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Abstract. Computer vision has useful applications in precision medicine and 
recognizing facial phenotypes of genetic disorders is one of them. Many genetic 
disorders are known to affect faces' visual appearance and geometry. Automated 
classification and similarity retrieval aid physicians in decision-making to diagnose 
possible genetic conditions as early as possible. Previous work has addressed the 
problem as a classification problem; however, the sparse label distribution, having 
few labeled samples, and huge class imbalances across categories make 
representation learning and generalization harder. In this study, we used a facial 
recognition model trained on a large corpus of healthy individuals as a pre-task and 
transferred it to facial phenotype recognition. Furthermore, we created simple 
baselines of few-shot meta-learning methods to improve our base feature descriptor. 
Our quantitative results on GestaltMatcher Database (GMDB) show that our CNN 
baseline surpasses previous works, including GestaltMatcher, and few-shot meta-
learning strategies improve retrieval performance in frequent and rare classes. 
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1. Introduction 

Genetic disorders affect more than 5% of the population [1]; however, physicians might 
fail to spot and clinically diagnose most of them. There is a set of genetic conditions, and 
30-40% of them are known to affect craniofacial development and facial morphology 
[2], and computer vision can help recognize skull alterations from facial images [3]. The 
output of such a system can support physicians in diagnosing rare syndromes and 
eventually lead to therapeutic interventions. 

Previous literature uses geometric information, facial landmarks, and handcrafted 
features around face regions [4], however, a small number of subjects and syndromes 
limit their use in clinical settings. Shukla et al. [5] combined convolutional neural 
network features in face regions and used SVM classifiers. Recent studies [6,7] showed 
that end-to-end deep learning-based methods could substantially improve facial 
phenotyping.  

Still, the number of samples in real-life situations and databases shows considerable 
variation across disorders. This makes training deep convolutional networks not feasible, 
as in any object classification task. The nature of the problem necessitates addressing 
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data imbalance and few-shot classification in facial phenotype analysis. Collecting facial 
images of rare facial genetic disorders requires lots of effort. Most of the previous works 
do not have publicly available databases to benchmark computer vision methodologies. 
GestaltMatcher Database2 [7] is a recent effort to carry automated facial phenotyping 
forward. This paper presents a deep learning baseline that depends on a better facial 
recognition model and a few-shot meta-learning approach for unseen facial genetic 
disorders based on a highly imbalanced distribution of disorders. 

2. Method

Figure 1. Workflow of initial feature learning and few-shot meta-learning: top) the initial feature learning is 
done either on face recognition task or genetic disorder classification; bottom) the learned representation is 
used in the few-shot meta-learning stage.

Figure 1 depicts the workflow of our proposed approach for facial phenotype recognition. 
The initial step in facial phenotype learning is to learn a solid initial representation. We 
trained a convolutional neural network backbone for this task by adopting the metric 
learning-based Arcface loss [8] in face recognition. Subsequently, the few-shot meta-
learning stage aims to learn facial phenotypes from highly imbalanced data where most 
categories have limited samples.

There are separate support and query sets to learn to compare in the training and 
testing phases. These sets are created in an episodic manner. The bottom part of Figure 
1 takes sampled episodes of support and query images, and first extracts features using 
the backbone encoder by initializing from face recognition pre-trained weights. The few-
shot learning is defined according to the number of categories (N) and samples (K) in 
each support group in the support set. The task is described as K-way N-shot in previous 
literature [9]. During the training, the centroid of each embedding vector per class c is 

calculated: �� �
�
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��������� where �
 and �
 are images and corresponding 

labels in each group of support set, ��.
Furthermore, differing from [9], each episode has several K-way N-shot tasks. 

It refers to predicting the category of a query sample from K classes or N examples per 

2 It is accessible for clinicians and computer scientists under the following link: 
https://db.gestaltmatcher.org/
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class in the support set. This setting learns a feature embedding that can retrieve samples 
belonging to the same category using a similarity metric. The main difference here is that 
meta-learning is independent of the tasks and can better generalize on unseen classes. In 
Prototypical Networks [9], the distance (or similarity) function is Euclidean distance. 
However, previous literature in facial phenotype recognition [7] used cosine similarity 
for the retrieval task. To make our meta-training as compatible as possible with our end 
task, we used cosine similarity between query embeddings, 	��
� and class centroids, ��, 
and calculated logits as follows: 

��� � ���� � �
������ �����!

� �
������ �����!"

�

   (1) 

where # is a learnable scalar that we applied to scale the values before applying the 
Softmax function following the related literature [10,11].  

We conducted our experiments on version 1.0.3 of the GMDB [7]. In version 1.0.3, 
the database contains 7.459 images of 449 syndromes. In addition to training and 
validation sets, there are two separate galleries and test sets for frequent and rare 
disorders. In both, faces are detected and aligned by RetinaFace [8]. Using five facial 
key points, we performed 5-point similarity alignment and normalized faces to the size 
of $$%&$$% pixels. During the training of baseline classification and few-shot meta-
learning models, we only applied channel mean and standard deviation normalization 
according to the train set statistics and random horizontal flipping. When training both 
whole-set classification and few-shot meta-training, we used an SGD solver with a 
constant learning rate of 0.001 and weight decay of 0.0005 for 25 epochs. We used 
validation retrieval performance, specifically, the nearest neighbor retrieval of validation 
samples' feature embeddings to all training sets for model selection. During the few-shot 
meta-training, we sampled each episode containing four tasks, and the total number of 
episodes was kept at 100 and trained for 25 epochs. 

Using the 512-dimensional embedding vector as feature representation, we 
evaluated the performance of our classification and nearest-neighbor approach in terms 
of top-k accuracies in the frequent and rare test sets in the GMDB. Following Hsieh et 
al. [7], learned facial embeddings were evaluated using two settings as follows: 

1. The retrieval task reports top-k accuracies using k-nearest neighbors based on 
feature embeddings and cosine distances from the frequent gallery and 
frequent test sets. 

2. The retrieval task reports top-k accuracies using k-nearest neighbors based on 
feature embeddings and cosine distances from the 10-Fold Cross-Validation 
rare gallery and rare test sets. 

In all experiments, we calculate accuracies for Top-{1, 5, 10, 30} retrieval. We 
also reported the classification performance of [7] that reports only top-k accuracies 
using softmax outputs based on the frequent test set. 

3. Results 

Table 1 depicts the results of our ablation study. As we aim to improve the retrieval 
performance on both tasks, we only evaluated GestaltMatcher DCNN using predictions 
trained with cross-entropy loss. The performance of GestaltMatcher DCNN trained on 
v1.0.3 of the database is aligned with the published results in [7]. Top-1 accuracy varies 
in the ranges of 15% to 21% in frequent and rare sets where the total number of classes 
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is 204 and 245, respectively. Our stronger baseline, a ResNet-50 trained on MS1MV2 
using ArcFace loss (Enc-healthy), performed 34.06% top-1 accuracy in the frequent set, 
whereas GestalthMatcher DCNN's retrieval performance remains at 15.96%. 

Few-shot meta baseline that we adopted in our experiments is a 10-way 3-shot 
task with 2 query samples in each task. Following [11], we sampled multiple tasks in 
each episode. The reported experiments are done using four tasks per episode. Table 2 
shows the retrieval performance of few-shot meta-learning models on both frequent and 
rare test sets. 
Table 1. Performance comparison of GestaltMatcher 
DCNN and our baseline models on GMDB (v1.0.3). 

Method Top-1 Top-5 Top-10 Top-30 
Frequent Set 
GestaltMatcher DCNN (7) 
Classification 21.21 42.08 54.60 73.92 
Retrieval 15.96 33.83 45.46 69.64 
Enc-healthy 34.06 53.96 64.42 81.28 
Enc-all (GMDB) 42.50 58.18 65.26 78.08 
Enc-base (GMDB) 40.47 60.71 67.29 79.09 
Rare Set 
GestaltMatcher DCNN (7) 
Retrieval 19.26 36.28 44.07 60.73 
Enc-healthy 26.31 42.62 46.98 62.92 
Enc-all (GMDB) 26.40 42.36 50.42 65.76 
Enc-base (GMDB) 28.25 44.88 52.00 66.18 
 

Table 2. Few-shot meta baseline and feature-level 
fusion on GMDB (v1.0.3) retrieval task. 

Method Top-1 Top-5 Top-10 Top-30 
Frequent Set 
GMDB-fs 48.06 68.13 75.89 85.67 
(feature-level fusion) 
+Enc-healthy 47.55 68.47 77.23 88.69 
+Enc-all (GMDB) 47.55 67.62 74.20 84.65 
+Enc-base (GMDB) 47.22 67.96 74.71 84.82 
Rare Set 
GMDB-fs 30.21 48.19 56.39 71.07 
(feature-level fusion) 
+Enc-healthy 32.89 50.65 57.89 71.39 
+Enc-all (GMDB) 30.88 48.29 56.57 70.54 
+Enc-base (GMDB) 33.08 48.37 56.65 70.72 
 

Few-shot meta-training (GMDB-fs) improves the top-1 frequent test accuracy of 
the best GMDB-trained baseline models, Enc-all and Enc-base by 7.59%, and 5.56%, 
respectively. This improvement is not limited to top-1 retrieval, it is also retained in 
different neighbor retrieval. We initialized GMDB-fs models using healthy encoding. 
Table 3. Comparison of n categories with 4 tasks per episode and 10 categories with n-shot and n-query. 

 Frequent Rare 
 Top-1 Top-5 Top-10 Top-30 Top-1 Top-5 Top-10 Top-30 
n-categories 3-shot / 2-query 
5 49.24 66.44 75.04 84.49 27.70 54.41 54.44 69.37 
10 48.06 68.13 75.89 85.67 30.21 48.19 56.39 71.07 
15 47.89 67.96 75.72 86.51 31.63 49.35 58.17 72.95 
20 48.06 67.62 74.37 84.65 27.76 47.04 55.29 69.33 
n-shot/n-query, 10-categories 
1/4 44.35 65.94 73.19 84.65 29.37 46.99 56.26 69.47 
2/3 44.35 67.12 74.87 86.34 31.77 49.26 57.66 71.04 
3/2 47.05 69.14 76.05 86.34 30.15 48.38 57.17 71.34 
4/1 48.23 68.13 75.21 84.65 27.76 45.79 55.58 68.72 

In both frequent and rare sets, feature-level fusion with the healthy encoder 
performed the best in nearly all retrieval tasks. In top-1 rare retrieval, fusion with Enc-
base gives the best accuracy, 33.08%. Even though Enc-all and Enc-base perform better 
than Enc-healthy, their performance on feature fusion is limited. 

4. Discussion 

We observed differences in the model's behavior when evaluating the few-shot meta-
based training with different sets of configurations (Table 3). These variables affect the 
difficulty of few-shot tasks and must be examined in depth. One is the number of ways 
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(categories) to define possible classes in a support set. The best retrieval performance is 
in the 10 and 15 categories. We consider this behavior related to the complexity of 
classification tasks in each episode. We picked the 10-way to evaluate other parameters 
that affect the performance of episodic training. These are the number of images in each 
class in the support set (k-shot) and the number of query images. Table 3 (bottom) 
presents evaluation performance using the different number of shots and queries. A 
higher number of shots improves frequent set retrieval performance; however, the 4-shot 
setting performs worse in rare set retrieval. The minimum number of shots seems 
descriptive enough according to the n-way task learned. We could not increase n-shot 
and queries as the minimum number of samples per class in the training set was 5. The 
best overall performance is in 2-shot or 3-shot settings. 

5. Conclusion 

In this study, we trained a state-of-the-art face recognition model on standard face 
recognition databases. We transferred learned representations to our low-resource target 
data domain for facial phenotype recognition for genetic disorders. We addressed the 
issue of data scarcity and imbalanced data using a few-shot meta-based learning 
approach. This improved genetic disorder recognition of unseen genetic conditions 
compared to the recently published GestaltMatcher DCNN; however, our study has 
certain limitations. We need more samples of rare diseases to ensure a fine-grained 
analysis and a user study of how AI models and clinicians' decisions deviate. In future 
work, using generative models on either image or feature level, synthesized samples can 
also be added to few-shot training and reduce the effect of uneven class distribution. 
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