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Abstract. Pulmonary embolism (PE) is an important clinical disorder that will 
result in lung tissue damage or low blood oxygen levels, which need early 

diagnosis and timely treatment. While computed tomographic pulmonary 

angiography (CTPA) is the gold standard to diagnose PE, previous studies have 
verified the effectiveness of combing CTPA and EMR data in computer-aided PE 

detection or diagnosis. In this paper, we proposed a multimodality fusion method 

based on multi-view subspace clustering guided feature selection (MSCUFS). The 
extracted high-dimensional image and EMR features are firstly selected and fused 

by the MSCUFS, and then are feed into different machine learning models with 

different fusion strategy to construct the PE classifier. The experiment results 
showed that the joint fusion strategy with MSCUFS achieved best AUROC of 

0.947, surpassing other early fusion and late fusion models. The comparison 

between single modality and multimodality also illustrated the effectiveness of the 
proposed method.  
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1. Introduction 

Pulmonary embolism (PE) is an important clinical disorder that needs early diagnosis 

for timely and proper treatment. A pulmonary embolism will result in a lack of blood 

flow, which may lead to lung damage or cause low blood oxygen levels that will be 

harmful to other organs or body [1]. The gold standard for PE diagnosis is computed 

tomographic pulmonary angiography (CTPA), which can provide accurate diagnosis by 

radiologists. However, due to the limited healthcare resources of experts, physician 

fatigue, diagnosis error and poor image quality, miss diagnosis of PE remains 

frequently happened.  

With the development of deep learning in recent decade, it has shown application 

potential in medical imaging, including the detection and diagnosis of PE. Huang et al. 
[2] developed and evaluated an end-to-end deep learning model for detecting PE with 
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CTPA. The model achieved AUROC of 0.85 on external dataset. Vijayachitra et al. [1] 

designed a deep learning neural network classifier to detect left-side/right-side PE or 

normal from CT images. Yang et al. [3] proposed a two-stage CNN for PE detection on 

CTPA images. Despite the promising results of image classification models, researches 

have pointed out that using multimodality data such as image and EMR data can bring 

improvement. Huang et al. [4] developed different multimodality fusion architectures 

and applied them in PE detection, in which the late fusion model with imaging and 

EMR data outperformed image-only or EMR-only models. Based on this work, an 

MLP-2D CNN multimodality model [5] was proposed for PE diagnosis, in which a 

MDS algorithm was applied to EMR data to reduce feature dimension and 2D CNN 

was designed to replace original 3D CNN model. 

Although above-mentioned multimodality fusion brings improvement over single-

modality data, these work generally used concatenating or MLP to perform modality 

fusion on original high-dimensional data, which ignores relationships between these 

data and may face curse of dimensionality. In this paper, we propose to use multi-view 

subspace clustering-based feature selection for multimodality fusion. In addition, we 

compare different fusion architectures of early fusion, joint fusion and late fusion based 

on the feature selection results. The experimental results showed the joint fusion NN 

model achieves AUROC of 0.947 on the test set of RadFusion [6], surpassing early and 

late fusion models.  

2. Methods 

In this section, we first introduced the materials used in this study. Then, the proposed 

multimodality fusion method and classification model are illustrated. Figure 1 

illustrates the multimodality fusion method with early, join and late fusion architectures. 

The input image and EMR data are extracted features from CT and EMR, which are 

then fused by the MSCUFS model. The output used features are feed into different 

machine learning classifiers or joint NN models to construct the PE diagnosis classifier. 

2.1.  Materials 

The evaluation dataset comes from RadFusion [6], in which 1837 studies from Stanford 

University Medical Center (SUMC) were enrolled. CT imaging and patient EMR were 

pulled from the PASCS and SUMC Epic database. The EMR includes ICD9 codes, 

vitals, lab tests, demographics and inpatients and outpatient medications. The label is 

given as 0 or 1, which refers to negative PE and positive PE, respectively. The studies 

are split into a training set (1454 studies), a validation set (193 studies) and a test set 

(190 studies). 

2.2. Data preprocessing 

Follow [4], original EMR and CT scans are processed to obtaine structural EMR and 

imaging features. After screening, the EMR data contains 1505 features. The CT 

images are processed by the image-only PENet [2] and obtained 2048 image features. 

Before fusion, we applied a feature selection pipeline on each EMR and image features 

to reduce dimension. First, Mann-Whitney U test is applied to each feature, and 

features are abandoned if p > 0.05. Then, Spearman correlation between feature is 
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calculated. If the correlation coefficient is greater than 0.9, then the latter feature is 

deleted. After feature selection on training dataset, 632 image features and 65 EMR 

features are obtained for subsequent multimodality fusion. 

2.3. Multimodality fusion based on multi-view subspace clustering 

The EMR and imaging data reflect different aspects and can be taken as multi-view 

data of subjects. In this section, we introduce the multi-view subspace clustering 

guided feature selection (MSCUFS) model, which is extended from single-view feature 

selection model SCUFS [7]. 

Denote features in the v-th view as �� � ���
�� �	

�� 
 � ��
�� 
 � �����,
��

� � �����,
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is the dimension of features in the v-th view, n is the number of samples. The feature 

matrixes in V views �������
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matrix as � � ������� ��	��� 
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EMR and CT features, V=2. The MSCUFS model is constructed as: 
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The first term is view-specific self-representation term that ensures data structure, 

the second term is feature selection term, the third term is graph embedding term that 

maintains local geometry structure, and the last term poses sparse constraint on feature 

selection matrix. In the objective function, � � ���: is relaxed cluster indictor matrix, 

c is the number of clusters, � � ���: is the feature selection matrix,  � � ���� is the 

view-specific self-representation matrix, and -� is the Laplacian matrix of v-th view. 

Notations *�, *	 and *. are the tradeoff parameters. 

The objective loss function is optimized by an iterative approach. Since the time 

complexity of optimization algorithm is
;��. ) <.=�, we select 200 anchor data points 

by k-means to performed MSCFUS-based feature fusion. With optimized >? , the 

importance of each feature can be ranked by '@A'	,where @A  is the i-th row of >? . 

  
Figure 1. Fusion model architecture. (a) Early fusion, (b) Joint Fusion, (c) Late fusion. The input of 

each model is EMR and image features after data preprocessing. 
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Table 1. Fusion model results: Different fusion methods take the MSCUFS fused multimodality features as 

input and are constructed with different machine learning classifiers. Best performance metrics in bold text. 

Evaluation 
Metrics 

Early fusion Late fusion average Joint fusion 
Elastic SVC Logistic Elastic SVC Logistic NN 

Accuracy 0.8842 0.8895 0.8947 0.8842 0.8842 0.8895 0.9000 
AUROC 0.9331 0.9342 0.9313 0.9316 0.9183 0..9376 0.9478 
Specificity 0.8818 0.8750 0.8625 0.9273 0.9455 0.9182 0.8500 

Sensitivity 0.8875 0.9000 0.9182 0.8250 0.8000 0.8500 0.9364 
PPV 0.9151 0.9083 0.9018 0.8793 0.8667 0.8938 0.8957 

NPV 0.8452 0.8642 0.8846 0.8919 0.9143 0.8831 0.9067 

2.4. Classification model construction 

To find the best fusion architecture with MSCUFS, early, late and joint fusion models 

are constructed based on the fused EMR and image features by MSCUFS. The early 

fusion takes fused multimodality features as input, and construct PE classify model 

with machine learning models, i.e. SVM, Logistic and ElasticNet. By grid search on 

validation set, optimal parameters of *� , *	  and *.  in MSCUFS and the number of 

features are set w.r.t. AUROC. Finally, 75 features consist of 52 image features and 23 

EMR features are selected. The SVM model achieved best AUROC of 0.9342. As 

illustrated in Fig.1(b), a two–path Neural Network (NN) model with selected EMR 

features and image features as input is constructed. The single modality features are 

first feed into each NN, then the outputs are concatenated to form input for joint NN 

model to get predicted probability of PE. In the late fusion model as shown in Fig.1(c), 

each selected feature set is used to construct individual classify model. Then the 

predicted results are fused by averaging. 

3. Results 

A set of metrics, i.e., accuracy, AUROC, specificity, sensitivity, PPV (positive 

predictive value) and NPV (negative predictive value) are used as evaluation metrics. 

Table 1 shows different fusion methods with MSCUFS fused multimodality features. 

The listed models include early fusion and late fusion methods with Elastic, SVM, and 

Logistic classifiers, and joint fusion with NN model. Compared results shows the joint 

NN fusion model achieves best AUROC of 0.9478. 

4. Discussion 

To show the effectiveness of MSUCFS-based feature fusion, early fusion, late fusion 

and joint fusion models with and without MSCUFS are compared in Table 2. As can be 

seen, MSCUFS brings improvement in all three fusion methods. Table 3 compares 

single modality model with multimodality model. As can be seen, the imaging model 

and EMR model achieved AUROCs of 0.7840 and 0.9239, inferior than multimodality 

model that achieved AUROC of 0.9478. This result verifies the assumption that 

multimodality data have better performance than imaging or EMR alone in PE 

diagnosis. Indeed, we see that EMR data achieves much higher accuracy than imaging 

model, and the combination of both brings better sensitivity and PPV, which is 

meaningful to clinic application. 
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Table 2. Comparison between best performing early fusion, late fusion and joint fusion models with or 

without MSCUFS-based feature selection.  

Evaluation 
Metrics 

Early Elastic fusion Late Elastic fusion Joint NN fusion 
baseline MSCUFS baseline MSCUFS baseline MSCUFS 

Accuracy 0.8316 0.8842 0.8737 0.8842 0.8368 0.9000 
AUROC 0.8801 0.9331 0.9277 0.9316 0.8800 0.9478 

Specificity 0.8000 0.8818 0.9000 0.9273 0.7500 0.8500 

Sensitivity 0.8750 0.8875 0.8375 0.8250 0.9000 0.9364 
PPV 0.8980 0.9151 0.8839 0.8793 0.8319 0.8957 

NPV 0.7609 0.8452 0.8590 0.8919 0.8451 0.9067 

Table 3. Comparison between best performing multimodality and single modality models. 

Evaluation Metrics Imaging SVC model EMR Elastic model Joint NN model 
Accuracy 0.7421 0.9053 0.9000 

AUROC 0.7840 0.9239 0.9478 
Specificity 0.7091 0.9636 0.8500 

Sensitivity 0.7875 0.8250 0.9364 

PPV 0.8211 0.8833 0.8957 
NPV 0.6632 0.9429 0.9067 

5. Conclusions 

In this paper, we propose a novel multimodality fusion method that adopt multi-view 

subspace clustering guided feature selection (MSCUFS) to fuse imaging and EMR data. 

Three fusion architectures, i.e. early, late and joint fusion models are constructed with 

the MSCUFS fused features. Experiments show the effectiveness of MSCUFS in 

improving PE classifier performance and the superiority of multimodality model than 

imaging-only or EMR-only model. 
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