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Abstract. Outcome prediction is essential for the administration and treatment of 

critically ill patients. For those patients, clinical measurements are continuously 
monitored and the time-varying data contains rich information for assessing the 

patients’ status. However, it is unclear how to capture the dynamic information 

effectively. In this work, multiple feature extraction methods, i.e. statistical feature 
classification methods and temporal modeling methods, such as recurrent neural 

network (RNN), were analyzed on a critical illness dataset with 18415 cases. The 

experimental results show when the dimension increases from 10 to 50, the RNN 
algorithm is gradually superior to the statistical feature classification methods with 

simple logic. The RNN model achieves the largest AUC value of 0.8463. 

Therefore, the temporal modeling methods are promising to capture temporal 
features which are predictive of the patients’ outcome and can be extended in more 

clinical applications. 
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1. Introduction 

Critically ill patients are usually continuously monitored in intensive care units (ICU). 

The outcome prediction is important for those patients’ management and treatment [1]. 

The temporal data obtained through continuous monitoring can provide valuable 

information for doctors to assess a patient's condition and track changes over time. 

However, analyzing this data can present challenges due to its complexity and volume. 

In recent decades, more and more data-driven risk prediction models are used to assist 

clinical disease assessment, such as the outcome prediction task [1,2]. 

To handle time-varying variables, there are generally two kinds of approaches. The 

first is statistical feature classification methods, which extract statistical features from 

sequence data manually and input to classification algorithms, such as logistic 

regression (LR) and random forests (RF). The APACHE II scoring system [3], for 
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example, uses the worst value in the previous 24 hours for evaluating a patient’s status. 

Previous studies extracted the last moment value, mean, standard deviation, minimum 

and maximum for continuous-valued variables [3-5]. Such methods discard part of the 

time-varying information and oversimplify the relationship between variables. 

Another is temporal modelling methods, which capture dynamic information from 

the temporal data using model itself and build prediction models directly on the time 

series data. Some researchers applied recurrent neural network (RNN) to capture 

underlying temporal structures [6], such as long-short term memory (LSTM) and gated 

recurrent unit (GRU), while others adopted convolutional neural network (CNN) to 

capture local sequence features [7] or the fusion framework convolutional-RNN [8]. 

Presently, it is unclear which kind of approach is better in handling time-varying 

variables and under what conditions is a particular algorithm superior. In addition, it is 

doubtful whether the integration of existing temporal feature extraction technologies 

can promote the outcome prediction performance. Therefore, in this work, multiple 

temporal feature extraction and classification methods are compared and discussed. 

2. Methods 

2.1. Data and preprocessing 

Medical Information Mart for Intensive Care III (MIMIC-III) database [9] is a 

large and publicly available database of ICU admissions at the Beth Israel Deaconess 

Medical Center, USA, from 2001 to 2012. We included patients with age >15 years and 

length of ICU stay ≥ 10 days. The outcome is 28-day mortality, i.e. whether or not a 

patient dies within 28 days after ICU admission. Totally 18415 ICU records were 

enrolled, consisting of 2162 positive cases and 16253 negative ones. And 50 important 

and commonly used clinical measurements1 were extracted for 10 consecutive days 

after admission, resulting in a dataset of sequence length 10. Missing values in data 

were filled by linear interpolation method and all variables were normalized by 
������
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2.2. Development of the outcome prediction models 

Classic non-sequential algorithms LR/RF and neural network-based sequential 

algorithms are used for classification. And the dynamic information is captured 

statistically or by algorithm itself. Hence, the prediction methods were as follows. 

2.2.1. Statistical feature classification methods 

� LR_0/RF_0: the last moment values are input to LR/RF for classification. 

� LR_1/RF_1: statistical features (mean, std, maximum, minimum, 

magnitude of the whole sequence, last moment value, change of the last 

two time points) are input to LR/RF for classification. 

2.2.2. Temporal modelling methods 

� CNN: a conv-1D layer (16 filters with kernel size=3) and then a fully 

connected (FC) layer. 
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� RNN: a GRU layer (hidden size=16) and then a FC layer. 

� ConvRNN: a conv-1D layer (16 filters with kernel size=3), a GRU layer 

(hidden size=16), and then a FC layer. 

2.2.3. Fusion methods 

� stat_dsRNN: statistical features (same as LR_1) are concatenated with the 

output of the last timestep from GRU layer, then input to a FC layer. 

� CNN_dsRNN: static features learned from CNN model and the output of 

the last timestep from the GRU layer are input to a FC layer.  

� RNN_withCNN: dynamic features learned from CNN and the original 

time series are input to a GRU layer, followed by a FC layer. 

For neural network-based methods, learning rate is 0.01 and weight decay is 0.005. 

The loss function is the cross entropy between the true label and the predicted score. 

Adam optimizer and early stop strategy is used for training. 

2.3. Performance evaluation 

To evaluate the performances of prediction models, all samples were randomly split 

into a training set (90% of samples) and a test set (remaining 10% samples). The 

experiment was repeated multiple times. The area under the receiver operating 

characteristic curve (AUC), sensitivity, specificity and accuracy were reported. 

3. Results 

3.1. Comparison of multiple feature extraction and classification methods 

The performances of multiple feature extraction and classification methods are shown 

in Table 1. For the key metric AUC, the RNN algorithm achieves the largest AUC 

value of 0.846, while the LR_0 has the smallest AUROC value of 0.828. The other 

algorithms perform slightly worse than RNN in terms of AUROC. Besides, the RF-

based prediction models are competitive with RNN in sensitivity. The ConvRNN 

algorithm has slightly higher specificity and accuracy than RNN. 

Table 1. Performances of multiple feature extraction and classification methods. 

Type of 
method Algorithm AUC 

(mean±std) 
Sensitivity 
(mean±std) 

Specificity 
(mean±std) 

Accuracy 
(mean±std) 

Statistical 

feature 

classification 
methods 

LR_0 0.828±0.016 0.748±0.024 0.759±0.013 0.758±0.011 

LR_1 0.837±0.018 0.718±0.049 0.793±0.020 0.784±0.014 

RF_0 0.832±0.011 0.767±0.028* 0.746±0.016 0.749±0.013 

RF_1 0.834±0.012 0.765±0.030* 0.754±0.020 0.755±0.016 

Temporal 

modelling 

methods 

CNN 0.835±0.017 0.726±0.037 0.781±0.013 0.774±0.012 

RNN 0.846±0.015* 0.758±0.028 0.770±0.015 0.768±0.013 

ConvRNN 0.835±0.013 0.718±0.034 0.794±0.014* 0.785±0.012* 

Fusion 
methods 

stat_dsRNN 0.839±0.016 0.750±0.036 0.768±0.017 0.766±0.014 

CNN_dsRNN 0.836±0.015 0.721±0.049 0.789±0.020 0.781±0.017 

RNN_withCNN 0.840±0.013 0.736±0.028 0.783±0.017 0.778±0.014 

* marks the largest value of a metric. 
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3.2. Influence of the sample size and the dimension on predictive performances 

The relationship between the sample size and the prediction performances are shown in 

Figure 1(a). As the sample size decreases, the AUC of LR_0 and RF-based models 

gradually decrease, while sequential models (CNN, RNN) exhibit a more rapid decline. 

The AUC of RNN is at least 0.01 higher than traditional models on the whole dataset, 

while that is only 0.005 higher on the dataset with a percentage of 20% samples. When 

the sample size ratio is 20%, the AUC of LR_1 drops to 0.795, probably because high 

dimension and small sample size lead to poor fitting of LR. 

The relationship between the dimension and the prediction performances are 

summarized in Figure 1(b). For the dataset with dimension 10, most prediction models 

have similar AUC values, except LR_0. As the dimension of the dataset increases from 

10 to 50, the AUC values of the traditional methods (LR_1, RF_0, RF_1) increase by 

0.06-0.09, while that of the RNN shows a significantly larger increase of 0.11. 

  
(a) (b) 

Figure 1. AUC values of multiple models on datasets with different (a) samples sizes, (b) dimensions. 

4. Discussion 

In this study, multiple feature extraction strategies to handle the temporal data in 

critically ill patients were compared. The experimental results in Table 1 reveal that 

RNN is the best, probably because it captures useful global temporal features. The 

statistical methods (LR_1, RF_1) are competitive, nevertheless, it requires the guidance 

of prior knowledge to extract statistical features manually. And using the last moment 

value (LR_0, RF_0) does not perform well. Besides, CNN and ConvRNN do not show 

advantage, possibly because the local features here have little effect. Additionally, the 

fusion methods are not superior than RNN. Overall, RNN provides the most accurate 

outcome prediction for critically ill patients. 

In Figure 1, with the sample size ratio reduced to 20%, the AUCs of the sequential 

models have a larger decline (RNN: 0.02, CNN: 0.03) than that of most classic 

methods (LR_0: 0.075, RF_0: 0.01, RF_1: 0.015), indicating the sample size has more 

impact on sequential methods than statistical feature classification methods. Moreover, 

as the dimension of the dataset rises, RNN is gradually superior to other algorithms 

with simple logic. Generally, RNN is more advantageous for outcome prediction in 

cases with more samples and a larger dimension. 
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5. Conclusions 

For critically ill patients, time-varying data contains rich information for outcome 

prediction. Statistical methods and temporal modeling methods were compared on the 

MIMIC-III database. The experimental results demonstrate the temporal modeling 

method RNN has the best prediction performance. When the sample size or the 

dimension becomes small, statistical methods would be competitive. Generally, RNN is 

promising in capturing dynamic information from clinical temporal data. 
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Endnotes 
                                                           
1 The clinical measurements include SBP, HR, T, MAP, RR, GCS, A-aDO2, PaO2, FiO2, P/F, WBC, 

HCT, Hemoglobin, Plt, Albumin, RBC, RDW, HCO3-, Na+, K+, Chloride, Anion Gap, Glucose, Magnesium, 

Calcium, Phosphate, Alkaline Phosphatase, TBil, BUN, Cr, PH, Lactate, MCHC, MCH, MCV, INR, PT, 

PTT, Lymphocytes, Monocytes, Neutrophils, Basophils, Eosinophils, Base Excess, Calculated Total CO2, 
PCO2, Specific Gravity, ALT, AST, and PEEP. 
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