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Abstract. High-resolution whole slide image scans of histopathology slides have 

been widely used in recent years for prediction in cancer. However, in some cases, 

clinical informatics practitioners may only have access to low-resolution snapshots 
of histopathology slides, not high-resolution scans. We evaluated strategies for 

training neural network prognostic models in non-small cell lung cancer (NSCLC) 

based on low-resolution snapshots, using data from the Veterans Affairs Precision 
Oncology Data Repository. We compared strategies without transfer learning, with 

transfer learning from general domain images, and with transfer learning from 

publicly available high-resolution histopathology scans. We found transfer 
learning from high-resolution scans achieved significantly better performance than 

other strategies. Our contribution provides a foundation for future development of 

prognostic models in NSCLC that incorporate data from low-resolution pathology 
slide snapshots alongside known clinical predictors. 
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1. Introduction 

Lung cancer is the leading cause of cancer-related deaths worldwide, and non-small 

cell lung cancer (NSCLC) accounts for 85% of lung cancer cases in the United States 

[1]. Prognostic models that integrate multiple sources of information to predict 

outcomes are of clinical interest in NSCLC due to the heterogeneity of this disease [2]. 

Although information sources have largely come in the form of structured clinical data, 

recent advances in the field of deep learning have allowed researchers to effectively 

leverage unstructured data, including digitized histopathology slides and other medical 
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image data, to achieve strong performance on a number of prediction and classification 

tasks [3]. Specifically, success in use of digital pathology slides for predicting 

prognosis in NSCLC has been achieved through the use of architectures trained from 

scratch on large databases of high-resolution scans of whole slide images (WSI), such 

as those from The Cancer Genome Atlas (TCGA) [4]. 

However, clinical informatics practitioners may only have access to low-resolution 

snapshots of digital pathology slides, not high-resolution digital scans, and therefore, 

models developed using these snapshots would potentially offer a more practical path 

to widespread uptake. Whereas clinical data warehousing efforts have produced large 

databases of clinical data that can be used to define both predictors and outcomes, 

medical images are often omitted from these warehouses due to information technology 

constraints or institutional policy driven by an intended business intelligence or clinical 

operations use case [5]. In contrast, low-resolution snapshots may be more widely 

available in order to enable on-screen display or through inclusion in reports. 

For example, the Veterans Affairs Precision Oncology Data Repository (VA-

PODR) is a large, deidentified data repository of clinical, genomic, and imaging data 

on VA patients with cancer [6]. VA-PODR includes comprehensive clinical 

information from the VA’s nationwide electronic health record system and cancer 

registry and molecular alteration data from targeted tumor sequencing. VA-PODR does 

not contain any high-resolution WSIs, because these are not widely available within the 

VA, but does contain low-resolution histopathology slide snapshots which were 

included in molecular alteration reports to physicians. Thus, while it would be 

infeasible develop prognostic models based on high-resolution WSIs within VA-PODR, 

it is potentially feasible to do so using low-resolution snapshots. 

In this study, our objective was to evaluate the feasibility of training prognostic 

models in this scenario where only low-resolution digital snapshots of histopathology 

images are available, using data on NSCLC patients from VA-PODR. We compared 

strategies without transfer learning, with transfer learning from general domain images, 

and with transfer learning from publicly available high-resolution histopathology scans. 

We hypothesized that transfer-learning from high-resolution histopathology scans 

would achieve promising performance, providing a foundation for future development 

of prognostic models in NSCLC that incorporate data from low-resolution pathology 

slide snapshots alongside known clinical predictors. 

2. Methods 

This work’s primary data source is VA-PODR [6]. In addition, two additional data 

sources are used for pre-training: TCGA [4], which contains publicly available data 

aimed at molecularly characterizing cancer tissue samples, and ImageNet [7], a 

database of annotated general domain images from the world-wide web. VA-PODR 

was accessed through the Veterans Precision Oncology Data Commons (VPODC) [8], 

while TCGA data was acquired through the Genomic Data Commons [9]. Analysis was 

conducted using deidentified data in the VPODC computational environment.  

The patient population in VA-PODR is defined as patients with NSCLC, identified 

based on structured cancer registry data on site and histology, for whom deidentified 

snapshots of hematoxylin and eosin (H&E)-stained histopathology slide images are 

available in VA-PODR. Similarly, in TCGA, we included patients with a diagnosis of 

either lung adenocarcinoma (LUAD) or lung squamous cell carcinoma (LUSC) for 
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whom H&E-stained histopathology whole-slide images were available. We excluded 

patients whose follow-up was censored at less than 1 year after diagnosis. 

The outcome of interest was 1-year survival, starting from the date of NSCLC 

diagnosis. In order to derive features for prediction, we preprocessed each pathology 

slide image using methods defined in prior work [10]. Briefly, each image was 

segmented into 299x299 pixel non-overlapping tiles, and all tiles which contained more 

than 50% whitespace (defined by having a value <220 for all values in the RGB color 

space) were omitted from the dataset. Each tile from each image is associated with the 

same label as to 1-year survival status of the patient from which they originated. We 

did not use any features other than those derived from pathology images (e.g., age or 

stage), since the focus of this work was to determine how best to make use of 

pathology image snapshot-derived features, leaving integration with clinical features 

for future work.  

Model development and evaluation was conducted using Monte Carlo validation, 

with 10 random splits of VA-PODR patients into train (30%), tune (30%), and test 

(40%) sets. In each split, we trained a neural network model of 1-year survival based 

on Google’s Inception v3 architecture using the train set [11]. Inception v3 is a 

convolutional neural network which has been used successfully in many medical image 

tasks including in NSCLC [10,12]. Models were pre-trained using one of four 

strategies described below. Learning rate and batch size hyperparameters were 

optimized based on performance in the tune set. Mean performance evaluation 

measures in the test set were reported, averaged across splits, as well as 95% 

confidence intervals (CIs) based on 1000 bootstrap replicates per split with the 

percentile method. The primary evaluation measure was mean area under the receiver 

operating characteristic curve (AUROC), and the receiver operating characteristic 

(ROC) curve was plotted. Statistical significance of difference in mean AUROC 

between models was evaluated through bootstrapping.  

We evaluated four different models based on different pre-training strategies. 

ImageNet Pretrained Model: We started with Google’s ImageNet-pretrained model 
[11]. This model was then further trained with VA-PODR data as described above. 

TCGA Pretrained Model: We pretrained a model using TCGA data as follows. Patients 

were randomly allocated into train (80%) and tune (20%) sets. We did not create a 

separate test set in TCGA, since our purpose was only to pretrain a model for use in 

VA-PODR and we wanted to maximize our training data. This model was then further 

trained with VA-PODR data. We also evaluated two models that do not use transfer 

learning. VA-PODR Only Model: This model was based only on VA-PODR data, 

starting from randomly initialized weights, with no pretraining. TCGA Only Model: 
This model was the TCGA-pretrained model with no further training on VA-PODR. 

3. Results 

We identified 461 patients with 484 histopathology slides meeting the inclusion criteria 

in VA-PODR, generating 22,153 tiles. Similarly, 892 patients with 2296 

histopathology slides were identified in TCGA, generating 8,250,175 tiles. Patient 

characteristics of both VA-PODR and TCGA are detailed elsewhere [4,6]. The 

pathology slide images available in VA-PODR and TCGA differ substantially. 

Specifically, the TCGA dataset contains conventional gigapixel scale WSIs taken at 

20x magnification. In contrast, pathology slide images in VA-PODR are low-resolution 
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snapshots of tissue slides taken at 200x magnification which generated images, on 

average, only 1000 pixels wide. 

We initially sought to train a deep learning model to predict 1-year survival using 

pathology slide snapshot images from VA-PODR alone, as described in the methods 

(VA-PODR Only Model). However, we observed results no better than random 

guessing (mean AUROC 0.51, 95% CI 0.40–0.60; Figure 1A). We also attempted to 

train using VA-PODR data alone with a larger training set (80% train, 10% tune, 10% 

test), but did not observe any improvement. 

After pretraining on TCGA data, we evaluated model performance on VA-PODR 

with no additional training on VA-PODR data (TCGA Only Model), but this also 

performed no better than the model trained only on VA-PODR (mean AUROC 0.53, 

95% CI 0.41–0.62; Figure 1B; P=0.40). However, by pretraining on TCGA and further 

training on VA-PODR (TCGA Pretrained Model), we observed substantially better 

results and were able to predict 1-year survival significantly better than our VA-PODR 

only model (mean AUROC 0.67, 95% CI 0.57-0.78; Figure 1C; P=0.02). In contrast, 

pretraining with general-purpose images from ImageNet and further training on VA-

PODR (ImageNet Pretrained Model) did not perform significantly better than our VA-

PODR only model (mean AUROC 0.61, 95% CI 0.45-0.73; Figure 1D; P=0.19).  

We compared our results to a random forests baseline model that includes standard 

clinical features commonly derived from pathology slides, specifically histology and 

grade, and observed mean AUROC 0.62 (95% CI 0.52-0.73), which is not significantly 

better than our neural network trained only on VA-PODR data (P=0.07). 

4. Discussion  

We compared strategies for training NSCLC prognostic models based on low-

resolution digital snapshots of histopathology images from VA-PODR and found that 

transfer learning from publicly available high-resolution histopathology scans in TCGA 

achieved better performance than other approaches. Although the absolute AUC 

achieved remains modest (0.67), this is comparable to AUCs achieved by prior studies 

based on WSIs in TCGA in NSCLC [13], and modest AUC based on information 

derived from histopathology slides alone is not surprising, since numerous other factors 

are known to have prognostic value. Nevertheless, our contribution provides a 

necessary first step toward development of more complete models that integrate low-

resolution histopathology snapshots with other known prognostic factors such as 

demographics, comorbidities, cancer stage, cancer treatment, and tumor genomics.  

Figure 1. Receiver operator characteristic (ROC) curves in the VA-PODR test set for models without and 

with transfer learning. The solid blue curve shows the mean ROC curve across folds. The shaded region 

shows the bootstrapped 95% CI. The dashed straight red line corresponds to random guessing. 
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5. Conclusions 

Transfer learning with a large like-domain, publicly available histopathology dataset of 

high-resolution WSIs from TCGA was successfully leveraged to improve performance 

of deep neural network models for NSCLC prognostication in a dataset of low-

resolution snapshots from VA-PODR. This work provides a foundation for future work 

to integrate low-resolution snapshots with clinical data in prognostic models in 

institutions where such data is more readily available. 
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