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Abstract. In this manuscript, we outline our developed version of a Learning
Health System (LHS) in oncology implemented at the Department of Veterans
Affairs (VA). Transferring healthcare into an LHS framework has been one of the
spearpoints of VA’s Central Office and given the general lack of evidence
generated through randomized control clinical trials to guide medical decisions in
oncology, this domain is one of the most suitable for this change. We describe our
technical solution, which includes a large real-world data repository, a data science
and algorithm development framework, and the mechanism by which results are
brought back to the clinic and to the patient. Additionally, we propose the need for
a bridging framework that requires collaboration between informatics specialists
and medical professionals to integrate knowledge generation into the clinical
workflow at the point of care.
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1. Introduction

Multiple models for implementation of Learning Health Systems (LHS) have been
proposed to meet the mandate issued by the Institute of Medicine (IOM) to transform
healthcare systems. Inherent to all of them are three essential infrastructure activities
supporting a learning cycle. These are (A) the creation of clinical knowledge bases to
integrate and manage a growing volume of diverse data types, (B) the generation of
actionable knowledge using real-world evidence and advanced analytics and (C) the
delivery, application and iterative adaptation of these discovered insights (knowledge)
to improve patient care. Each of these core activities encompasses multiple informatics
approaches and technological challenges. In the learning cycle described by Friedman
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[1], there is often a disconnect between the research activities that generate knowledge
and the clinical operational activities seeking to effectuate knowledge to improve care.

Unfortunately, it may take years for a research discovery to become standard of
care [2,3]. This delay, called the “bench to bedside” gap, exists for both traditional
clinical-trial-type research and newer data science approaches [4,5]. The LHS as
proposed in 2007 by Etheredge [6] and the IOM [7] offers a framework to narrow this
divide. Since then, the Department of Veterans Affairs (VA) made the development,
integration, and adoption of an LHS one of their priorities [8]. Not all problems need to
be solved through an LHS, but the oncology domain is highly suitable given the
general lack of evidence generated through randomized control clinical trials to guide
medical decisions. In 2016, the investigators at the Boston VA Cooperative Studies
Program (CSP) published two articles that together presented a vision for the creation
of an oncology LHS within the VA [9,10]. They emphasized a need to enable existing
technologies, noting that the VA already houses a large integrated electronic health
record (EHR) system and advanced data computing capabilities. Although many
publications describe motivations, barriers, and opportunities for utilizing an LHS
framework, examples implementing all three infrastructure components described
above are limited [3,11]. Here we report our efforts known as BRIDGE (Building
Research Infrastructure to Develop Greater Learning Efficiencies) to close the gap
between research and clinical care.

2. Methods
2.1. Infrastructure to Manage Data

The creation of an actionable knowledge base is critical when instantiating an LHS to
build algorithms or clinical guidelines. This requires investment in the development of
data repositories and data sharing infrastructure. The integration of multi-modal patient
data also requires longitudinal assurance of data quality and privacy. In 2016 we started
the development of the Precision Oncology Data Repository (PODR) [12,13]. This
repository includes EHR data, targeted tumor sequencing data, proteomic, metabolomic,
and medical imaging data including computed tomography (CT) scans and digital
pathology slides. Furthermore, to share PODR data for further research purposes, we
established the Research Precision Oncology Program, which provides a mechanism
for patients to consent to broad data sharing [13].

2.2. Infrastructure to Generate Actionable Knowledge

Galvanizing multi-modal data into actionable knowledge is the next critical step for
any successful LHS. The scope can vary significantly depending on the domain and
goals. Our activities to generate knowledge for precision oncology include, but are not
limited to, automated cohort identification, hypothesis generation, and predictive
algorithms for prognosis, adverse effects, and responses to therapy.
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2.3. Infrastructure to Deliver and Apply Knowledge to Improve Patient Care

The delivery and application of actionable knowledge to improve outcomes is the final
step in the LHS cycle. Not only does this require informatics tools that can mobilize
new knowledge into readily consumable structures, but it also requires continuous
monitoring and integration of treatment decisions and outcomes back into knowledge
bases for future re-use. To achieve this, we have developed a platform that hosts a suite
of applications facilitating workflows for trial matching and virtual tumor boards.

To explore opportunities for clinical decision support or use of predictive
algorithms, our team utilizes a user-centered process and agile development with
coordinators and clinicians. Users provide vital feedback, highlight opportunities for
workflow automation, and identify information gaps amenable to knowledge delivery.

3. Results

Figure 1 illustrates our integration of the three key LHS technology infrastructures (A,
B and C) to help bridge the “bench to bedside” gap. Data collected during routine care
or clinical trials are transformed through research into knowledge for clinical decision
making. When a VA patient is diagnosed with cancer, their multi-modal data is
collected throughout the VA and, with consent, integrated into PODR. To date, de-
identified data sets on 200,000+ veterans have been securely shared with external
academic partners. Using this real-world evidence, our data scientists and collaborators
have generated descriptive studies [14], observational studies [15], and risk predictions
models [16]. When our clinicians identify a research study that potentially has clinical
impact, we follow up with further development as a clinical decision support tool. As
an example, EHR data and Natural Language Processing (NLP) techniques were used
to extract lung cancer tumor descriptions from patient records and develop a “frailty
index” to identify patients at risk for negative outcomes [17]. This frailty index is now
being incorporated as an application in our Oncology Applications platform.

Figure 1. Precision Oncology Learning Healthcare System at the Department of Veterans Affairs.

The LHS framework is ideal for a personalized approach to the patient instead of
the population. For example, for tumor board workflows it incorporates a precision
medicine approach by facilitating treatment recommendations based on molecular
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profile using the Molecular Oncology Almanac [18] and patient similarity networks
(PSN) method.

Integrating observational studies or clinical trials within the process of routine
clinical settings is another aspiration to bridge research and clinical care. We have laid
the foundation to support such activities with our applications to manage workflow of
pragmatic trials [19] and our trial matching application developed as part of the
BRIDGE effort screening for eligible patients. Our trial matching application is in use
for 19 oncology trials in the VA.

4. Discussion

An LHS approach can help bridge the gap between research and clinical care. However,
implementation can be challenging, and application must be considered within the
context of the broader institutional culture, available resources, and patient population.
Our current efforts continue and have already involved multiple pilot projects over the
past 6 years with our community of learners under the vision for VA oncology
described by Fiore et al. [9,10]. Indeed, the full benefit of an LHS approach can only be
achieved when new research advances become rapidly accessible at all points of patient
care. Given the importance of technology to achieve this goal, there are examples (both
in-house and commercial) of ongoing efforts for each of the three technology-centric
LHS elements. Unlike these other efforts, the BRIDGE ecosystem not only integrates
relevant technologies but also includes a research and clinical user base committed to
continual improvement and expansion of its applications.

The limitation of our current effort is lack of real-time data access and integration
with our EHR. However, a virtual tumor board workflow for delivering knowledge
products can work well under these constraints, as 24 hours’ delay is adequate for
tumor boards, and the workflow does not require seamless integration with our EHR.
Our future work will involve methods for real-time data access. Evaluation of the
impact of the research product within the clinical workflow may require further
evaluation by a clinical trial or prospective studies. Although we have established basic
infrastructure to quickly identify trial cases and support workflow for pragmatic trials,
funding will be needed to further extend capabilities to pursue impact studies.

5. Conclusions

The delay between new medical discoveries and when those discoveries are put into
practice at a patient’s bedside is unacceptable for our Veterans with cancers. We are
hopeful that our BRIDGE effort described here will provide the technologic tools
necessary to unite our research and clinical communities under an LHS framework to
provide the best care possible.
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