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Abstract. Reasoning over OWL 2 is a very expensive task in general,
and therefore the W3C identified tractable profiles exhibiting good com-
putational properties. Ontological reasoning for many fragments of OWL
2 can be reduced to the evaluation of Datalog queries. This paper sur-
veys some of these compilations, and in particular the one addressing
queries over Horn-SHZQ knowledge bases and its implementation in
DLV2 enanched by a new version of the Magic Sets algorithm.
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1 Introduction

Datalog is a rule-based language originally designed in the context of deductive
databases, a field that has benefited from the cross-fertilization between logic
programming and database theory [1I26l27/42]. The language is nowadays suc-
cessfully applied in several contexts, spanning from Boolean optimization and
constraint satisfaction problems [I5] to ontological design and reasoning in the
Semantic Web [20033]. Specifically, standard reasoning tasks in the Semantic
Web are often reduced to query evaluation over (deductive) databases, so to
satisfy the fundamental prerequisite of efficient large-scale reasoning.

This paper focuses on the use of Datalog in the context of Semantic Web,
in particular on its application to ontology-based query answering, for short
OBQA [19M45]. In OBQA, a Boolean query ¢ has to be evaluated against a log-
ical theory (a.Xk.a. knowledge base, or KB) consisting of an extensional database
(a.k.a. ABox) D paired with an ontology (a.k.a. TBox) X. The problem is usu-
ally stated as D U X |= ¢, and is equivalent to checking whether ¢ is satisfied
by all models of DU X according to the classical open-world assumption (OWA)
of first-order logic [1]. Several fields of Computer Science have shown interest in
OBQA, from Artificial Intelligence [8I23J30] to Database Theory [T4JT631] and
Logic [TTI32/46]. From these fields, two families of formal knowledge representa-
tion languages to specify X emerged, namely Description Logics (DLs) [7] and
Datalog® [19]. For both of them, OBQA is undecidable in general [I8/36/49], and
therefore syntactic decidable fragments have been singled out with the aim of
offering a good balance between computational complexity and expressiveness.
The same idea lead to the definition of OWL 2 Web Ontology Language Profiles.

In fact, reasoning over OWL 2 is generally a very expensive task: fact en-
tailment (i.e., checking whether an individual is an instance of a concept) is
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already 2NEXPTIME-hard, while decidability of conjunctive query answering is
still an open problem. To balance expressiveness and scalability, the W3C iden-
tified three tractable profiles, namely OWL 2 EL, OWL 2 QL, and OWL 2 RL,
exhibiting good computational properties: the evaluation of conjunctive queries
over KBs falling in these fragments is in PTIME in data complexity (that is,
when query and TBox are fixed) and in PSPACE in combined complexity (that
is, in the general case) [64]. Horn-SHZQ is another fragment of OWL 2 exhibit-
ing good computational properties and high expressivity: conjunctive queries are
evaluated in PTIME in data complexity, and in EXPTIME in combined complex-
ity; it generalizes both OWL 2 QL and OWL 2 RL, and captures all OWL 2 EL
constructs but role chain [41].

From a theoretical viewpoint much has been done: OBQA has been addressed
in many ontological settings by reductions to the evaluation of Datalog queries
[24128/39I53I57]. Some of these rewriting are briefly mentioned in Section Bl
From a pragmatic viewpoint, reasoning services have been developed, among
them MASTRO [22], oNTOP [21], and RDFOX [44]. Concerning Horn-SHZ Q, Eiter
et al. [28] showed that OBQA can be addressed by means of Datalog queries:
in a nutshell, given a Horn-SHZQ TBox paired with a SPARQL query [56],
it is possible to construct an equivalent Datalog query independently from the
ABox. This idea has been also implemented in a specific branch of DLV2 [3], with
promising results. The rewriting implemented by DLV2 is further processed by
a new version of the magic sets algorithm [5], which inhibits the creation of new
recursive dependencies and partially unroll the magic sets rewriting if binding
information are lost. The inhibition of new recursive definitions is important be-
cause magic sets were originally introduced for Datalog programs [10], and their
extension to programs with stratified negation was nontrivial; indeed, the perfect
model semantics [48] is not applicable to the rewritten program if recursive nega-
tion is introduced by magic sets, and several semantics were considered in the
literature to overcome this limitation [QII3I37/38/52]. By inhibiting the creation
of new recursive dependencies, the semantic issue disappears. The technique is
briefly explained in Section

2 Background

2.1 Basics

Fix three pairwise disjoint discrete sets C, P and V, respectively of constants,
predicate symbols and variables. Constants and variables all together form what
we call terms. Each predicate symbol p has an arity, consisting of a non-negative
integer arity(p). An atom is an expression « of the form p(t), where p is a
predicate symbol, t = t1, ..., t,,, is a sequence of terms possibly with repetitions,
m is the arity of p, a[i] = ¢; for each i € [1..m], and the set {t1, ..., ¢ } is denoted
by dom(a). By definition, arity(«) = arity(p). An instance I is any set of atoms
over constants.
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2.2 Description Logics and OWL

Description Logics (DLs) are a family of formal knowledge representation lan-
guages that model concepts, roles, individuals, and their relationships. Let N¢
(concepts), Ng (roles) and Ny (individuals) be mutually disjoint discrete sets.
Hereinafter, we assume that No U Ny C P and that Ny C C. Accordingly, con-
cepts are basically unary predicates whereas roles are binary predicates. More-
over, in this context, concepts and roles are denoted by uppercase letters. A DL
knowledge base (KB) in normal form is any pair K = (A, T) where:

(i) A, the ABox (assertional box), is a finite set of assertions (i.e., atoms) of
the form A(a) or R(a,b), with a,b € Ny, A € N, and R € Ng. Roughly, an
ABox can be transparently seen as a database (i.e., a finite instance).

(#7) T, the TBox (terminological box), is a finite set of concept inclusions (Cls)
together with a finite set of role inclusions (RIs). Table [l and Table 2] re-
port only those inclusions that are at the basis of the OWL 2 Web Ontology
Language Profiles introduced below. Accordingly, we consider the follow-
ing classes of Description Logics: E£++ [6], Horn-SHZQ [35], ELH [17],
DL-Liteg [50], and DLP [34]. The semantics of concept (resp., role) inclu-
sions is given in Table [ (resp., 2]) in terms of first-order expressions [1].

The OWL 2 Web Ontology Language, informally OWL 2, is an ontology lan-
guage for the Semantic Web with formally defined meaning. OWL 2 ontologies
are stored as Semantic Web documents and provide classes, properties, individ-
uals, and data values. The most expressive OWL 2 profile is called OWL 2 DL.

Table 1. Concept inclusions, where A, B, B1,B2 € N¢ and R € Ng. In the last
column, all occurrences of the variables x, y, y1 and y2 are intended to be universally
quantified.

EL++ | Horn-SHIQ | &cH | DL-Liter | DLP concept Equivalent
inclusions first-order expression
v v v v v BLCA B(z) — A(z)
v v v v BB, C A By (z), B2(z) — A(x)
BCVR.A
v v = B(z),R(z,y) - A
e n | B RE Y > aw)
v v v JR.BC A R(z,y), B(y) — A(z)
TCE
v v v v ARTL A R(z,y) = A(zx)
dom(R) C A
v v v v ran(R) C A R(z,y) — A(y)
v v v v BLC 3R.A B(z) — JzR(z, z), A(z)
v v v BLC -A B(z), A(z) — L
P v B <ina| B@ RGw) R,
A(y1), A(y2), y1 #y2 = L
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Reasoning over OWL 2 DL is a very expensive task, in general. To balance ex-
pressiveness and scalability, the World Wide Web Consortium (W3C, for short
identified also the following proﬁles@ OWL 2 EL, OWL 2 QL, and OWL 2 RL,
each exhibiting better computational properties. Moreover, we point out that
EL++ is the logic underpinning OWL 2 EL, DL-Liteg is the logic underpinning
OWL 2 QL, and DLP is the logic underpinning OWL 2 RL. Among these three
profiles, OWL 2 RL is the only one that does not admit the usage of existen-
tial quantification in superclass expressions in the right-hand side of concept
inclusions (i.e., B C dR.A in DL notation).

2.3 Ontology-based query answering

In this section we formally define ontology-based query answering, one of the
most important ontological reasoning service needed in the development of the
Semantic Web.

A conjunctive query is any first-order expression of the form ¢(z) = 37 ¢(z, 7),
where ¢ is a conjunction of atoms over the variables Z U ¢, possibly with con-
stants.

A model of a KB K = (A, T) is any instance I D A satisfying all the axioms
of T, written I = T, where CIs and Rls, as said, can be regarded as first-order
expressions.

The set of all models of K is denoted by mods(K). To comply with the so-
called open world assumption (OWA), note that I might contain individuals
that do not occur in K. The answers to a query ¢(Z) over an instance I is
the set ¢(I) = {a € NIM | I = q(a@)} of |Z|-tuples of individuals obtained
by evaluating g over I. Accordingly, the certain answers to ¢ under OWA is
the set cert(K,q) = ﬂlemods(D,E) q(I). Finally, ontology-based query answering
(OBQA) is the problem of computing cert(KC, q).

! See https://www.w3.org/
2 See http://www.w3.org/TR/owl2-profiles/

Table 2. Role inclusions, where R, S, P € Ng. In the last column, all occurrences of
the variables x, y and z are intended to be universally quantified.

EL++ | Horn-SHIQ | ELH | DL-liter | DLP rule Equivalent
inclusions first-order expression
v v v v v SCR R(z,y) — S(z,v)
v v v STCR S(z,y) - R(y,x)
v v v RT C R |R(z,y), R(y, 2) = R(x, 2)
v SoPLC R | S(z,vy), P(y,z) = R(x, z)
v v v SC-R S(z,y), R(z,y) — L
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Fig.1. Dependency graph of program Pj,, from Example [

2.4 Datalog

A Datalog program P is a finite set of rules of the form

QQ = 1y .y Oy, DOE Qg 1, - - -, NOT QU (1)
where n > m > 0, and each «; is an atom; atoms «q,...,«a,, are also called
positive literals, while not ,,y1,...,n0t a,, are also called negative literals. A

predicate p occurring in P is said extensional if all rules of P with p in their
heads are facts; otherwise, p is said intentional. For any expression (atom, literal,
rule, program) F, let A¢(E) denote the set of atoms occurring in E.

For a rule r of the form (Il), define H(r) := «, the head of r; B(r) :=
{a1,...,Qm, DOt Qpyy1,...,00t ay}, the body of r; BY(r) := {a,...,am}; and
B~ (r) :== {®m+1, .- -, an}. Intuitively, B(r) is interpreted as a conjunction, and
we will use @ := S A S’ to denote a rule r with H(r) = o and B(r) = SUS’;
abusing of notation, we also permit S and S’ to be literals. If B(r) is empty, the
symbol :— is usually omitted, and the rule is called a fact.

A rule r is safe if every variable occurring in r also occurs in BY(r). In the
following, only safe rules are considered, and programs are required to satisfy
stratification of negation, defined next. The dependency graph Gp of a program
P has nodes for each predicate occurring in P, and an arc from p to p’ if there
is a rule r of P such that p occurs in H(r), and p’ occurs in B(r); the arc is
marked with not if p’ occurs in B~ (r). P satisfies stratification of negation if
Gp has no cycle involving marked arcs.

Semantics. A substitution o is a mapping from variables to constants; for an
expression F, let Fo be the expression obtained from E by replacing each vari-
able X by o(X). Let Cy,...,C, (for some n > 1) be the strongly connected
components (SCCs) of Gp, sorted so that for all 1 < i < j < n, for all p € C;
and for all p’ € Cj, there is no path from p to p’ in Gp. Let heads(P, C;) denote
the set of rules of P whose head predicates belong to C;. The immediate logical
consequence operator of P at stage i, denoted Th, is defined as

Th(I) :={H(r)o | v € heads(P,C;),B"(r)o CI,B~(r)o NI =0} (2)

for i = 1.n and any interpretation I. Let Iy := 0, and I; := T}h {} I;_1, for
t = 1,...,n. The semantics of P is defined as the interpretation I,, in the
following denoted TP(P).

Ezxample 1. Consider a set of jobs to be executed. Some jobs can be started only
after some other jobs terminate. Pairs of jobs that can be potentially run in
parallel are identified by the following program Pjy:
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dep(X,Y) :- require(X,Y).
dep(X,Y) :- require(X,Z), dep(Z,Y).
par(X,Y) :- job(X), job(Y), not dep(X,Y), not dep(Y,X).

The dependency graph Gp,, is shown in Figure[ll A possible order for the pred-
icates of Pjop is job, require, dep, parallel. Given the database Dj,p

job(a). job(b). require(a,b).
job(c). job(d). job(e). require(c,d). require(d,e).

the interpretation TP (D U Pjop) extends D (stage 1 and 2) with

dep(a,b). dep(c,d). dep(d,e). (stage 3, application 1)
dep(c,e). (stage 3, application 2)

par(a,c). par(a,d). par(a,e). par(b,c). par(b,d). par(b,e).
par(c,a). par(d,a). par(e,a). par(c,b). par(d,b). par(e,b).

where the last two lines are obtained at stage 4, with one application of TI‘% -

3 Ontology Reasoning via Datalog

3.1 Datalog Compilations

For the main DL fragments described in the previous sections, OBDA can be
performed via rewriting the knowledge base and the query into a Datalog pro-
gram (a database and a set of Datalog rules possibly including stratified negation
or negative constraints) where a special output predicate collects all the answers.

More specifically, from a knowledge base K = (A, T) and a conjunctive query
q(Z), the general approach is to rewrite: (i) both A and T into a database D;
and (i) both 7 and ¢(Z) into a Datalog program P with an output predicate
goal of arity |Z| in such a way that, cert(K,q) = {a | goal(a) € TP(D U P)}.
(Note that predicate goal never occurs in rule-bodies.)

We can distinguish, however, different cases. In general, this rewriting method
goes under the name of combined approach; whereas in case D is independent
from T (i.e., D coincides with A), we talk about a pure approach. Moreover,
in both cases, we can distinguish two sub-cases, namely whether P is an arbi-
trary Datalog program or it is non-recursive (which is equivalent to a union of
conjunctive queries).

For complexity and expressiveness reasons, the pure approach into non-
recursive Datalog is only possible for DL-Liter. Moreover, we also know that
the combined approach into non-recursive Datalog is possible for ELH. For all
the other fragments, to the best of our knowledge, what we know from the lit-
erature is that the rewriting methods (pure or combined) target full Datalog.

In the last decade, multiple rewriting algorithms have been proposed, even for
the same DL fragment. They may differ, apart from the rewriting methods, also
from the size of the rewritings, the time used to compute them, and their quality
measured in terms of time and space needed during the evaluation process over
classical benchmarks.
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In [28], the authors provide a pure Datalog rewriting for query answering over
Horn-SHZQ. In particular, in the generated program P, only the rules having
goal in the head depend both on T and g; conversely, all the other rules of P only
depend on 7. Program P contains only unary and binary predicates, and all the
rules without the goal predicate contain a constant number of variables. However,
due to the exponential time complexity of query answering in Horn-SHZQ, the
size of P is, in the worst case, exponential in the size of 7. Related to this work,
there is also a more recent paper [25] that consider Horn-SHZ Q extended with
the axiom S o P C R (see Table ), a.k.a. Horn-SRZQn. However, the authors
here provide a pure Datalog rewriting in case of fact entailment, namely when
q is a ground atom « of the form A(a) or R(a,b). In this setting, P contains
the rule “goal :- «.” plus a set of other rules that only depend on 7. Since P
contains only unary and binary predicates, and since the number of variables in
rule bodies is constant, P can be evaluated in polynomial time. However, due to
the double exponential time complexity of fact entailment in Horn-SRZ Qp, the
size of P is, in the worst case, also double exponential in the size of T.

In [43], the authors provide a combined Datalog rewriting for a superclass of
ELH, called ELHY™, which includes also ran(R) C A and B C —A. More precisely,
the TBox and the query are rewritten into an a first-order query formula, which
in turn can be translated into a non-recursive Datalog program with negation.
Both the database D and the program P can be constructed in polynomial time.
Moreover, P depends only on the portion of 7 containing role inclusions.

Concerning DL-Liteg, several rewriting algorithms have been proposed. Among
these, we recall Presto [51], QuOnto [2] and Requiem [47]. The former, produces
a pure Datalog rewriting of polynomial size. Whereas, the latter ones, produce
a union of conjunctive queries (i.e., a set of Datalog rules all of which have
predicate goal in the head) of exponential size in the worst case.

Finally, concerning DLP, one may observe that a pure Datalog rewriting
(including negative constraints) can be directly obtained by taking, for each
concept or role inclusion, its equivalent the first-order expression and by adding
to P the conjunctive query as a rule having goal in its head. Existing rewriting
approach are Orel [40], OwlOntDB [29], RDFox [44] and DReW [58].

3.2 Magic Sets

The magic sets algorithm is a top-down rewriting of the input program P that
restricts the range of the object variables so that only the portion of TP(P)
that is relevant to answer the query is materialized by a bottom-up evaluation
of the rewritten program [TOJT2I9/55/4]. In a nutshell, magic sets introduce rules
defining additional atoms, called magic atoms, whose intent is to identify relevant
atoms to answer the input query, and these magic atoms are added in the bodies
of the original rules to restrict the range of the object variables. The procedure
is reported as Algorithm [l The notions of adornment, magic atom, sideway
information passing strategy (SIPS), and a description of the algorithm are given
next.
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Algorithm 1: MS(Q(T): a query atom, P: a program)

1 Let s be such that |s| = |T|, and s; = b if T; is a constant, and f otherwise, for

all 7 € [1..]s]];

2 P':={Q%(T).}; // rewritten program: start with the magic seed
3 S:={(Q,s)}; // set of produced adorned predicates
4 D := // set of processed (or done) adorned predicates
5 G :=Gp U{(p,m#p) | p is a predicate occurring in P}; // monitor SCCs
6 while S # D do

7 (g,s) := any element in S\ D; // select an undone adorned predicate
8 foreach r € P such that H(r) = q(t) for some list t of terms do

9 P =P U{q(t) = ¢*(t) AB(r).}; // restrict range of variables

10 Let (<, bnd) be the SIPS for r with respect to s;

11 foreach ¢ € B(r) such that p(t') € At(£) and p is an intentional

predicate of P do

12 G = G U {(mitp, m#q) };

13 B :=0; // restrict SIPS to preserve SSCs

14 foreach ¢’ € B(r) such that ' < £ and p'(t") € At(¢') do

15 if {CNALP)|C e SCCs(GU{(m#p,p’)})} = SCCs(Gp) then

16 L | B:=BU{l'}; G:=GU{(m#p,p)}

17 Let s’ be such that |s'| = |t’|, and s} = b if t is a constant or
belongs to bnd(¢') for some ¢’ € {H(r)}U B such that ¢’ < ¢, and f
otherwise, for all € [1..|s'|];

18 P =PU {ps, (t') — ¢°(t) A B.} // add magic rule

19 S:=SuU{(p,shH} // keep track of adorned predicates

20 D :=DuU{(g,s)}; // flag the adorned predicate as done

21 return P’;

An adornment for a predicate p of arity k is any string s of length k over the
alphabet {b, f}. The i-th argument of p is bound with respect to s if s; = b, and
free otherwise, for all i € [1..k]. For an atom p(t), let p*(t) be the (magic) atom
m#p#s(t’), where m#p#s is a predicate not occurring in the input program,
and t’ contains all terms in t associated with bound arguments according to s.

A SIPS for a rule r with respect to an adornment s for H(r) is a pair (<, bnd),
where < is a strict partial order over { H(r)}UB(r), and bnd maps £ € {H(r)}U
B(r) to the variables of £ that are made bound after processing £. Moreover, a
SIPS satisfies the following conditions:

H(r) < ¢ for all £ € B(r) (binding information originates from head atoms);
— £ < (" and ¢ # H(r) implies that £ € B*(r) (new bindings are created only
by positive literals);

bnd(H (r)) contains the variables of H(r) associated with bound arguments
according to s;

bnd(¢) = 0 if £ is a negative literal.
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Ezample 2. Consider program Pj,, from Example [T, and suppose we are inter-
ested in determining whether jobs a and c¢ could be run in parallel. The magic
atom par® (a,b), that is, m#par#bb(a,b), would represent such interest. Similarly,
the interest on all jobs that could be run in parallel to job a is represented by the
magic atom par®’ (a,Y), that is, m#par#bf (a). There can be several SIPS (=<, bnd)
for rule

dep(X,Y) :- require(X,Z), dep(Z,Y).

w.r.t. the adornment bb. If body literals are processed left-to-right, and binding
information is always passed when possible, then dep(X,Y) < require(X,z) =<
dep(Z,Y), bnd(dep(X,Y)) = {X,Y}, bnd(require(X,2)) = {Z} (or {X,Z}), and
bnd(dep(Z,Y)) is irrelevant. If instead body literals are processed in parallel,
then dep(X,Y) < require(X,Z), dep(X,Y) < dep(Z,Y), bnd(dep(X,Y)) ={X,Y},
and bnd(require(X,2)) and bnd(dep(Z,Y)) are irrelevant. ]

Algorithm [ starts by producing the magic seed, obtained from the predicate
and the constants in the query (lines 1-2). After that, the algorithm processes
each produced adorned predicate (lines 6-7): each rule defining the predicate
is modified so to restrict the range of the head variables to the tuples that
are relevant to answer the query (lines 8-9); such a relevance is encoded by the
magic rules, which are produced for all intentional predicates in the bodies of the
modified rules (lines 10-18). Note that lines 5 and 12-16 implement a restriction
of SIPS guaranteeing that no SCCs of Gp are merged during the application of
magic sets; there, GUFE denotes the graph obtained from the graph G by adding
each arc in the set E, and SCCs(G) is the set of SCCs of G. More in detail, a
graph G is initialized with the arcs of Gp and arcs connecting each predicate p
with a representative magic predicate m+#tp (line 5). After that, before creating
a new magic rule, elements of B(r) that would cause a change in the SCCs of G
are discarded (lines 13-16). Graph G is updated with new arcs involving original
predicates and representative magic predicates, so that it represents a superset of
the graph obtained from Gp/ by merging all pairs of nodes of the form m#p+#s,

m#tp#s’.

Ezample 3. Consider program Pj,, from Example [Il and the query par(a,c).
The algorithm first produces the magic seed m#par#bb(a,b) and the modified
rule

par(X,Y) :- m#par#bb(X,Y), job(X), job(Y), not dep(X,Y), not dep(Y,X).
Relevance of dep(a,c) and dep(c,a) is captured by the magic rules

m#dep#bb(X,Y) :- m#tpar#bb(X,Y).
m#dep#bb(Y,X) :- m#tpar#bb(X,Y).

Hence, new modified rules are produced:

dep(X,Y) :- m#dep#bb(X,Y), require(X,Y).
dep(X,Y) :- m#dep#bb(X,Y), require(X,Z), dep(Z,Y).

At this point, if left-to-right SIPS are used, the magic rule
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Algorithm 2: FullFree(P: a program obtained by executing magic sets)

1 foreach m+#p#f--- f occurring in P do

2 foreach m+#p#s occurring in P such thats # f--- f do

3 remove all rules of IT having m#p#s in their bodies;

4 L replace m#p#s(t) by m#p#f --- f in all rule heads of P;

5 return P,

m#dep#bb(Z,Y) :- m#dep#bb(X,Y), require(X,Z).

is added and the algorithm terminates; the rewritten program is the following:

m#tpar#bb(a,c) .

m#dep#bb (X,Y) :- m#par#bb(X,Y).

m#dep#bb(Y,X) :- m#par#bb(X,Y).

m#dep#bb(Z,Y) :- m#dep#bb(X,Y), require(X,Z).

par(X,Y) :- m#par#bb(X,Y), job(X), job(Y), not dep(X,Y), not dep(Y,X).
dep(X,Y) :- m#dep#bb(X,Y), require(X,Y).
dep(X,Y) :- m#dep#bb(X,Y), require(X,Z), dep(Z,Y).

Note that using the parallel SIPS from Example 2l would lead to the production
of the magic rule

m#dep#fb(Y) :- m#dep#bb(X,Y).

and therefore to further iterations of the algorithm to process predicate dep with
respect to the adornment fb. |

Depending on the processed input program, and on the adopted SIPS, some
predicates may be associated with adornments containing only fs in the rewrit-
ten program. Essentially, this means that all instances of these predicates in
TP(P) are relevant to answer the given query. Hence, the range of the object
variables of all rules defining such predicates cannot be actually restricted, and
indeed the magic sets rewriting includes a copy of these rules with a magic atom
obtained from the full-free adornment. Possibly, the magic sets rewriting includes
other copies of these rules obtained by different adornments, which may deteri-
orate the bottom-up evaluation of the rewritten program. Luckily, those copies
can be removed if magic rules are properly modified. The idea is that magic
rules associated with predicates for which a full-free adornment has been pro-
duced have to become definitions of the magic atom obtained from the full-free
adornment. The strategy is summarized in Algorithm [2] and can be efficiently
implemented in two steps: a first linear traversal of the program to identify pred-
icates of the form m#p#f --- f and to flag predicate p; a second linear traversal
of the program to remove and rewrite rules with predicate m#p#s, for all flagged
predicates p.
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Ezample 4. Consider program Pj,, from Example [Il the query par(a,Y), and
parallel SIPS. The output of the magic sets algorithm is the following (rules in
the order of production):

m#par#bf (a) .

par (X,Y) :- m#par#bf(X), job(X), job(Y), not dep(X,Y), not dep(Y,X).
m#dep#bf (X) :- mi#tpar#bf (X).

m#dep#fb(X) :- m#par#bf (X).

dep(X,Y) :- m#dep#bf(X), require(X,Y).

dep(X,Y) :- m#dep#bf(X), require(X,Z), dep(Z,Y).
m#dep#ff :- m#dep#bf (X).

dep(X,Y) :- m#dep#fb(Y), require(X,Y).

dep(X,Y) :- m#dep#fb(Y), require(X,Z), dep(Z,Y).
m#dep#ff :- m#dep#fb(Y).

dep(X,Y) :- m#dep#ff, require(X,Y).

dep(X,Y) :- m#dep#ff, require(X,Z), dep(Z,Y).
m#dep#ff :- mitdep#ff.

Processing the above program with Algorithm 2l results into the program

m#par#bf (a) .

par (X,Y) :- m#par#bf(X), job(X), job(Y), not dep(X,Y), not dep(Y,X).
m#dep#ff :- m#par#bf (X).

m#dep#ff :- m#par#bf (X).

dep(X,Y) :- m#dep#ff, require(X,Y).

dep(X,Y) :- m#dep#ff, require(X,Z), dep(Z,Y).

m#dep#ff :- m#tdep#ff.

Essentially, since everything is relevant to answer the given query using parallel
SIPS, the magic sets rewriting was eventually unrolled. |

4 Conclusion

The semantics of many constructs of Description Logics is defined in terms of
First-Order Logic expressions, and these expressions are often naturally express-
ible in Datalog. A prominent example is the rewriting proposed by Eiter et
al. [28], which can be applied to Horn-SHZ Q knowledge bases. One of the clear
advantages of such compilations into Datalog is the availability of many efficient
reasoners, employing several state-of-the-art techniques to optimize query an-
swering. As a prominent example, the magic sets rewriting drives the bottom-up
evaluation of Datalog programs according to the query given in input; recently
proposed improvements to the magic sets algorithm inhibit the creation of recur-
sive definitions and partially unroll the rewriting for predicates whose extension
cannot be limited.
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