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Abstract. Age-related macular degeneration (AMD) is the leading cause of 

blindness in the Western world. In this work, the non-invasive imaging technique 

spectral domain optical coherence tomography (SD-OCT) is used to acquire retinal 
images, which are then analyzed using deep learning techniques. The authors trained 

a convolutional neural network (CNN) using 1300 SD-OCT scans annotated by 

trained experts for the presence of different biomarkers associated with AMD. The 
CNN was able to accurately segment these biomarkers and the performance was 

further enhanced through transfer learning with weights from a separate classifier, 

trained on a large external public OCT dataset to distinguish between different types 
of AMD. Our model is able to accurately detect and segment AMD biomarkers in 

OCT scans, which suggests that it could be useful for prioritizing patients and 

reducing ophthalmologists' workloads. 
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1. Introduction 

In western countries, age-related macular degeneration (AMD), is the primary cause of 

blindness in people over 65 affecting around 1 in 4 adults over the age of 75. A projected 

196 million people will experience AMD by the year 2020, according to estimates. By 

2040, this figure is anticipated to reach 288 million [1, 2]. 

International retinal specialists used fundus imaging to classify AMD based on 

clinical features to determine the likelihood that a late AMD will develop [3]. Depending 

on drusen and pigmentary changes within two disk diameters of the fovea, eyes were 

classified as normal age-related changes, early, moderate and late AMD. As new therapy 

modalities emerge aiming to prevent the development of a late AMD, it crucial to 

precisely detect and follow up the changes in drusen and pigmentary changes, to predict 

the natural disease progression and thereby assess the therapeutic benefit. 

The quantitative morphological evaluation of drusen and pigmentary changes is 

made possible by several established and emerging imaging technologies, including 
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color fundus photography (CFP), fundus autofluorescence (FAF), infrared imaging (IR) 

and spectral domain optical coherence tomography (SD-OCT). SD-OCT imaging offers 

the most precise and prompt diagnosis. Compared to FAF and IR, which may show 

higher variability since the image intensities substantially fluctuate due to variations in 

illumination and corneal curvature, SD-OCT scans offer consistent anatomic landmarks 

for objective assessments. 

OCT is a non-invasive imaging method that uses low-coherence light to produce 

cross-sectional images of the macula or optic nerve head [4]. OCT is a highly favored 

method by ophthalmologists for the evaluation of retinal diseases, such as AMD, due to 

its non-invasiveness and simplicity of image acquisition [5]. However, it takes a lot of 

time and effort for ophthalmologists to precisely examine several OCT cross-sections for 

each patient. Additionally, the chronic nature of AMD adds to the load on 

ophthalmologists and medical facilities. Therefore, the availability of a computer-aided 

diagnosis (CAD)-based screening tool that is automated could aid in prioritizing patients 

based on their conditions and lessen this load. 

2. Methods 

The open-source Computer Vision Annotation Tool (CVAT) [6] was used by a trained 

domain expert to label four types of biomarkers on 1200 OCT scans: drusen with 4181 

labels, pseudodrusen with 108 labels, choroidal neovascularizations (CNV) with 2810 

labels, and pigment epithelial detachments (PED) with 86 labels. To ensure proper 

capture of the structures of interest, the annotations were reviewed and the polygons were 

refined by two additional clinicians, if necessary. This was especially helpful in wet 

AMD with severe geographic atrophy, when the retinal layers were no longer easy to 

distinguish from each other. Nevertheless, to obtain a sample of clinical cases that is as 

representative as possible, cases with significant fibrotic or atrophic lesions were also 

included. Additionally, we have used a range of data augmentation techniques to address 

the extreme label imbalance and improve its ability to generalize to new data. Following 

transformations were applied to a copy of the original dataset, prior to the training 

process, ensuring that the input for all training iterations remained consistent: Gaussian 

noise, contrast adjustments, elastic deformations, grid/optical distortions and random 

affine transformations [7]. 

Our segmentation model is built on CNN with U-net and was trained on the data 

mentioned above. Different studies have demonstrated that U-net with an additional 

attention module and ResNet34 as encoder is an effective combination to handle datasets 

with imbalanced classes and minimize loss [8–10]. For comparison purposes, the 

encoder was initialized with ImageNet and custom weights from a public OCT-Dataset, 

which contains 108309 OCT scans [11]. This usually reduces the amount of data 

necessary for training, allowing models to learn task-specific features while utilizing the 

knowledge gained from broader datasets.  

To calculate the weights of the custom dataset, a classifier based on the same 

ResNet34 encoder of our segmentation model was trained to distinguish between the 

given classes of diabetic macular edema (DME), drusen (dry AMD), CNV (wet AMD) 

and normal (healthy). Our ResNet34-Classifier was pretrained on ImageNet weights. A 

weighted cross-entropy loss with inverse class frequencies was used to adjust the relative 

contribution of each class to the loss computation. The weights of the classifier's encoder 

were then extracted and transferred to our segmentation model’s encoder. 

K. Yildirim et al. / U-Net-Based Segmentation of Current Imaging Biomarkers948



In addition, our segmentation model used an alpha-balanced compound loss with 

Dice and weighted Focal loss to train the network to successfully segment small 

pathogenic structures within the OCT scans [12]. Specific combinations of loss functions 

have shown to improve focus on relevant regions and make more precise predictions.

To measure the performance of our model, the Dice/F1 score was calculated for each 

class and epoch, as the structures for CAD must be captured not only completely but also 

precisely. This metric measures model accuracy by combining its precision and recall, 

indicating overlap between predicted segmentation and ground truth mask.

3. Results

Classifier (OCT). The classifier is built on top of ResNet34 and was initialized using 

ImageNet weights. It was trained over 15 epochs and by using 16 training examples per 

mini-batch from the public dataset. Initial learning rate was 1e-4. At epoch 7, the 

weighted cross-entropy loss was at its minimum. With an 80:20 split for each class, the 

training accuracy reached 98.207% and the validation accuracy peaked at 97.697%. 

Rounded accuracies for each class were as follows: NORMAL 98.49%, DME 97.9%, 

DRUSEN 96.54%, CNV 95.23%.

Figure 1. Training and validation accuracy per epoch

Segmentation Model. We have tested our segmentation model with three different 

weight initialization strategies: random initialization, pre-trained ImageNet weights and 

custom weights from our OCT classifier. Table 1 compares the results from the epochs 

with the highest F1 scores. Figure 2 exemplifies results on a separate test dataset.            
We used a mini-batch size of 4, an initial learning rate of 1e-3. and 40 epochs. The 

same preprocessing and parameters were used throughout all three trials. The compound 

loss was defined and balanced as described in Eq. (1).

���������	
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Table 1. The F1 scores of the best epoch in each case for all three executions

Epoch Drusen CNV PED
Random Initialization 17/40 0.777 0.752 0.899

ImageNet 13/40 0.763 0.832 0.888

OCT 21/40 0.807 0.844 0.878
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Figure 2. Ground truth and prediciton with pretrained encoder. Drusen (white), CNV (green) and PED (red).

4. Discussion

This study's main objective is to analyze the feasibility of CAD and progress monitoring 

for patients with AMD. We therefore utilize a broader set of features than previous OCT 

segmentation research, which mostly focuses on single biomarkers such as fluid, layers, 

or drusen [13]. In addition, we investigate the impact of using weights from different 

datasets on the segmentation of relevant biomarkers collectively.

Given several AI-based systems achieving comparable image discrimination rates

as that of retinal specialists [14], we primarily focus on improving the segmentation. The 

underlying hypothesis was that it may be improved by using transfer learning with 

weights from similar or unrelated datasets. Thus, three image segmentation models were 

trained and compared for the classes drusen, CNV, PED and pseudodrusen. 

Pseudodrusen had to be excluded due to the insufficient number of labels and the 

resulting bias in the loss computation.

As seen in the Table 1, the model trained using OCT-weights had the highest F1 

score of 0.807 for drusen class. This suggests that training on the custom dataset may 

have improved the model's class segmentation. The comparably low value of drusenoid 

structures is likely since the pigments within these deposits are similar to those found in 

the choroid beneath. This makes it difficult to accurately label and segment lower parts 

of drusen, as it is based on the assumption of how the retinal pigment epithelium was 

prior to the formation of a druse. This becomes especially challenging in cases of wet 

AMD with large and overlapping deposits.

The model trained with our custom weights had the highest F1 score for CNV, 0.844. 

This suggests that our encoder provided adequate training for this class. ImageNet alone 

resulted in the highest F1 score for PED, 0.888. OCT-weighted model placed second 

with 0.878. Transfer learning may have improved performance, but our encoder was 

unable to produce any additional improvement. The higher F1 score seen in CNV and 

PED could be related to the hypopigmentation of these structures, which allows a 

better differentiation from the surrounding tissue. The background class was disregarded

from Table 1 due to many easy positives resulting in a F1 score near to 1.

The precision of segmentation results is often influenced by the characteristics of 

the datasets used. We have included a substantial number of wet AMD cases (600 out of 

1300), which may have a diminishing but important impact on the research results.

It is also essential to note that no systematic hyperparameter tuning was performed. 

Instead, previously established parameters from similar cases were used for our classifier 
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and segmentation model, including those for loss computation. Our initial tests have 

demonstrated that the compound and balance of loss functions used was sufficient but 

with obvious room for enhancement. 

5. Conclusion and Outlook 

Using image segmentation models, this study evaluated the viability of CAD for patients 

with AMD. The results demonstrated that transfer learning with weights from similar or 

unrelated datasets can improve the performance of models for specific classes. Since our 

classifier has been trained on a publicly available dataset, it can therefore be tested on 

various diagnoses and biomarkers in future research. In our case, additional data labelling 

for existing and new AMD biomarkers, preprocessing, and augmentation, as well as 

hyperparameter tuning, may improve the results. We intend to create interpolated 3D 

volumetric scans of the OCT images to extract additional properties such as volume, 

diameter and other criteria that are necessary for clinical classification of AMD [3]. 
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