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Abstract. In this work, we propose a multi-task learning-based approach towards 

the localization of optic disc and fovea from human retinal fundus images using a 
deep learning-based approach. Formulating the task as an image-based regression 

problem, we propose a Densenet121-based architecture through an extensive set of 

experiments with a variety of CNN architectures. Our proposed approach achieved 
an average mean absolute error of only 13pixels (0.04%), mean squared error of 11 

pixels (0.005%), and a root mean square error of only 0.02 (13%) on the IDRiD 

dataset. 
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1. Introduction 

The human retina plays an important role in the diagnosis of a number of diseases such 

as diabetes [1], diabetic retinopathy (DR), cardiovascular disease [2], and other diseases. 

Optic disc (OD) and Fovea are integral parts of the human eye and their localization is a 

central part of computer aided screening tools in ophthalmology clinics  [3,4]. Accurately 

localizing the optic disc (OD) and fovea is a non-trivial task, as they may not always be 

easily distinguishable due to low contrast with the surrounding background. 

Additionally, the fovea exhibits a high degree of variability in terms of its shape, 

structure, and boundaries, and is often quite small and difficult to discern with the naked 

eye. Consequently, deep learning techniques have been proposed to improve the 

precision of OD and fovea localization. In this present article, we propose a deep 

learning-based approach to locate the fovea and the OD in a retinal fundus image. 
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2. Materials and Methods  

2.1. Dataset 

We model the problem as a supervised learning — regression task that accepts a digital 

retinal fundus image as the input and predicts the coordinates of the optic disc and fovea 

centers.  We considered the IDRiD dataset that contains labeled data for fovea and optic 

disc center locations. It contains retinal fundus images and three types of corresponding 

ground truth labels: (a) multi-class segmentation masks for retinal phenomena and 

bodies, (b) diabetic retinopathy and diabetic macular edema severity grade, and (c) optic 

disc center and fovea locations as (x,y) coordinates. We used the third category of labels 

in our task. The IDRiD dataset contains 516 RGB retinal images in total, each of size 

4288 pixels (width) by 2848 pixels (height).  

2.2. Model Development and Evaluation 

Given an RGB retinal fundus image I, we use a convolutional neural network to perform 

regression on I in predicting the location of the fovea, F and the optic disc, D, each of 

which are represented in (x, y) coordinates in image-space. Our proposed network 

architecture is based on the DenseNet architecture, specifically, the 121-layer variant of 

the network. The network is divided into two segments — the stem, which contains all 

but the last classification layer from the network pretrained on ImageNet-1k and the 

head, which has the classifier segment containing the following layers: a batch 

normalization (1024), dropout (0.25), linear (1024), ReLU, batch normalization (512), 

dropout (0.5), linear (512), and sigmoid (-1, 1) where the information within the 

parenthesis indicate the hyper-parameters for the layers. Using a pre-trained network 

ensured that we could leverage transfer learning as (i) training such a deep neural 

network would require a much larger dataset to prevent overfitting, and (ii) benefit from 

the knowledge the network gained by being trained on a dataset containing more than a 

million images. To compare our proposed network architecture for the task with other 

widely-used alternatives, we experimented with six other CNNs. Specifically, we fine-

tuned AlexNet, VGG, GoogleNet, ResNet, SqueezeNet, and EfficientNet. Table 1 shows 

the variants we used of these networks, where applicable. The networks were fine-tuned 

for 50 epochs, with a maximum learning rate of 3e-2 that changed according to the cosine 

annealing scheduler. To prevent the networks from overfitting, we used L2 regularization 

with lambda=1e-2 and also applied early stopping with a minimum improvement of 

0.001 for the monitoring metric (MSE) and a patience of 20 iterations. We used the Mish 

activation function in the inner layers of the network due to its superior performance to 

ReLU and Leaky ReLU. The outcome of the experiments were statistically stabilized by 

making use of nested K-fold cross validation with K = 5 for both the inner and the outer 

folds. We fine-tuned these networks on a workstation with a AMD Ryzen 5800X CPU, 

64 GB of DDR4 memory, an Nvidia RTX 3090 GPU, and 1TB SSD. For faster 

turnaround time, we also utilized two other less powerful computers that run older GPUs 

(TitanX Pascal and RTX 2080) to tune the hyperparameters. The runtime of each fold of 

the experiment ranged from 30 minutes to several hours depending on the candidate 

model.  We considered mean absolute error (MAE), mean squared error (MSE), and root 

mean squared error (RMSE) as evaluation metrics. In addition, since we proposed a joint 

estimation of two independent quantities, namely the optic disc and the fovea centers, 

we also computed these metrics on these independent targets to understand how the 
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marginal error distribution behaves. Finally, we went a level deeper and also estimated 

the performance per coordinate (x and y) of the locations to further investigate the 

outcome. 

3. Results 

Table 1 shows the performances of the candidate models on the test set in pixel-space, 

respectively. We can see that the proposed Densenet121-based network outperforms the 

other models by a significant margin across all modes of the metrics. We used RMSE as 

the metric for selecting the best candidate model based on their validation set 

performances due to this metric’s ability to measure error in the same space as the input, 

unlike other metrics such as MSE that represents error in the quadratic space.  

 

Table 1. Pixel-space (in range [0, 448]) performance of the candidate models. 

Network MAE MSE RMSE RMSE 

(FOV) 

RMSE 

(OD) 

RMSE 

(F_X) 

RMSE 

(F_Y) 

RMSE 

(O_X) 

RMSE 

(O_Y) 

Efficientnet_

b3a 

8.11 ± 

0.15 

0.66 ± 

0.14 

12.17 ± 

1.29 

12.47 ± 

1.17 

11.87 ± 

1.42 

12.02 ± 

1.54 

12.89 ± 

0.83 

14.46 ± 

2.94 

8.18 ± 

1.08 

Alexnet 11.70 ± 

1.57 

1.26 ± 

0.45 

16.52 ± 

3.06 

17.02 ± 

2.92 

15.99 ± 

3.22 

15.43 ± 

1.8 

18.44 ± 

3.89 

14.43 ± 

2.65 

17.41 ± 

3.71 

VGG16 26.69± 

15.44 

7.80 ± 

6.57 

36.65± 

20.09 

28.91± 

11.95 

42.60 ± 

26.46 

28.05 ± 

12.95 

29.68 ± 

11.04 

51.12 ± 

35.51 

30.88 ± 

14.22 

DenseNet121 7.60 ± 
0.77 

0.463 
± 0.13 

10.06 ± 
1.52 

11.64 ± 
1.92 

8.19 ± 
1.00 

10.91 ± 
0.97 

12.27 ± 
2.78 

7.66 ± 
0.25 

8.53 ± 
2.16 

SqueezeNet1

_0 

24.46 ± 

3.30 

5.95 ± 

0.61 

36.46 ± 

1.89 

27.08 ± 

2.99 

43.83 ± 

1.29 

26.94 ± 

5.09 

27.07 ± 

0.92 

49.79 ± 

5.55 

36.28 ± 

4.49 

ResNet34 9.10 ± 

0.01 

0.73 ± 

0.14 

12.77 ± 

1.23 

13.82 ± 

1.83 

11.61 ± 

0.52 

12.15 ± 

0.57 

15.04 ± 

3.84 

9.44 ± 

1.31 

13.26 ± 

1.86 

GoogleNet 11.38 ± 

2.08 

1.10 ± 

0.45 

15.37 ± 

3.31 

14.71 ± 

2.71 

15.99 ± 

3.87 

13.45 ± 

1.46 

15.82 ± 

3.80 

16.32 ± 

4.26 

15.65 ± 

3.46 

 

A visual inspection of the predictions from our proposed network showed that it was able 

to accurately locate the fovea and the optic disc centers in most cases. Figure 1 shows a 

subset of the test set where the predicted and the ground truth locations were overlaid on 

the corresponding input image.  

 

 
Figure 1. Predictions (green marks) and ground truth (red marks) locations overlaid on retinal images. 

Circles and Plus represent the location of the optic disc and the fovea, respectively. 
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4. Discussion 

Figure 2 shows the distribution and the histogram of the RMSE for the centers of the 

fovea, optic disc, and their individual (x/y) coordinate. We can see from Figure 2a that 

vertical error for estimating the fovea center has a wider and slightly different 

distribution, indicating our model faced a challenge estimating this quantity accurately. 

This has contributed directly to the distribution of the distance from fovea, seen from the 

same plot — it has a higher mean and variance than the optic disc distance distribution. 

However, the means for all the distances, both overall for each center and their horizontal 

and vertical components were less than 15 pixels. It is to be noted that for an input image 

of size 448x448, this accounts for less than 3.5% error. The histogram in Figure 2b also 

corroborates our observation on the error distribution — almost 80% of the errors in 

estimating the fovea location were below 20 pixels, whereas 90% predictions on the optic 

disc were off by at most the same distance. The components of the fovea and the optic 

disc centers also exhibit similar characteristics. The right skewed distribution of the 

errors in the histogram shows that most of the errors were low, indicating that our 

proposed approach was effective in the task. 

 

 

Figure 2. The distribution of RMSE (distance from ground truth) on the left and a pixel-space histogram of 

the same on the right. 

5. Conclusion 

Using an extensive set of experiments, we showed that proposed DenseNet based model 

is superior to other candidate models by evaluating across multiple metrics for regression 

tasks. Our future plan includes integrating this method as a diagnostic tool for diseases 

such as diabetes and DR, using retinal image data gathered from Qatar Biobank (QBB). 
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