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Abstract. Recurrent AKI has been found common among hospitalized patients after 

discharge, and early prediction may allow timely intervention and optimized post-
discharge treatment [1]. There are significant gaps in the literature regarding the risk 

prediction on the post-AKI population, and most current works only included a 

limited number of pre-selected variables [2]. In this study, we built and compared 
machine learning models using both knowledge-based and data-driven features in 

predicting the risk of recurrent AKI within 1-year of discharge. Our results showed 

that the additional use of data-driven features statistically improved the model 
performances, with best AUC=0.766 by using logistic regression. 
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1. Introduction 

Acute kidney injury (AKI) is characterized as rapid loss of kidney function [3]. The 

United States Renal Data System (USRDS) reported significant increasing trends in 

hospitalizations for AKI over the past decade, affecting 62.1 per 1,000 person-years in 

2020 [4]. In addition to the increasing prevalence, researchers also found that AKI 

patients may be at a high risk of readmission and another AKI onset, contributing to 

substantial costs and burden on public health services and resources [1]. 

Among hospitalized patients with AKI, recurrent AKI (r-AKI) has been found to be 

common after discharge with nearly a third of elderly AKI patients being readmitted with 

AKI within 12 months [1]. Despite a large body of research in the risk panel of AKI 

during admission, there are significant gaps in the literature regarding the risk prediction 

of r-AKI. Most existing studies used variables pre-selected based on domain knowledge, 

which may not be able to provide a comprehensive view of the risks [2]. Electronic health 

records (EHR) are emerging as rich sources of information for increased insights but also 

as challenging data sources with high dimensionality for building prediction models. 

In the present study, longitudinal EHR data was used, including knowledge-driven 

features from the literature and data-driven features collected from administrative codes, 

to build risk models of recurrent AKI during 1-year post-discharge period with 

comparative performance of various machine learning approaches. 
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2. Methods 

A retrospective study was conducted using a research clinical data repository of patients 

administered through the University of Minnesota seen at M Health Fairview, a health 

system in greater Minnesota and western Wisconsin, USA, (IRB approval 

STUDY00005536) from October 2015 to October 2020. 

AKI is defined by the KDIGO serum creatinine (SCr) diagnostic criterion or 

procedure record of dialysis and renal transplant therapy during hospitalization [3]. ICD 

codes for AKI were not used given the poor performance and potential time lag in 

identifying AKI [5]. Comorbid conditions of diabetes, hypertension, heart failure and 

chronic kidney disease were identified by related ICD codes [5,6]. In this study, r-AKI 

is defined as a patient who had AKI recovered at hospital discharge (final SCr returned 

to ≤50% above baseline SCr) and had another AKI onset occurred inpatient or outpatient 

within 1 year post discharge [7]. A look-back period of 1 year from the date of hospital 

admission was used to determine baseline renal function. Missing SCr baseline were 

imputed using back-calculation of MDRD formula [8].  

Patients with the following characteristics were included: (1) adults admitted for any 

reasons, with AKI during stay and final SCr at discharge returned to ‘recovery’ level, 

and (2) had SCr measured inpatient or outpatient within 1-year post discharge.   

Patient features were constructed from EHR records prior to the discharge date and 

categorized as knowledge-based or data-driven feature sets described as below: 

Knowledge-based features (n=22) were derived from commonly used and known 

risk predictors of AKI, including inter-correlated conditions with AKI, the last measured 

lab tests and vitals, length of stay, AKI stage and use of emergency/ICU [1-3,6,7]. 

Missing values were imputed with age/gender-adjusted average measure from the 

literature [9,10]. All categorical variables were processed by one-hot encoding and 

numerical features (including AKI stage) were rescaled between -1 and 1. 

Data-driven features (n=20,529) included all administrative codes reported during 

the admission with the following three types: (1) diagnosis, DX, (2) procedure, PROC, 

and (3) drug, RX. Given the massive volume and text format of administrative codes, an 

analogy method of natural language processing was applied. Top 100 bag-of-words 

represented features with TF-IDF weights were concatenated with knowledge-based 

features for predictive modeling. Features with correlation coefficients >0.85 were 

removed. A total of 316 features were used for risk modeling. 

Machine learning algorithms, including Logistic regression (LR) and random forest 

(RF), were applied to build risk models using (1) only knowledge-based features and (2) 

combination of knowledge-based and data-driven features. Grid search was used for 

hyperparameter tuning, and models were trained with class weights assigned and 3x 

repeated 10-fold cross validation. Performance and feature importance for each model 

were compared, using R v4.1.2 (caret 6.0-93; tuneRanger 0.5). 

3. Results 

A total of 8 machine learning models were constructed to predict the occurrence of r-

AKI with 1-year post discharge. Detailed experimental results are presented as below. 

The full study cohort consisted of 15,102 hospitalizations, among which, 7,389 

were 1st time admission with AKI. The full cohort and subgroups shared similar patient 
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characteristics. Mean age was 60 years old and ~54% were male. Around 61% had 

emergency or ICU service and average length of stay was 10 days. 
Table 1. Stage of AKI during hospitalization of post discharge. 

  Full Cohort 
(n = 15102) 

1st Time 
Admission 
(n = 7389) 

Max AKI stage 

during stay, n(%) 

1 15777 (55.29%) 2814 (38.08%) 

2 2191 (7.68%) 807 (10.92%) 
3 10585 (37.10%) 3768 (50.99%) 

Max AKI stage 

within 1 year, n(%) 

0 7343 (25.74%) 2083 (28.19%) 

1 7355 (25.78%) 1207 (16.34%) 
2 1537 (5.39%) 485 (6.56%) 

3 12318 (43.17%) 3614 (48.91%) 

31 unique features were obtained from the top 10 important features across all 

models. SCr at discharge was presented as the most important feature in predicting r-

AKI in most models. A total of 9 features were top ranked by at least half of the models, 

which are, SCr, PROC_80197(Therapeutic Drug Assays), AKI_IP_Scale (AKI stage 

rescaled), WBC (white blood cell), RX_199058 (mycophenolate mofetil), CKD (chronic 

kidney disease), Lymph (lymphocytes), BUN (bun urea nitrogen) and Age. 

When only using knowledge-based features with full cohort, both RF and LR 

(Figure 1.a,c) algorithms had SCr, WBC, AKI_IP_Scale, BUN and Age as the top 10 

important features. The RF model also found blood pressure, AST(aspartate 

aminotransferase) and LOS (length of stay) important in predicting r-AKI, whereas the 

LR model found CKD, diabetes (DM), IP_ER_ICU (emergency/ICU service) and sex to 

be more important. ICD_D63.1 (Anemia in CKD) and ICD_Z94.83 (Pancreas transplant 

status) were important in RF and LR models, respectively. Meanwhile, when using all 

features, most of the important features were data-driven in the LR model (Figure 1.b,d).  

Similar rankings were observed in the experiments on the subgroup of 1st time 

admission with AKI (Figure 1.e-h) with minor shuffles. Except for ‘AKI_IP_Scale’, it 

was represented as the 3rd important feature in models (Figure 1.a-c) using the full cohort; 

however, in the subgroup cohort, it was not top ranked by RF (Figure 1.e-f). 
 

Full Cohort 

 
1st Time Admission with AKI 

 
Figure 1. Top 10 important features in predictive models using different feature sets and cohorts. 
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Performance measures were obtained using test dataset, and AUC were compared 

by applying bootstrap method. Using all features, all models showed improved 

performance across most measures (all pairwise p-values <0.001) than models using 

knowledge-based features alone, except for the sensitivities of full cohort – LR models. 

In general, we observed good accuracy, specificity and precision for most models, but 

the sensitivity was highly inconsistent, ranging from 0.439 to 0.821. 

For the subgroup cohort, no statistical differences in AUC were found between two 

algorithms. However, in the full cohort, we found that LR outperformed RF models with 

statistically significant higher AUC. A trade-off between sensitivity and specificity was 

observed when implementing two algorithms in both cohorts. The best performed model 

used all features with LR in the full cohort, with AUC=0.766. 

Table 2. Performance of predict models. Abbreviations: RF, random forest; LR, logistic regression; K, 

knowledge-based features; D, data-driven features; 0.95 CI : 0.95 confidence intervals from 10000 bootstrap. 

Cohort Model Feature Accuracy Precision Sensitivity Specificity AUC (0.95 CI) 

Full 

RF 
K 0.809 0.884 0.439 0.886 0.662 (0.640-0.684) 

K+D 0.829 0.899 0.519 0.894 0.706 (0.684-0.729) 

LR 
K 0.688 0.947 0.821 0.661 0.741 (0.722-0.759) 

K+D 0.724 0.952 0.701 0.831 0.766 (0.747-0.784) 

1st time 

admission 

RF 
K 0.712 0.803 0.504 0.795 0.649 (0.622-0.676) 

K+D 0.758 0.833 0.578 0.829 0.703 (0.677-0.729) 

LR 
K 0.632 0.851 0.736 0.591 0.664 (0.637-0.689) 

K+D 0.681 0.880 0.777 0.644 0.710 (0.685-0.735) 

4. Discussion 

In this study, we developed risk models to predict the occurrence of r-AKI within 1-year 

post discharge. Our study cohort consisted of an older population. We observed that 

17%-27% of them had diagnosis or procedure codes for renal transplant during the same 

AKI admission and >70% had r-AKI, indicating an underestimated burden of r-AKI and 

potential gaps in post-discharge care for this population. The application of machine 

learning methods using EHR data allows researchers to predict the risk of r-AKI and to 

further facilitate decision making on hospital discharge and follow-up treatment plans. 

We observed that knowledge-based features were useful in predicting r-AKI with 

high precision but moderate AUC. By adding data-driven features, model performance 

has been statistically improved in general. Our best performing model (AUC=0.766) was 

achieved by using LR with all features in the full cohort, and LR consistently had similar 

or better performance than RF. Interestingly, the top 10 features were very different in 

logistic models after adding data-driven features, which may suggest some risk factors 

that require more attention. For example, ICD_Z94.83 (Pancreas transplant status) was 

top ranked in our best performing model, and pancreatitis could contribute to AKI [11]. 

However, some top ranked features were less interpretable, such as PROC_87799 

(infectious antigen detection).  

Our study has several limitations. Firstly, the research findings were derived from a 

retrospective study without follow-up data, and there is a lack of a formal definition of 

r-AKI or by inpatients versus outpatients. The requirement of SCr measured during 1-

year post-discharge might introduce bias to a sicker population. Secondly, our filter 
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method for feature selection might remove potentially important features and limit the 

performance of random forest. Given the hierarchy structure of administrative coding, 

the tree-lasso method might be considered as a potential solution. 

5. Conclusions 

We conducted a retrospective study on predictive modeling of the risk of r-AKI within 

1-year post discharge among adult patients with AKI. To the best of knowledge, the study 

is the first to predict the risk of r-AKI using knowledge-based and data-driven data from 

EHR. Results showed the combination of both feature sets using logistic regression led 

to the best performance. Findings of top important features in predicting r-AKI may 

suggest opportunities for early intervention and optimized post-discharge treatment plans. 
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