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Abstract. The prediction of disease can facilitate early intervention, comprehensive 

diagnosis and treatment, thereby benefiting healthcare and reducing medical costs. 
While single class and multi-class learning methods have been applied for disease 

prediction, they are inadequate in distinguishing between primary and secondary 

diagnoses, which is crucial for treatments. In this paper, label distribution is 
suggested to describe the diagnosis, which assigns the description degree to quantify 

the diagnosis. Additionally, a novel hierarchical label distribution learning (HLDL) 

model is proposed to make fine-grained predictions based on the hierarchical 
classification of diseases, taking into account the relationship among diseases. The 

experimental results on real-world datasets demonstrate that the HLDL model 

outperforms the baselines with statistical significance.  
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1. Introduction 

With the widespread of Electronic Health Records (EHR), the longitudinal experience 

of both patients and doctors can be easily recorded and learned by artificial intelligence. 

Intelligent clinical decision support anticipates the information at the point of care that 

is specific to the patient and provider needs. Many current efforts in this area have 

focused on developing specialized predictive models, such as disease prediction, to 

enable early intervention, diagnosis and informed decision-making. 

The most of previous work tackled disease prediction tasks with the single label or 

multi-label classification methods. For example, Doctor AI [1] observes medical and 

medication uses to predict future physician diagnoses and medication orders with a 

temporal model using recurrent neural networks (RNN) model. As the black-box 

predictions cannot readily be explained to clinician, RETAIN [2] improves the clinically 

interpretable with the attention mechanism. Recently, Med-BERT [3] adapts the BERT 

framework to the structured EHR domain, which shows the better prediction accuracy 

with the pretrained embedding model. While logical labels can indicate the risk of 

diseases, they cannot determine which ones require more attention or which ones should 

be prioritized for treatment. 
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In this paper, label distribution [4] is suggested to describe the diagnosis. Label 

distribution covers the whole labels, representing the degree to which each label 

describes the instance, i.e. the risk of diseases. Since patients may suffer from multiple 

diseases and the pathological changes of one organ or system may influence related ones, 

the model is designed to predict multiple diseases rather than being restricted to specific 

ones. Additionally, we intend to explore the relation among the diseases through big 

EHR data to contribute to pathological research. However, prediction becomes more 

challenging when considering more diseases, due to the class imbalance and the data 

sparsity. To solve these problems, this paper proposes a novel Hierarchical Label 

Distribution Learning (HLDL) method that employs a hierarchical neural network to 

integrate the global and local prediction, as well as medical ontologies. In summary, the 

contributions of this paper include: 1) Applying label distribution to better describe the 

risk of illness; 2) Using medical ontologies to enhance the learning process; 3) 

Introducing the HLDL method to predict diseases.  

The rest of the paper is organized as follows. Section 2 introduces the HLDL method. 

Section 3 reports the experimental results and discusses. Section 4 concludes the paper 

and recommends future work. 

2. Methods 

This section introduces the Hierarchical Label Distribution Learning (HLDL) method, 

which includes a hierarchical neural network that combines global and local predictions. 

The model also takes into account medical ontologies and the relationship among 

diseases to enhance the accuracy, interpretability and robustness. 

2.1.  Hierarchical Label Enhancement 

The complete collection of diagnosis codes is denoted as  . It is assumed that a medical 

ontology, such as International Statistical Classification of Diseases and Related Health 

Problems 10th Revision (ICD-10), typically represents the hierarchy of medical concepts 

in the form of a parent-child relationship, which can be illustrated as a tree-like structures 

as depicted in figure 1(a). Let �� � ���� ���	 � �
�� represents the root labels, such as 

‘certain infectious and parasitic diseases’, ‘neoplasms’ and so on. �� �
�
���� �
����	 � �
��
�� consists of the whole children of the root labels, such as 

‘intestinal infectious diseases’ under the ‘certain infectious and parasitic diseases’, 

‘malignant neoplasms’ under ‘Neoplasms’ etc. Therefore, the entire label set can be 

represented as � ���� ���	 ���� � ���	 � �
�� �
����	 � ��� , where K is number of 

layers, and � is the total number of labels, � � � ������ .  

 
Figure 1. (a) shows a simple example of label set constructed to the tree structure according to some medical 

concept. (b) is the HLDL architecture. 
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Label distribution assigns a real number ���� � ��� ! to each label, representing the risk of 

disease �"  for patient # , i.e. $�
% � ����� �����	 � ���&� � '� . In this paper, we quantify the 

diagnosis with the priority hierarchically: 

���()�* �
+,)�*

� +-)�*
.
-��

///�////////////////////////////////////////////////////////////////////) * 

where +,)�* denotes the ranking of �, in the k-th layer. For example, given a diagnosis ��0� �1� ��2� 
with priority, then +0 � 3, +1 � 4 and +�2 �  , according to equation (2), ���5 � �67, ���8 � �63, 

����9 � �64. Following the medical ontology shown in Figure 1(a), the codes in the second layer 

are ��:� �;� , thus ���< � �6=>  and ���? � �633 . Similarly, the ancestors ���� � �6=>  and ���� �
�633 . For the irrelevant labels, ���@ � ���A � ���B � ����� � � . The label distribution $�

% �
����� �����	 � ������ � ��6=>��633��6=>������633��67��63����64���.  
2.2. Hierarchical Label Distribution Learning 

Let C � 'D denotes the feature space, and E � '�  denotes the label distribution space. Given the 

training set F � �)G,� $,*HI �  �4�	J� , the main purpose of hierarchical label distribution 
learning (HLDL) is to build the model KLC M /E. 

Inspired by the Hierarchical multi-label classification networks (HMCN) [5], HLDL follows 

the HMCN-F architecture and extends it to label distribution learning, as shown in Figure 1(b). 

The HLDL architecture consists of two parts: the global prediction network and the local prediction 

network. 

In the global prediction network, the global features are learned with hidden layers: N� �
O)P�G Q R�*�///where N� denotes the first hidden layer, learning the global features for the first 

layer of the hierarchy,/O is a non-linear activation function (e.g., ReLU, tanh), P� � 'S�TD is the 

weight matrix, and R� � 'S�  is the bias, U�  is the dimension of N� . Inspired with the skip-

connection [6], the second hidden layer is designed as: N� � O)P��N� V G! Q R�*� where �N� V
G!  denotes the skip-connection. Accordingly, N� � O)P��N�W� V G! Q R�*6/Then the global 

prediction is generated as: %X � UIY�ZI�[P\N� Q R\]�/where the label distribution  %X � '�
 

represents the overall risk of diseases. 

 The local neural networks are constructed hierarchically based on each global hidden 

layer:N�̂ � O)P�̂N� Q R�̂*�/where N�̂  learns the local features of the k-th layer, and the local 

prediction for level k is %� � UZK_�`#)Pa�N�̂ Q Ra�*6/ 
The final prediction ensembles the local prediction and global prediction: $b �

/c�%�d %�d	 d %�! Q ) e c*%X�//where /c � ��� !  is the parameter that regulates the trade-off 

regarding local and global predictions. 

HLDL minimizes the sum of the local and global loss functions: f � f\ Q gfh�/where g� i �
' is the trade-off parameter that weights the loss functions. The global loss function is composed 

of two parts: the widely used Kullback–Leibler (KL) divergence [7] to measure the distance 

between the predicted and the enhanced label distributions, and the least squares (LS) loss function 

to preserve the label distribution inherited from the initial logical labels j,: 

f\ � /f�a Q faS �k$,lm
$,
X,

n

,��
QkoX, e j,o�

n

,��
6////////////////////////////////////) �* 

In addition to the Kullback–Leibler divergence, we also include the hierarchical violation for local 

loss function:  

fh � /f�a Q fpq � k$,lm
$,
r,

n

,��
Qks)t e r,u*r,

n

,��
�///////////////////////////////////)  * 

where s � ��� �"T"   is the relationship matrix, i.e., `,- �   means �- is the ancestor of �, , 

otherwise, `,- � �. 
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3. Results 

3.1. Datasets 

To evaluate the performance of HLDL, we use two publicly available real-world EHR datasets 

MIMIC-III [8] and MIMIC-IV [9]. In the MIMIC-III dataset, we collected medical records of 

58929 hospital admissions of 46,517 intensive care unit (ICU) patients. Among them, 7,499 

patients had more than two hospital admissions, of which 4,499 were used for training, 1500 were 

chosen for validation, and 1500 were chosen for testing. The remaining medical records of 39,018 

patients were used for pretraining. The MIMIC-III dataset contains 1,233 3-digit ICD-9 codes, 

which can be grouped into 19 classes and 158 subclasses. For the MIMIC-IV dataset, we collected 

medical records of 453,905 hospital admissions of 190,173 patients. Among the 83,660 patients 

who has more than two hospital admissions, 16,732 were used for testing, 16,732 were used for 

validation, and 50,186 were used for training. The remaining 106,513 medical records were used 

for pretraining. The MIMIC-IV dataset contains two versions of the coding system: ICD-9 and 

ICD-10. Despite code mappings, we treated them as different classifications because ICD-10 codes 

are more detailed. The MIMIC-IV dataset contains 3,502 3-digit ICD codes, which can be grouped 

into 41 classes and 419 subclasses. Following Med-BERT, we embed the structured EHR data as 

the features of patients, which consists of ICD codes, procedure codes and drug codes in medical 

history. 

3.2. Experimental Results 

HLDL is compared with the state-of-the-art methods: Doctor AI [1], RETAIN [2,3], HMCN [5], 

and SA-BFGS [4]. As Doctor AI and RETAIN are two widely used methods for disease prediction. 

HMCN is a classical hierarchical multi-label classification method. And SA-BFGS is one of the 

LDL method which shown better performance. For the whole methods, the embedding size is 64, 

and the hidden units are selected from [256, 516, 1024, 2048], other settings are following the 

original papers, such as the activation functions etc. As for the HLDL, we set c � �67, g � 4. The 

activation function is ReLU, and the optimization is Adam. The iteration will stop when the 

accuracy on validation set does not improve after eight epochs. At this point, while the model has 

the best performance will be saved. Then the results of the models evaluated on testing set are 

recorded. 

To evaluate the methods trained with multi-label and label distribution equally, Top-k recall 

[1] is used, which mimics the behavior of doctors conducting differential diagnosis. The 

experimental results are shown in Table1. All methods, except for SA-BFGS which is designed 

for LDL, are trained with both multi-label (recorded as the name) and label distribution (recorded 

with ‘+LDL’). As the Doctor AI, RETAIN, and SA-BFGS cannot deal with hierarchical structure, 

we flatten the labels. The results in Table 1 show that HLDL outperformed all other methods. 

Table 1. The performance of compared methods on disease prediction task. 

Methods MIMIC-III MIMIC-IV 
top@10 top@30 top@50 top@10 top@20 top@30 

Doctor AI 60.16 53.88 53.35 47.95 44.53 46.00 

Doctor AI+LDL 63.21 56.56 55.72 49.18 46.06 47.26 

RETAIN 
RETAIN+LDL 

HMCN 

HMCN+LDL 
SA-BFGS 

HLDL 

HLDL+LDL 

61.25 
63.45 

65.44 

68.77 
58.89 

69.25 

70.73 

53.62 
57.35 

57.67 

61.54 
52.74 

60.34 

62.55 

53.02 
56.44 

56.58 

60.31 
52.72 

59.19 

61.35 

48.89 
48.64 

55.37 

58.02 
40.90 

59.76 

61.17 

44.54 
45.23 

50.40 

53.83 
36.81 

54.79 

55.84 

45.97 
46.67 

51.36 

54.86 
36.16 

55.56 

56.19 
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4. Discussion 

As the experimental results shown on Table 1, we can see our proposed method HLDL 

outperformed all other methods, followed by HMCN. This indicates that the hierarchical neural 

network is effective for multiple disease prediction, and our optimizations such as the skip-

connection module and the loss function contribute to improving the prediction accuracy. The 

results confirm that the proposed method can make more accurate predictions with considering the 

relationship among disease and making full use of the hierarchical ontologies. Moreover, the 

methods trained with label distribution show better performance than those trained with multi-

label datasets, which supports our suggestion that label distribution can better describe diagnosis. 

5. Conclusions 

The proposed HLDL method, which utilizes a hierarchical neural network ensemble to perform 

both global and local predictions, as well as incorporating medical ontologies and disease relations 

to improve model accuracy, interpretation, and robustness. The use of label distribution allows for 

more details of the risk of diseases for a given patient, leading to more accurate predictions. The 

experimental results on two real-world datasets demonstrate the superiority of HLDL over other 

methods and highlight the importance of label distribution in diagnosis prediction. Overall, HLDL 

has the potential to be a valuable tool for healthcare professionals in making more informed 

decisions regarding patient care.  
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