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Abstract. The use of Artificial Intelligence (AI) in medicine has attracted a great 
deal of attention in the medical literature, but less is known about how to assess the 
uncertainty of individual predictions in clinical applications. This paper 
demonstrates the use of Conformal Prediction (CP) to provide insight on racial 
stratification of uncertainty quantification for breast cancer risk prediction. The 
results presented here show that CP methods provide important information about 
the diminished quality of predictions for individuals of minority racial backgrounds.  
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1. Introduction 

Uncertainty plays a crucial role in the interpretation of individual risk predictions, as may 

be the case for a medical practitioner or a patient assessing the high/low breast cancer 

risk prediction of an individual patient based on a machine learning (ML) model [6]. The 

more “unusual” an individual’s set of risk factors are compared to those that were used 

in the parameterization of the ML model, the more likely that the prediction will have a 

larger uncertainty. The level of uncertainty of predictions can be quantified by 

nonconformity measurements [1]. Nonconformity measures provide a means to quantify 

how unusual an individual is compared to the observed population. Conformal Prediction 

(CP) is an emerging method to compute non-conformity and its applications to clinical 

medical problems have been reviewed in a recent paper [7]. This paper  utilizes a 

synthetic breast cancer risk prediction (Gail model) dataset from the literature [6] to 

demonstrate the use of CP methods to evaluate the differential uncertainty for different 

patient classes, modeling race-differential risk.  

2. Methods 

This work utilizes synthetic data derived from the work of Ming et al. [6]. The dataset 

was developed toward comparing Machine Learning (ML) techniques to the traditional 
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Gail models for breast cancer risk prediction [3; 4]. Ming et al. [6] demonstrated that the 

synthetic data was sufficiently representative for our purposes, especially considering 

the ability it provides to represent the underlying relationships among the data elements. 

The ability to modify sample size allowed exploring the impact of under-representation 

on traditionally underserved populations. The ability to modify the underlying risk 

function allowed exploring scenarios where there is population-specific risk that may 

contribute to uncertainty. 

The National Cancer Institute’s Breast Cancer Risk Assessment Tool (BCRAT), 

based on the Gail model, [4] considers the following elements when predicting a patient’s 

risk of developing invasive breast cancer: age, age to predict through, age at the start of 

menstruation, age at first live birth of a child, number of first-degree relatives with breast 

cancer, number of previous breast biopsies, presence of atypical hyperplasia in a biopsy, 

and race/ethnic group. This work  follows Ming et al. [6] setting the age to predict 

through value constant at 90, which is considered lifetime risk and leaving the underlying 

distribution of risk factors and the race distribution unchanged.  To simulate the race-

differential the risk was scaled from the original breast cancer risk—set at 50% in the 

original dataset—by the arbitrary factors reported in Table 1. Note that these race-

differential risk factors are arbitrary and used here only as exemplars, because the 

underlying risk factors by race are still not fully established [8] and the goal of this paper 

is to demonstrate a methodology that can be used under any differential risk distribution. 

The original sample size investigated by Ming et al. [6] was 1,200 individuals. This work 

explores a sample size of 12,000 individuals, which was generated using the code 

provided in Ref. [6]. This allowed us to explore the impact of sample size on uncertainty 

in predictions corresponding to less represented racial groups. 
The Orange Conformal Prediction module [2; 5] was used for all the work reported 

here. For each dataset, four different underlying classification models were considered: 

logistic regression (LR), random forest (RF), k-nearest neighbors (KNN), and AdaBoost. 

Conformity was calculated using the inverse probability measure and a race conditional 

inductive prediction model [1]. This work also investigated how the confidence and 

credibility ranking of predictions varied over the prediction distribution and the 

relationship between the Lower Decile Range (LDR) of confidence/credibility (low 

confidence predictions) and race groups.  

 

Table 1: Racial composition and scaling factor used to consider race differential risk of 

breast cancer. 

 

Race Percentage of the 

Population 

Risk Scaling Factor 

   

0 0.50 -0.0025 

1 0.20 0.00375 

2 0.20 -0.00125 

3 0.08 0.00125 

4 0.015 0.00875 

5 0.003 0.0175 

6 0.002 0.005 
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3. Results 

Figure 1 presents the distribution of predictions ranked by confidence for the original 

sample size of N=1200 and an increased sample size of N=12,000, respectively. The 

Lower Decile Range (LDR) is highlighted, showing predictions in the LDR are 

consistently low confidence. It is apparent that for both data sets the number of 

predictions in the low-credibility region is approximately 25% for both samples. 

 

 

Figure 1. Prediction confidence distribution for the two data sets used in this study. 

 

Figures 2 presents the corresponding prevalence of individuals belonging to each 

race/class group in the data sets considered here and the prevalence of individuals 

belonging to each population among predictions in the LDR of confidence values. 

4. Discussion 

Figure 1 shows that the confidence of predictions tends to fall off sharply at the end of 

the distribution, but this figure does not provide any information about the populations 

that are more affected by this decline of prediction quality. This decline is independent 

of the population size and corresponds to approximately 25% of the population. This 

work explored whether there appeared to be any relationship between the less 

represented race groups and predictions in the Lower Decile Range (LDR) of confidence 

distribution. Figure 2 shows that for the smaller sample (N=1,200) there is an overall 

increase in the proportion of the less represented races in the LDR region, as denoted by 

the larger orange bars when compared to the blue bars representing the race distribution 

in the overall population. In general, it is observed that the majority race is 

underrepresented in the LDR. From the right-side plots, it is apparent that these trends 

are less prominent for the larger sample with N=12,000, where disproportional 

representation between distribution in the overall population and the prevalence in the 

LDR is much less apparent. This can be rationalized by arguing that for N=1,200 the 

representation of the majority race is complete, but it is not for the less represented races. 

This suggest that to have a uniform distribution of uncertainties that is independent of 

race the sample size needs to be dictated by the number of individuals in the minority 

races and not by the overall population. 
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Classification Method                  N=1,200                       N=12,000 

            

Logistic Regression      

   

Random Forest      

    

KNN                         

        

AdaBoost  

       

 

 

Figure 2. Comparison of the distribution of race groups in the population (blue) and the 

corresponding prevalence among those in the LDR of the confidence distribution 

(orange). 
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5. Conclusions  

The method presented here show that CP can be used effectively to find the race 

stratification of individuals in the LDR of a predictive model. The results presented here 

cannot be used for clinical applications because the race-differential risks were arbitrarily 

assigned for the purpose of these demonstrations, but the methods demonstrated here can 

be used with any risk model derived from ML approaches. This work also shows that the 

undesirable stratification associating larger uncertainties to minority races can be 

corrected when using larger overall samples. Future work will include investigations to 

better understand the sensitivity of under/over representation of races in the LDR; classes 

upon their differential risks; and to find out if increased target, instead of overall, sample 

size could remediate stratification with a smaller enlargement of the sample size. 

The synthetic datasets, data generation protocol, experiment results, and related 

code have been made freely accessible and can be found in the archived repository 

available on GitHub: (https://github.com/illato/vigilant-computing-machine/). 
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