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Abstract. The Health-Analytics Data to Evidence Suite (HADES) is an open-
source software collection developed by Observational Health Data Sciences and 

Informatics (OHDSI). It executes directly against healthcare data such as 

electronic health records and administrative claims, that have been converted to 
the Observational Medical Outcomes Partnership (OMOP) Common Data Model. 

Using advanced analytics, HADES performs characterization, population-level 

causal effect estimation, and patient-level prediction, potentially across a federated 
data network, allowing patient-level data to remain locally while only aggregated 

statistics are shared. Designed to run across a wide array of technical environments, 

including different operating systems and database platforms, HADES uses 
continuous integration with a large set of unit tests to maintain reliability. HADES 

implements OHDSI best practices, and is used in almost all published OHDSI 

studies, including some that have directly informed regulatory decisions. 
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1. Introduction 

OHDSI (Observational Health Data Sciences and Informatics), pronounced 'Odyssey,' 

is a collaborative effort aiming to extract value from health data through large-scale 

analytics [1]. OHDSI utilizes diverse health data sources, like electronic health records 

and administrative claims, transformed into the OMOP Common Data Model (CDM) 

[2]. To analyze and generate evidence for clinical decisions, OHDSI has created 

HADES (Health-Analytics Data to Evidence Suite), an open-source software set used 

in numerous studies, some of which have influenced regulatory choices. HADES' goal 

is to facilitate observational research within the OHDSI community by offering a 

cohesive set of open-source analytic tools for characterization, causal effect estimation, 

and patient-level prediction. This paper outlines HADES' principles, architecture, 

packages, and development and adoption metrics. 

2. Methods 

2.1. Principles 

We have developed HADES following these broad principles: 

� Open Science: All components are open source, promoting transparency and 

reproducibility. 

� Direct OMOP CDM Execution: No data preparation needed, making it 

versatile across diverse healthcare systems. 

� OHDSI Best Practices: Informed by OHDSI methods research, such as 

supporting large-scale negative controls and empirical calibration [3,4]. 

� High-Quality Software: Documented, maintained, tested, and validated 

regularly. 

� Scalable Analytics: Handles multiple questions in one analysis, even on vast 

datasets. 

� Big Data Support: Operates on datasets exceeding 100 million lives. 

� Federated Analyses: Conduct studies across OHDSI network with local 

patient data and shared summaries. 

� Technical Versatility: Works on various systems and databases. 

2.2. Architecture 

HADES is realized through R packages, employing C++, Java, and Python for 

advanced analytics. For example, its core regression engine, Cyclops, optimizes 

regression models in C++, handling large-scale datasets [6]. SQL manages data 

manipulations, and is translated to a wide variety of platforms, while shiny [7] apps 

disseminate outcomes. Some HADES packages are on CRAN [8], others on GitHub. 

To safeguard patient privacy in federated networks, main packages offer privacy 

measures, like blinding low cell counts. Data is shared in human-reviewable CSV files. 

HADES’ documentation employs R's standards, roxygen2 and pkgdown, encompassing 

reference manuals and vignettes. Continuous integration tests, spanning Windows, 

MacOS, and Linux, ensure cross-system compatibility. 
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2.3. Cohort-related packages 

Cohorts are core elements of HADES analyses, capturing individuals meeting specific 

criteria over a time span. They signify exposures (e.g., warfarin-exposed), outcomes 

(e.g., bleeding cases), or special groups (e.g., pregnant women). HADES needs cohorts 

as inputs, with sophisticated logic managed by its packages: Capr for crating 

definitions, PhenotypeLibrary for storing approved cohort definitions, CirceR for 

SQL/human-readable conversion, CohortGenerator for CDM-compatible instan-

tiation, and CohortDiagnostics with PheValuator [9] for assessment. 

2.4. Main analytics packages 

Key HADES analytics packages are: 

 

� DataQualityDashboard checks conformance, completeness, and plausibility 

through extensive tests [10]. 

� PatientLevelPrediction conforms to OHDSI's predictive model framework 

[5], utilizing a broad array of predictors from CDM data. It supports diverse 

algorithms such as regression and gradient boosting, enabling swift external 

validation in OHDSI network. 

� CohortMethod applies the comparative cohort design for causal effect 

estimation, utilizing large-scale propensity scores (LSPS) for confounding 

adjustment [11,12]. 

� EvidenceSynthesis combines results from multiple databases through meta-

analysis. It includes our recent statistical approach for combining Cox models 

when counts are low or zero [13]. 

� EmpiricalCalibration employs negative control effect estimates to enhance 

causal estimates, incorporating uncertainty for scientific accuracy [3,4]. 

3. Results 

We keep no direct measures of how often the HADES packages are used. The number 

of downloads in the last 14 days (measured on November 30, 2022) ranges from 2 

(DeepPatientLevelPrediction package) to 1,046 (SqlRender package) 

3.1.  Publications 

To our knowledge, HADES packages feature in 38 clinical research papers and 29 

methods research papers, but there are likely more.  

Notable clinical works include an in-depth study on antihypertensive drugs' 

effectiveness and safety [14], a COVID-19 risk calculator creation [15], and safety 

investigation of hydroxychloroquine, cited by the EMA for their non-recommendation 

[16]. HADES was also used to assess adverse effects of medications on COVID-19 

[17], endorsed by EMA as best practice [18]. 

HADES significantly impacts methods research, evaluating causal effects [19], vaccine 

safety surveillance [20], and our prediction model framework [5]. 
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4. Discussion 

HADES, an R package suite, leverages the globally adopted OMOP CDM for 

analyzing healthcare data. It transforms CDM data into diagnostics, statistics, and 

visuals, shaping clinical decisions. Researchers worldwide have utilized HADES in 

impactful studies, with open-source code for reproducibility. HADES’ liberal Apache 

v2.0 license fosters flexibility for collaboration, modification, and sharing. Designed 

for federated networks, HADES prioritizes privacy by localizing data and sharing 

analytics.  

5. Conclusions 

Developed and maintained by OHDSI, HADES evolves to enhance efficiency, broaden 

epidemiological designs, and offer an interactive interface for easier utilization. Access 

HADES at: https://ohdsi.github.io/Hades/. 
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