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Abstract. To classify sentences in cardiovascular German doctor’s letters into 

eleven section categories, we used pattern-exploiting training, a prompt-based 

method for text classification in few-shot learning scenarios (20, 50 and 100 
instances per class) using language models with various pre-training approaches 

evaluated on CARDIO:DE, a freely available German clinical routine corpus. 

Prompting improves results by 5-28% accuracy compared to traditional methods, 
reducing manual annotation efforts and computational costs in a clinical setting. 
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1. Introduction and Methods 

By using methods of natural language processing (NLP) and machine learning (ML) we 

aim to extract clinical information from unstructured doctor’s letters. While most 

supervised ML approaches rely on large amounts of manually annotated training data, 

recent developments in NLP showed promising results in text classification tasks using 

pre-trained language models (PLM) and prompts [1]. Prompting exploits the ability of 

PLMs to infer knowledge from context, in combination with supervised methods they 

achieve state-of-the-art results on various text classification tasks. Doctor’s letters are 

separated into sections, e.g. anamnesis, diagnosis and risk factors, which contain 

semantically related sentences. Here we present our initial results using pattern-

exploiting training (PET) with various domain and task-adapted PLMs [2,3] on the task 

of section classification in German doctor’s letters from the cardiology domain. 

Our data is based on the CARDIO:DE corpus, a freely available and distributable large 

German clinical corpus from the cardiovascular domain encompassing 500 clinical 

routine German doctor’s letters from Heidelberg University Hospital 
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(https://doi.org/10.11588/data/AFYQDY). For evaluation we used eleven CDA-

compliant section categories included in CARDIO:DE such as medication and anamnesis. 

We evaluated four medium-sized PLMs based on bidirectional transformer-based 

BERT encoder models [4]: (1) based on a publicly available German BERT model 

(gbert-base), (2) further task-adapted on our CARDIO:DE data set (gbert-base-
cardiode), (3) further domain-adapted on an internal medical data set (200,000 German 

cardiology doctor’s letters; gbert-fine), and (4) the two latter approaches combined 

(gbert-fine-cardiode). To evaluate prompting in a few-shot learning scenario we used 

PET, a state-of-the-art semi-supervised few-shot learning method using prompts, to 

classify sequences of text, achieving promising results in various domains [5]. We 

evaluated PET on three different training set sizes |T| = 20, 50, 100 and compared PET 

results with a baseline based on BERT with a sequence classification head. 

2. Results 

Table 1. Mean accuracy scores for |T| = 20, 50, 100 for four PLMs using a traditional sequence classification 

(SC) baseline model and PET. Trained on two different random seeds and training sets randomly extracted 

from CARDIO:DE400. We evaluated the models on 13,563 separate section annotations of CARDIO:DE100. 

Model SC |T|=20 PET |T|=20 SC |T|=50 PET |T|=50 SC |T|=100 PET |T|=100 
gbert-base 28,2 54,7 45,3 67,3 62,9 72,3 

gbert-base-cardiode 32,6 57,7 58,7 70,4 70 75,1 

gbert-fine 37,1 57,6 60,2 70 71,7 76,4 

gbert-fine-cardiode 28,4 64,2 48,1 76 67,5 79,4 

3. Discussion and Conclusion 

PET outperforms all SC baselines by large margins using any type of PLMs. The domain- 

and task-adapted PLM gbert-fine-cardiode outperforms the baseline and all other PET 

results. Already gbert-cardiode outperforms gbert-base, for both the baseline and PET. 

PET can significantly improve classification results in a clinical setup on low-

resource languages like German and can both accelerate and improve the development 

of accurate section classification models to e.g. support automatic medication extraction. 
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