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Abstract. A radiology report is prepared for communicating clinical information 

about observed abnormal structures and clinically important findings with referring 

clinicians. However, such observations and findings are often accompanied by 
ambiguous expressions, which can prevent clinicians from accurately interpreting 

the content of reports. To systematically assess the degree of diagnostic certainty for 

each observation and finding in a report, we defined an ordinal scale comprising five 
classes: definite, likely, may represent, unlikely, and denial. Furthermore, we 

applied a deep learning classification model to determine its applicability to in-

house radiology reports. We trained and evaluated the model using 540 in-house 
chest computed tomography reports. The deep learning model achieved a micro F1-

score of 97.61%, which indicated that our ordinal scale was suitable for measuring 

the diagnostic certainty of observations and findings in a report. 
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1. Introduction 

A radiology report includes observed abnormal structures (hereinafter called 

observation) and clinically important findings (hereinafter called clinical finding). To 

convey the degree of diagnostic certainty of observations and clinical findings, 

radiologists often use various ambiguous expressions. For example, the diagnostic 

certainty of “lung cancer” could differ from “suggestive of lung cancer” to “more likely 

to be an inflammatory change rather than lung cancer.” The difference of expressions 

can cause misinterpretations of the content of reports by clinicians [1–3]. This ambiguity 

also affects the secondary use of reports. To build a curated dataset from reports, 

observations and clinical findings with negated or uncertain should be ruled out.  

Here, we present a fine-grained ordinal scale to measure the degree of diagnostic 

certainty of observations and clinical findings in reports. Furthermore, we developed a 

deep learning classification algorithm and evaluated its performance to verify its 

applicability to in-house radiology reports. 
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2. Methods 

2.1. Certainty scale 

Our certainty scale mainly comprises three classes: definite, uncertain, and denial. A 

definite class is assigned to observations and clinical findings that are reported without 

any ambiguity such as “the nodule is present” and “consistent with lung cancer.” 

Conversely, a denial class is used for observations and clinical findings that negated 

certain diagnostic possibilities such as “no evidence of lung cancer.” An uncertain class 

is categorized into more fine-grained classes: likely, may represent, and unlikely. We 

referred to the diagnostic certainty scale developed by Shinagare et al. [4], which was 

categorized into five classes: most likely, likely, may represent, unlikely, and very 
unlikely. For annotation simplicity, we considered the most likely class to be the same as 

the definite class. Similarly, the very unlikely class was also considered to be the same 

as the denial class. Thus, five classes were defined. 

2.2. Corpus development 

This study was approved by the institutional review board of Osaka University Hospital 

(approval number: 19276). Chest computed tomography reports from 2010 to 2018 

stored in the radiology information system at Osaka University Hospital were used. The 

dataset consisted of 118,078 reports written in Japanese, of which 540 reports were 

randomly selected for training the deep learning model and evaluating its performance.  

To build a gold standard dataset, three medical students performed the annotation 

process. Annotators were given reports with highlighted terms of observations and 

clinical findings in each report. Then, they annotated the predefined certainty class to 

each highlighted term. To achieve consistent annotation, the annotators were provided 

with a guideline describing the classification criteria of the certainty scale. Annotation 

disagreements were resolved by a majority vote. Clinicians resolved disagreements 

among the three annotators if the gold standard could not be determined by a majority 

vote. In the 540 reports, a total of 4,485 observation and clinical finding terms were 

annotated. The Fleiss’ kappa score [5] to measure inter-annotator agreement was 89.9%, 

which denotes very high agreement [6]. Table 1 shows the number of each certainty scale 

class in the dataset.  

Table 1. The number of each certainty scale class in the dataset. 

Definite Likely May 
represent 

Unlikely Denial Total  

2,242 538 286 112 1,307 4,485  

 

2.3. Classification model 

An overview of our system is shown in Figure 1. Our system contains two deep learning 

components: (1) to extract observation and clinical finding terms according to predefined 

entities; (2) to classify the certainty scale class of each observation and clinical finding 

term.  

We have previously reported the deep learning algorithm to extract observation and 

clinical finding terms from reports [7]. The micro F1-scores of our best-performing 
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model for extracting observation and clinical finding terms were 94.22% and 95.61%, 

respectively. Additional details have been reported in our previous paper [7].

Next, to determine the certainty scale class of each observation and clinical finding 

term, we applied the BERT [8] as a classification model, and fed a report into a model.

More specifically, given a report with a span of target term, the model predicts the 

certainty scale class of the term. Observation and clinical finding terms in a report were 

fed into the model one by one. To identify a span of target term in a report, we inserted 

entity marker tokens both before and after the target term (Figure 1).

Figure 1. An overview of the certainty scale classification model. A classification model predicts the certainty 

scale of each extracted term. Entity marker tokens (<cf>, </cf>) are inserted to identify the target term (cf: 

clinical finding). In this example, the model predicts the certainty scale of the term “lung cancer”.

2.4. Evaluation metrics

Strict and relaxed metrics were used in our experiment. A strict metric is a general 

classification metric that counts as correct when the prediction class is the same as the 

ground truth class. However, because a strict metric ignores the distance between classes 

(e.g., likely and may represent vs definite and denial), we cannot evaluate the 

performance of the ordinal scale in detail. To solve this problem, we introduced a relaxed 

metric that allows the difference of the nearest neighbor class. As an exception, since 

negation detection is essential in clinical applications, the denial class is counted as 

correct only when both the prediction and ground truth are denial. The F1-score was used 

for both the strict and relaxed metrics. To compare the difference between the strict and 

relaxed metrics, we also showed an error rate per class, which is 1 − F1-score.

3. Results

A total of 540 annotated reports were divided into 378 reports for training, 54 reports for 

development, and 108 reports for testing. The best hyperparameter settings were chosen 

using a development dataset.

Our experimental result is shown in Table 2. Our certainty classification model 

obtained 97.61% in the strict micro F1-score. Although the entire performance achieved

satisfactory results, the may represent and unlikely classes had lower F1-score in the 

strict metric than other classes. The denial class obtained a strict F1-score of 98.89%,

indicating the high performance as a negation detection module. The entire performance 

in the relaxed metric was 98.91%, and all classes yielded higher F1-scores than the strict 

metric. Error rates in the relaxed metric were under 3% in all classes. 
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Class strict relaxed 
F1-score Error rate F1-score Error rate 

Definite 98.56% 1.44% 99.01% 0.99% 

Likely 96.33% 3.67% 100.00% 0.00% 
May 

represent 

91.55% 8.45% 97.30% 2.70% 

Unlikely 87.80% 12.20% 97.30% 2.70% 
Denial 98.89% 1.11% 98.89% 1.11% 

Total 97.61% 2.39% 98.91% 1.09% 

4. Discussion 

While the definite and denial classes achieved satisfactory results, the may represent and 

unlikely classes had lower F1-scores in the strict metric. The small size of these classes 

in training data probably hindered learning. Table 2 shows that the error rate in the 

relaxed metric is less than half the error rate in the strict metric, which indicates that a 

lot of the discrepancy is between the nearest neighbor class. A confusion matrix for each 

certainty scale class is plotted (Figure 2). This reveals that our model predicts some 

observations and findings as the denial class even though the ground truth was the 

definite class and vice versa. Some error examples are shown in Table 3. In Example 1, 

due to the complex text structure containing the negation word, the model misclassified 

the case as denial. In Example 2, although the words “almost disappeared” implicitly 

negated the observation, the medical students annotated it as definite. Similarly, “unclear” 

in Example 3 is not a word that positively indicates the existence of observations or 

findings. In cases such as Examples 2 and 3, we believe that the predicted class is 

probably reasonable. Similarly, the predicted class in Example 4 is probably more 

reasonable than the gold standard one. These results reveal the robustness of our model 

against the noise of training data. 

 
Figure 2. Confusion matrix for each certainty class. 

Table 3. Examples of the discrepancy between ground truth and model prediction. 

No Report Ground 
Truth Prediction 

Example 1 The margin of the mass lesion is not clear ... Definite Denial 
Example 2 Ground glass opacity almost disappeared ... Definite Denial 

Example 3 Cystic lesion is unclear ... Definite Denial 

Example 4 Edema was improved ... Denial Definite 

Table 2. Performance metrics of each certainty class.
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One limitation of this study is generalizability. We only trained and evaluated the 

model using reports collected from a single institution. To ensure generalizability, 

studies on datasets from outside our institution would be needed. 

5. Conclusions 

We presented an ordinal scale to measure the degree of diagnostic certainty. The deep 

learning model achieved satisfactory results, which demonstrated that our certainty scale 

was sufficiently applicable to in-house radiology reports. We believe that this automated 

classification system will be helpful to clinicians to reduce misinterpretation of radiology 

reports and contribute to building a curated dataset for secondary use. 
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