) processes, supported by tools such
as Pentaho Data Integration [5] or Talend Open Studio [6]. While innovative approaches,
e.g. based on declarative specifications of target representations [7], can help to reduce
some efforts, this process is usually still very time and resource consuming [8].

ML and Artificial Intelligence (AI) technologies are one of the core tools of data-
driven medical research. The general idea is that instead of providing computers with
rules to follow, they extract knowledge and discover rules themselves from training data
provided [9]. For these algorithms and models to produce reasonable results, they rely
heavily on large datasets, clearly demonstrating the need for medical data integration.
With their predictive and generative capabilities, ML methods can also potentially be
a powerful tool for data integration itself. In recent years, machine learning has al-
ready been applied very successfully to various knowledge extraction and standardiza-
tion tasks. One important field is natural language processing, where ML has been very
successful at understanding the structure of clinical documents [10] and extracting med-
ical concepts from clinical free-text reports [11].

2. Objective

The aim of this paper is to investigate the potential of ML for medical data integra-
tion tasks and to provide a concise overview of the current state of the field. We focus
on methods suited for integrating structured health data into standardized data models.
More specifically, this paper presents examples of methods that have been suggested for
ML-based harmonization of data on the syntactic, structural and semantic level. We fur-
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ther discuss their potential value for medical data integration tasks and highlight limita-
tions as well as open research questions.

3. Method

Early papers from the data integration community have suggested that ML could be used
to automate or support many of the tasks needed to harmonize and integrate structured
data. Starting from a seminal paper by Dong and Rekatsinas, which, to our knowledge,
is the first – and one of the only ones so far – to address the potential of ML for data inte-
gration tasks [12], we reviewed the state of the literature and present selected highlights.

We screened all of the papers citing the work by Dong and Rekatsinas [12] (n = 117
in December 2022). We excluded nine non-English papers (n= 108) and then selected all
papers whose titles indicate a possible focus on data integration (n = 78). From this, we
selected all papers with abstracts suggesting that they address structured tabular data or
health data. We also excluded reviews as they only covered narrow aspects of the general
topic relevant to our work. This resulted in n = 22 papers of which 14 addressed the
topic of entity resolution (sometimes also called entity matching), which is an important
aspect of semantic integration that seems to have received quite some scientific attention.

In the following section, we present in more detail selected papers from the body of
literature identified in the described search process as well as selected papers discovered
during a preparatory exploration of the field.

4. Results

4.1. Syntactic Heterogeneity

While it is already difficult to automatically detect the character set with which files are
encoded [17], determining the composition and types of data items is even more chal-
lenging. One aspect that is particularly relevant for structured data integration, focuses on
extracting the orientation and sub-components of tables, which is an important first step
in any transformation process. Recently, Habibi et al. proposed a deep learning method
for classifying table orientation, achieving an F1-score of 76% [18]. Other relevant sys-
tems include MIT’s Sherlock, which can detect data types (e.g. dates) in structured data
with an F1-score of 89% using deep neural networks [19].

4.2. Structural Heterogeneity

Just recently, Sahay et al. studied self-organizing maps combined with a priori knowl-
edge about the target structure to conquer structural heterogeneity, achieving an F1-score
of 71% [20]. Anderson inspected column embeddings as input into a bidirectional LSTM
model to label columns and tilt tables [13]. Both approaches are applicable to target data
models with a specific pre-defined structure, such as the OMOP CDM. Toutanova et al.
used neural nets to extract facts in the form of (subject, predicate, object)-triples, outper-
forming prior work in precision [21]. This is suited for mapping to generic models based
on fact-tables, such as Informatics for Integrating Biology & the Bedside (i2b2) [22].

4.3. Semantic Heterogeneity

To tackle semantic heterogeneity, Kate used support vector machines to map terms from
clinical narratives to SNOMED CT codes [23], achieving an F1-score of 88%. Wang et
al. proposed using contrastive representation learning to facilitate multiple data integra-
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tion tasks including entity and column matching [16]. Parr et al. focused on lab values
and LOINC codes using logistic regression and a random forest multiclass classifier [24],
achieving an F1-score of up to 62%, while Mirzaei et al. compared a logistic regression
classifier, a random forest classifier and a fully connected neural network classifier to
standardize variables within and across datasets [14]. Recently, Zhang et al. have ap-
proached the problem of detecting the semantic type of data items using a deep neural
network for single column predictions. The results can then be forwarded into a multi-
layer structured prediction model that outputs the final classification per column [25].

5. Discussion

In this paper we presented a concise overview of selected ML-based methods support-
ing core steps of medical data integration. In theory, a combination of such individual
methods could be used to develop end-to-end ML-based data integration processes. In
practice, however, several challenges have to be overcome to make this vision a reality.

First, most of the current solutions provide a performance that is not sufficient to re-
liably support data integration processes without a lot of manual intervention (cf. the F1-
scores presented in Section 4). Hence, further research on improved methods and human-
in-the-loop approaches is needed. For example, Graph Neural Networks seem promising
to improve the accuracy of structural data integration steps [15]. Since health data is in-
herently different from many other data domains - e.g., due to it being longitudinal and
sometimes of low quality - the applicability of methods developed for non-health data
remains to be evaluated.

Second, in addition to novel methods, also more comprehensive training and test
sets are needed. Given the amount of work that has already went into medical data in-
tegration on a global scale, we are confident that large enough sets of matching original
and harmonized data could be created. Nonetheless, they would also need to be curated
and sharing them will likely pose privacy risks. An additional option would be to inte-
grate knowledge about standardized data representations, e.g. from openEHR, FHIR or
the OMOP CDM, into the ML models.

Finally, approaches are needed to introduce ML-based methods incrementally and
in synergy with more traditional processes, e.g. as atomic operators in common data
integration platforms. Considering the vast amount of heterogeneity in health data, we
believe that this would be a significant step for advancing medical research.

In future work, it would be interesting to benchmark combinations of ML-based
integration approaches along multiple axes and to compare their performance in terms of
their integration accuracy and scalability. Furthermore, the work presented in this paper
only provides a first overview of the topic. In the future, we aim to build upon this work
by performing a more in-depth structured review on ML-based medical data integration.
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