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Abstract.

Many tools for knowledge management and the Semantic Web presuppose the
existence of an arrangement of instances into classes, i. e. an ontology. Creating
such an ontology, however, is a labor-intensive task. We present an unsupervised
method to learn an ontology from text. We rely on pre-trained language models to
generate lexical substitutes of given entities and then use matrix factorization to
induce new classes and their entities. Our method differs from previous approaches
in that (1) it captures the polysemy of entities; (2) it produces interpretable labels of
the induced classes; (3) it does not require any particular structure of the text; (4) no
re-training is required. We evaluate our method on German and English WikiNER
corpora and demonstrate the improvements over state of the art approaches.
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1. Introduction

The assignment of entities into a hierarchy of semantically coherent classes is the basis of
knowledge organization systems, and is useful for many information and text processing
tasks. Such classifications are usually created manually (a labour intensive task), but
can also be identified in semi-automatic ways from a corpus. Specifically, the ontology
learning task dealt with in this paper, seeks to create the class hierarchy de novo from
a corpus, along with an assignment of entities into the induced classes. This approach
constitutes a translation of the distributional semantics captured in corpus-wide statistics,
into the explicit semantics described in the class hierarchy of an ontology.

Making corpus-based ontology learning effective on small domain-specific corpora,
enables small organizations to tackle specific problems in reduced times. The resulting

1The work presented in this article has received funding from the German Federal Ministry for Economic
Affairs and Climate Action (BMWK) through the project SPEAKER (no. 01MK19011), and the Austrian
Research Promotion Agency (FFG) through the Project OBARIS (Grant Agreement No 877389)

Clustering Lexical Substitutes Derived from
Language Models

Towards a Knowledge-Aware AI
A. Dimou et al. (Eds.)
© 2022 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution License 4.0 (CC BY 4.0).
doi:10.3233/SSW220018

155



ontologies can be useful for creating data models or powering search applications, among
myriad other applications. In particular, the use of domain-specific ontologies in enabling
knowledge-based transfer learning in information extraction systems (e.g., [14,27]) is a
promising method for industrial applications. For these and other applications, ontology
learning has been approached from different angles, as reviewed in Section 2.

The assignment of entities into semantically coherent classes relies on some method
for recognizing these in text, such as Named Entity Recognition (NER) or Entity Linking
(EL) tools, which have a variety of associated costs. Therefore, an effective corpus-based
class induction method should be able to work with the output of any annotation tool. In
turn, since many of these methods are not able to handle polysemous words2, ontology
learning also must include some means of disambiguation. Another important consider-
ation is that any subdivision of a corpus into documents or similar structures might not
necessarily follow the semantic categorization of entities. That is, the assumption –which
e.g., topic modelling approaches build on– that semantically similar concepts are often
co-occurring across documents, induces already a notion of semantic similarity which
might not correspond to the task at hand or the different uses of entities by the authors of
the corpus. For this reason, ontology learning methods that don’t make use of any notion
of document have a larger range of applications. Finally, since ontologies are meant to
be consumed not only by machines, but rather help inform human-centered knowledge
managing, it is desirable that any automatically identified classes be interpretable by
humans, for example, by being accompanied by a natural language description.

In this work, we present a method for learning ontology classes that leverages large
pre-trained language models, in order to reduce the amount of training data required
and make it applicable to corpora of different sizes. We use lexical substitutes derived
from the language models to capture representations of annotated entities in context. By
analyzing the substitutes of different entities in different contexts we identify and cluster
the different contextualized usages of entities, and propose a class hierarchy for them.
By clustering contextualized usages, as opposed to entities themselves, the system also
disambiguates between different senses of an entity, in particular between general and
domain-specific ones. The details of the method are presented in Section 3. Finally, the
learned classes are assigned descriptors, which can aid a human in distinguishing them
and, eventually, assigning a label to each. Our proposal is compared to state of the art
approaches to the same task in Section 4.3, according to evaluation criteria presented in
Section 4.

2. Related Work

Ontology Learning Ontology learning is the process of deriving an ontology from nat-
ural language or structured data [16,4,8]. In general ontology learning includes many
tasks such as identifying terms, grouping them into classes, extracting hierarchical (taxo-
nomical) and non-hierarchical relations between classes, and discovering more complex
axioms. In this work we aim at grouping the entities (terms) into a hierarchy of classes,
and moreover we assume that entities are already identified and annotated in the corpus.
Our tasks correspond to the third and fourth layer of the Ontology Learning Layer Cake

2For example, “Apple” as fruit or as a brand name.
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[8]. These tasks are especially important as the class hierarchy defines the backbone
of an ontology [1]. Common approaches combine linguistic features with statistics and
machine learning [11,13,29,23]. These methods often have low recall and are affected
by noise [7]. Also such methods often assume significant human intervention and are
language-specific.

Modern end-to-end deep learning models have a chance to overcome these limita-
tions. First, it is not necessary to provide explicit features to such systems. Second, in-
trinsic language understanding might overcome noise in the data. In [9,2] authors ex-
ploit static (not contextualized) word embeddings to extract ontologies. However, to the
best of our knowledge (and see also [1,16]) none of the existing ontology learning ap-
proaches exploits lexical substitutes produced by pre-trained, deep learning-based, Lan-
guage Models (LM) to identify classes of entities.

Induction of Topic Taxonomies A closely related field is induction of topic tax-
onomies [35]. Topic taxonomies can be defined as lightweight ontologies that only in-
clude class hierarchies and assertions of instances to classes. Hence, this task exactly
matches the task we solve in this work. The creation of topic taxonomies has often been
approached by means of clustering methods, interpreting the resulting clusters as top-
ics. In order to use common clustering methods, a mapping from terms to vectors is re-
quired, for example by the use of word embeddings pre-trained on large corpora such
as word2vec [22,33]. These approaches, however, fail to capture the idiosyncratic use
of terms in a given domain3, and so context-specific embeddings have been proposed.
In this respect, contextualised embeddings, such as those underlying recent LMs, have
been exploited to produce vectors that are to be fed into statistical classifiers to detect
is-a relations [10,18], as well as more general relation extraction [31]. Unfortunately, the
use of the LMs in existing work does not properly capture the polysemy of terms and
studies have shown that the only is-a relations found are those which the model acquired
during training [20]. A more careful use of contextualised embeddings can be found in
TaxoGen [35] and its derivatives [30], however, its usability is limited by the need of re-
training embeddings on specific sub-corpora, and sense disambiguation is not explicitly
handled.

To the best of our knowledge, none of the existing methods tackles the polysemy
of entities. The polysemy of terms is especially important in domain-specific corpora, as
it is common for words to be adopted and given new senses in each domain. However,
retention of the original sense is not uncommon, and constitutes a challenge which might
degrade the quality of the resulting ontology. Often these models rely on the notion of
document as a single coherent piece of text, which itself induces a notion of semantic
similarity which might be more related to the process of producing and editing the cor-
pus, than to the meanings of entities themselves. The method we introduce in this paper
does not require partitioning of the corpus into documents.

Topic Modeling Topic modeling is a frequently used text-mining tool for discovery of
hidden semantic structures in a text body. The goal of topic modeling is to cluster a cor-
pus of documents into thematically coherent groups of documents and keywords [32].
These clusters of keywords could be used to produce new classes of an ontology. There-
fore, this method is compatible with our task and we will use the results for comparison.

3For example, the action of the verb “to host” is applied on software or services in the field of Computer
Science, but in the field of product reviews, it is usually applied on people.
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Figure 1. Top m = 6 substitutes predicted by a language model for an unmodified (top) and masked (bottom)
context of “Marx”.

However, the initial goal is to discover latent topics in the corpus, therefore the group-
ing of the terms relies more on the distribution of words across documents rather than
specific patterns of the usage of words.

Language Modeling In our experiments, we exploit modern language modeling tech-
niques. Recently, neural network architectures, in particular the Transformer architec-
ture, have progressed the state-of-the-art in many benchmark Natural Language Process-
ing (NLP) tasks [25,26,12]. The pre-training usually happens on Wikipedia or on news
articles (due to their wide availability), though domain-specific incarnations also exist,
e. g., BioBERT [17], SciBERT [6] and ClinicalBERT [15]. One essential feature of lan-
guage models used in this work, is their ability to predict a word or sequence which has
been masked in a text. For this particular task, the contextualized representation inherent
in modern language models yields better results[25,26] than earlier vector representation-
based language models [21], and bidirectionality can further improve these results [12].
These predictions, can be interpreted as lexical substitutes of the masked section.

3. Method

We start from a corpus which has been annotated with entities, for example using an NER
tool, an entity linking tool or a gazetteer. Based on these entity annotations, we set out
to induce a classification of the entities and produce a set of interpretable descriptors for
each class. This is done in a three-step process: first we generate lexical substitutes for
the entity in context, second, we induce sense representations of entities, and finally, we
group these senses into classes. See Figure 2 for a graphical summary of the procedure.

Create Substitutes We consider a set of entity annotations, each with a context c con-
sisting of a window of w words before and after the entity mention. For each of these
annotations, we generate two inputs that are fed into a language model: the original un-
modified context c, and the context cmasked in which the entity mention has been masked
(see Figure 1 for an example). For each of these inputs, we obtain the top m substitutes,
where m allows us to balance between a low number of high quality substitutes and high
number of potentially lower quality substitutes.

Extract Senses Next, we generate a set of binary matrices {Me}, one for every entity.
Each of the matrices Me has one row per context in which the entity e is mentioned,
and one column per substitute suggested by the language model. Thus, the entry Mi, j
is 1 if and only if the language model predicts substitute j as one of the m best ranked
substitutes for any of the contexts ci, ci masked . In total, we obtain as many binary matrices
as unique entities can be found in the corpus.
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It is possible that a given entity is used in more than one sense throughout the cor-
pus. In order to identify those senses, we factorize each of the binary matrices Me using
Algorithm 2 from [5], in a fashion that has also been used for word sense induction (e.g.,
[3]). This algorithm outputs a set Se = {s1,s2, . . .} of factors, which we call senses. Each
sense s consists of a set of contexts and a set of substitutes Ds, such that for each context,
the annotated entity can be substituted by any of the substitutes from Ds. We call Ds the
sense descriptors of s. We consider only at most k descriptors for each sense. Similar to
m, higher values of k produce larger sense descriptions. Finally, heuristically we iden-
tified that if an entity appears less than five times it is unlikely that more than a single
sense would be induced. Therefore, for such infrequent entities, a single representative
cluster is produced by taking the most common substitutes for the entity.

Induce Classes Once we have produced a set of senses, we proceed to cluster these in
order to induce classes. For this, we generate a second binary matrix M whose rows
correspond to all senses of all entities, and whose columns correspond to all descriptors
of all senses, and factorize it using the same method from [5]. The result of this factor-
ization is a set of tuples of the form C = (E,D) where E is a set of entity senses and D a
set of entity descriptors. Each of these tuples represents a class, where E is a set of entity
senses belonging to it, and the descriptors in D provide and interpretable representation
of the class. To enforce longer class descriptions, we introduce a new parameter th and
filter out clusters with less than th descriptors. Examples of the resulting classes can be
seen in Examples 2 (English) and 3, 4 (German).

Note that the maximum possible size of the matrix M is Ns × (k ×Ns), with Ns
being the total number of senses for all entities. In practice we observe smaller values for
the second dimension, as descriptors for different senses overlap; which also indicates
that we can expect better results for the entire procedure as many different senses share
substitutes and could be efficiently grouped.

We perform the matrix factorisation twice: First for each entity separately and then
for the obtained senses and their descriptors. One could skip the first factorisation and just
collect all occurrences of entities and their respective substitutes into a single binary ma-
trix. However, the distribution of entities is far from normal, so the over-represented ones
would dominate such a matrix. In preliminary experiments we have observed that this
leads to the discovery of various sub-senses of the popular entities rather than a mean-
ingful grouping of different entities. To favor the semantic grouping of various senses we
deem double factorisation necessary.

3.1. Hierarchies of Classes

It is possible to generalize the introduced method to induce hierarchies of classes.
Namely, we see two possibilities to reveal hierarchies, whose evaluation is left outside
the scope of this paper:

Iterative application of the method. Given a class of interest we apply the method to
entities of this class. The induced classes are sub-classes of the initially given class.

Control the granularity of the class with th. Larger numbers of th produce more spe-
cific classes, smaller values of th produce more general classes with more entities. Com-
paring the classification with different th allows to extract hierarchies between those
classes. For an example see EN-11-th3 and EN-9-th6 in Example 1 and 2.
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Figure 2. Class induction diagram. c j represents the jth context. si is the ith induced sense; Dsi are the descrip-
tors of si. Cl is one of the induced classes; Dl are the descriptors of Cl , and El are the entity senses belonging
to Cl . k, m and th are hyperparameters.

4. Experiments

4.1. Experimental Setup

We showcase the method presented here by applying it to two corpora in which named
entities have been annotated. We use the first 120k tokens (including approx. 10k entities)
from both the English and the German sections of the WikiNER data set [24]. While both
of these corpora have been annotated for entities and their type, we ignore the specific
type of each annotation/entity (except for the evaluation). In total, the German corpus
contains 15,207 occurrences of 10,478 unique entities, and the English section contains
10,273 occurrences of 4,485 unique entities.

We choose the WikiNER dataset because class induction on it can be evaluated using
the first method described above, using the original NER types as categories. To make
evaluation by the second method possible, we link the annotated entities to Wikidata.
Entity Linking (EL) was performed before executing class induction, in order to nor-
malise the different surface forms that a putative entity can have. The linking was done
using Entity Fishing4, and resulted in a modest amount of normalisation, as shown in
Table 1. One side effect of Entity Linking with modern tools is that senses are potentially
disambiguated, but we observed this happening in only a small number of instances (see
Table 1).

In the reported experiments, we use DistilBERT [28] as Language Model, using the
HuggingFace implementation [34]. Our implementation is available online5.

4.2. Evaluation Setup

Given a set of entities, finding the best assignment of them into classes is not a well de-
fined problem. In general, several of the criteria to consider when the assignment is made
are independent of any corpus and are more related to the final task the categorization is

4https://github.com/kermitt2/entity-fishing/ visited on April 18, 2021.
5https://github.com/semantic-web-company/ptlm_wsid
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to help solve. Since the candidate classes produced by the method presented here are not
specific to any downstream task, we consider three different methods to evaluate their
quality, all of which are also task-agnostic.

The first evaluation method is based on the manual NE annotations originating from
the used corpora. The associated entity types are relatively coarse-grained, covering Per-
sons, Locations, Organizations, and Other.

The second evaluation method compares the candidate classes derived from the cor-
pus by out class induction approach with other large, task-agnostic and crowd-sourced
ontologies, which are manually curated but not derived from any particular corpus. This
comparison is made on two assumptions: (i) said pre-existing ontology represents the
collective understanding of the entities’ meaning which is consistent with that contained
in almost any corpus, and (ii) the corpus which the method was executed on is a represen-
tative sample of a putative universal corpus that informs the creation and maintenance of
the preexisting ontology. Such an ontology is the Wikidata class structure, as represented
by predicates P:31 and P:279 (instance of, and subclass of, respectively).

The third evaluation method is purely a qualitative one, in which the candidate
classes resulting from the method presented here are inspected and commented upon.
This method, while not capable of giving any numerical measure, does take into account
several sources of knowledge (as summarized in the background knowledge of the hu-
man commentator) and gives a more complete interpretation of the results.

The first and second methods both allow for a numerical value to be assigned to
any set of candidate classes produced by the method presented here, or by any other
producing groupings of entities. In order to aid the explanation of the computation of
this value in these cases, in the following we refer to both Wikidata classes, and to NER
types, as categories, and we assume that the entities present in the corpus can be linked
to members of said categories (in the experiments performed, this assumption holds most
of the time, as detailed in Table 1). The quality of the match is quantified using a well-
known enrichment analysis method [19]. For every candidate class C and every possibly
matching category K, enrichment is the probability of a randomly chosen candidate class
of the same size as C to contain as many entities of K as C does. If we define N(K,C) as
the number of entities in candidate class C that also belong to category K, enrichment is
computed using a binomial test according to:

P(K,C) =
|C|
∑

k=N(K,C)

(|C|
k

)
P(K)k(1−P(K))|C|−k (1)

where P(K) = |K|
|E| , and E is the set of all entities in the corpus. Since we compute such

probability for several categories K, we account for multiple testing by using Bonferroni
correction (i.e. dividing by the number of different categories K that contain at least one
entity in common with C).

Using the resulting p-value, we can compute the percentage of candidate classes
which are significantly enriched for a category of each of the knowledge sources. In
brief, this number tells us how many of the classes suggested by our method are linked
to entities contained in one of the categories of the knowledge source, compensating
for the overall distribution of the entities in the corpus across the categories. We now
present a parameter exploration evaluated using the first and second methods, as well as
a quantitative analysis of the results with several combinations of parameters.
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4.3. Quantitative Analysis

Figure 3. Quantitative evaluation of English candidate classes. Left shows the proportion of candidate classes
which are significantly enriched (p-value < 0.05 according to Eq. 1 after Bonferroni correction) for at least
one Wikidata category (top) or of the original NER types the dataset was annotated with (bottom); higher is
better. Right shows the maximum p-value of this enrichment, lower is better. Shown in white is the number of
candidate classes produced with each combination of parameters.

Using the first two evaluation methods presented earlier, we evaluate the behaviour
of our method using different combinations of hyperparameters m, k and th. The number
of senses produced in the second step of our method (factorisation of the first binary
matrices) is dependent on m, but does not show much variance: for English we produce
at most 45 polysemous entities with m = 20 and at least 33 with m = 10; for German –
at most 30 polysemous entities with m = 30 and at least 23 with m = 20. Many polyse-
mous entities only appear a few times and it is expected that our method will not induce
different senses for such infrequent entities.

The results of the parameter exploration are shown in Figure 3 and Figure 4. For
both the German and English corpus, most combinations of parameters lead to a good
amount of candidate classes which are significantly enriched in Wikidata categories. For
the English corpus, the candidate classes are not always fully contained within the orig-
inal NER types, although at least 80% are, for all but two parameter combinations, see

Normalisation. Number of URIs with N entities Disambiguation. Number of entities with N URIs

N 1 2 3 4 ≥5 1 2 3 4 ≥5

English 3,972 320 40 10 13 4,099 306 37 6 1

German 9,566 397 55 23 12 10,111 286 7 0 1
Table 1. Normalisation and Disambiguation by linking to Wikidata.
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Figure 4. Quantitative evaluation of German candidate classes. Left shows the proportion of candidate classes
which are significantly enriched for at least one Wikidata category (top) or of the original NER types the dataset
was annotated with (bottom); higher is better. Right shows the maximum p-value of this enrichment, lower is
better. Shown in white is the number of candidate classes produced with each combination of parameters.

Figure 3 lower left. It is worth noting that for most parameter combinations, even those
candidate classes which are not significantly enriched for Wikidata categories are still
close to statistically significant (p-value less than 0.1), see Figure 3 upper right. For the
German corpus, both the Wikidata categories and the original NER types are significantly
enriched in the candidate classes, see Figure 4 left.

The parameters m and k regulate the number of substitutes and sense descriptors,
respectively. Therefore, by increasing these parameter values, we might expect better
quality of sense and class descriptors. We do observe these effects in the quantitative
analysis. However, with too high parameter values this effect gets smaller as the language
model produces less relevant substitutes. Moreover, the computational time increases
as the binary tables get larger. The other parameter th introduces a threshold on the
minimum number of class descriptors. Thus, a larger th yields finer-grained classes.

The granularity of the classes can be assessed by inspecting the Wikidata categories
for which they are enriched. When the threshold th is small, the most enriched-for cat-
egories are very wide. A close analysis of this can be seen in Figure 5. As the value of
th increases, more of the candidate classes found are enriched on Wikidata categories
which are smaller than the mean category size (for those categories whose entities are
present in the corpus). These smaller categories are more specific, so that instead of a
candidate class being enriched with, for example, HumanQ5 , a class could be enriched
with Heads of stateQ48352. Obtaining candidate classes of different levels of specificity is
one of the strong points of the method presented here.
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(a) English

(b) German

Figure 5. Proportion of candidate classes which are enriched with small Wikidata categories. We consider a
Wikidata category to be small if the size of its intersection with the terms in the corpus is below the mean.
For every combination of parameters k and m, the ratio of candidate classes which are enriched for such small
categories is shown. The number of candidate classes is given in white.

4.4. Qualitative Analysis of Induced Classes

In order to gain a better understanding of the quality of the proposed approach, we man-
ually checked the classes that resulted from the presented experiments when m = 30 and
k = 40, as the quantitative results for these values showed stable high-quality outcomes
over different settings. We investigated the results for th = 3 (see Examples 1 and 3) and
th = 6 (see Examples 2 and 4) both in the English and German dataset.

EXAMPLE 1 (some English Candidate Classes for m=30 k=40 th=3)
EN-6-th3 Descriptors: Greek, Greece, Athens
Entities: sparta, bozcaada, cyprus, spitamenes, olympias, Aegean Sea, thessaloniki, athenian empire, . . .

EN-8-th3 Descriptors: Hercules, Jupiter, Prometheus, Zeus, Apollo

Entities: zeus, saturn, Athena, heracles, ajax, mt. olympus, 28 bellon . . .
EN-11-th3 Descriptors: film, Oscar, Film

Entities: william c. demille, 80th Academy Awards, the lady vanishes, sight & sound, douglas fairbanks,
golden lion, Best Original Song, . . .

EN-18-th3 Descriptors: Macintosh, Home, iPhone, Apple

Entities: Macworld, apple lisa, apple usb modem, wireless keyboard, game boy color, apple, iphone 3g,
magic mouse, . . .

EN-22-th3 Descriptors: Nadal, Masters, Davis, Wimbledon, Serena, Murray, set, Federer

Entities: michael stich, david wheaton, robby ginepri, patrick rafter, Federer, john mcenroe, arnaud clément,
. . .

EN-37-th3 Descriptors: Mercury, Gemini, space, NASA

Entities: saturn v, vostok 6, apollo 13, Mercury, command/service module, sts-95, ufo, . . .
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EXAMPLE 2 (some English Candidate Classes for m=30 k=40 th=6)
EN-9-th6 Descriptors: director, Newman, Oscar, film, Hollywood, Film

william c. demille, alfred hitchcock presents, jean vigo, robert bresson, laurence olivier, henry fonda, grace
kelly, john ford, hitchcock, . . .

EN-11-th6 Descriptors: Switzerland, Germany, Europe, Poland, Austria, England

Entities: iceland, Germany, great britain, Holland, norway, estonia, sweden, Israel, . . .
EN-27-th6 Descriptors: Pluto, Mars, Orion, Galileo, Uranus, Titan, Jupiter, Apollo, Mercury

Entities: Mars, 2 Pallas, janus, 944 Hidalgo, 28 bellona, saturn, 37 fides, 52 europa, Phobos, near shoe-
maker. . .

EXAMPLE 3 (some German Candidate Classes for m=30 k=40 th=3)
DE-10-th3 Descriptors: Verein, Club, Fußball

Entities: fc bayern münchen, vfr aalen, tsv crailsheim, fc valencia, fußball-bundesliga der frauen, sc heeren-
veen, first vienna fc, asiens fußballer des jahres, saison 1977/78. . .

DE-30-th3 Descriptors: Militär, Reich, Volk

Entities: französische heer, kaiserlich russischen marine, nationalen widerstandsrates im iran, bayerische
justizministerium, waffen-ss, nationalen volksarmee, heer, . . .

DE-31-th3 Descriptors: Eisenbahn, Strecke, Insel

Entities: turmbergbahn, u-bahn-linie u6, bahnstrecke braunschweig-magdeburg, brücke, pariser métro, b
173, mariazeller straße b20, themse, . . .

EXAMPLE 4 (some German Candidate Classes for m=30 k=40 th=6)
DE-8-th6 Descriptors: Bach, Donau, Rhein, Fluss, Saale, Elbe

Entities: mittellandkanal, seille, oder, omerbach, tauber, europäische hauptwasserscheide, . . .
DE-14-th6 Descriptors: Schule, Halle, Universitat, Akademie, Fakultät, Universität, Hochschule

Entities: technische universität chemnitz, universitätssternwarte wien, cambridge university, eth zürich,
hochschule für musik detmold, . . .

DE-26-th6 Descriptors: Karlsruhe, Stuttgart, Baden, Tübingen, Heilbronn, Württemberg

Entities: stuttgart, baden-württemberg, cannstatt, heilbronn, ulm, alpirsbach, rottweil, konstanz, . . .
DE-28-th6 Descriptors: Anna, Katharina, Maria, Mathilde, Agnes, Helene

Entities: maria von beuthen, dorothea becker, zabel, beatrix von luxemburg, irina walentinowna moissejewa,
anna friessnegg, . . .

DE-30-th6 Descriptors: Louis, Marie, François, Jean, Paul, Joseph

Entities: françois rude, charles-françois von velbrück, aurel emile joliat, auguste de montferrand, jean bap-
tiste janssens, . . .

Overall, produced classes are of high quality, with only a very small number of
classes where the assigned entities could not be semantically grouped in an obvious
way. Furthermore, their semantic characteristics are quite diverse: One the one hand,
classes covering sub-categories of locations were produced, such as countries (e.g, EN-
11-th66) and municipalities (e.g., DE-26-th6), as well as geographical entities such as
rivers (DE-8-th6), and infrastructural elements such as railway tracks and streets (DE-31-
th3). On the other hand, persons were subdivided due to their gender (e.g., DE-28-th6),
profession (e.g., EN-9-th6), the origin of their name(DE-30-th6), or their membership to
a specific group, such as Greek deities (EN-8-th3). Furthermore, classes of organisations
(e.g., sports clubs DE-10-th3, armed forces DE-30-th3, or universities DE-14-th6) were
produced. However, some classes also provided a wider view, e.g., EN-6-th3 combines
Greece-related entities, both persons and locations. Also, very focused classes such as
class EN-18-th3 (technology) and class EN-37-th3 (space) were identified.

The examples show that the specificity of different classes varies a lot (different enti-
ties that relate to Greece in EN-6-th3 compared to cities in a single German State in DE-
26-th6). As seen in the quantitative analysis, the granularity of the classes is dependent

6We use the convention {LANGUAGE}-{CLASS NUMBER}-th{THRESHOLD}
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on th, where higher values lead to more specific classes. While classes that already had
a high degree of specificity with a lower threshold would remain quite stable with higher
thresholds e.g., class EN-22-th3 about tennis stars is identical –both in terms of descrip-
tors and entities– to EN-15-th6, increasing th in more coarse-grained classes can lead
to the creation of sub-classes: th = 3 resulted in a class (EN-11-th3) about film awards,
which includes different awards themselves (Golden Lion, Academy Award) as well as
winning (or nominated) actors, directors, and movies. By increasing th to 6, EN-9-th6
is created, which only includes award-winning directors and actors. Another example in
this regard is EN-8-th3, which includes Greek gods, but also celestial bodies named after
them (Saturn::LOC, 28 Bellona). When increasing the threshold to 6, these two kinds of
entities can be successfully separated (see EN-27-th6).

Taking a look at the produced descriptors, we see that for some classes, these de-
scriptors come close to class names, scope of the class can be understood by reading the
descriptors only, e.g., DE-14-th6 has the descriptors School, Hall, University, Academy,
Faculty and summarises higher education facilities. However, for others, additional back-
ground knowledge is needed, in order to get an understanding of their content, e.g., to
recognise the tennis stars theme in class EN-22-th3 with descriptors Nadal, Masters,
Davis, Wimbledon, Serena, Murray, set, Federer. Even though the concrete granularity
of a class can be only determined by taking a look at the entities, in almost all of the
cases, the descriptors provided helpful insights into the class content.

For retrieving the additional background knowledge to understand the class content,
it can be helpful to consider the best matching Wikidata category as it provides some use-
ful insights for possible semantic connections between the entities. For example, while
at first glance the descriptors (Austria, Uzbekistan, Uganda, San Marino) might only
share the shallow relation of being countries, the common Wikidata link Landlocked
countryQ123480 reveals a non-obvious, more specific connection. The same holds for DE-
26-th6, where –for a non-expert– it might be difficult to see that all entities are towns
located in the German state of Baden-Württemberg when not provided with the Wikidata
link to city district of Baden-WürttembergQ2327515. Still, in most cases, the best matching
Wikidata category seems too broad to provide helpful insight (e.g., for almost all person-
related classes, the category HumanQ5 or Common NamesQ502895 is provided), and some-
times it is even confusing (EN-11-th6 has the common broader Legal scienceQ382995).

4.5. Benchmark and comparison to other methods

The work presented here produces sets of semantically coherent entities from an anno-
tated corpus. This task is, in a wide sense, equivalent to the tasks solved by two different
approaches: topic modeling (TM), and topic taxonomy induction (TTI). The former is
well-known and has many different solutions, and the latter deals specifically with the
construction of hierarchies and state of the art solutions make also use of embeddings.
Both approaches make the additional assumption that the corpus is partitioned into doc-
uments, and derive from this partition information about the semantic relatedness of en-
tities. In order to gauge the performance of our method, we compare to both approaches.

For TTI, the state of the art TaxoGen[35] method was used, as per the original au-
thor’s implementation. For TM, a standard approach using count-based vectorisation fol-
lowed by LDA, both using the Scikit-learn library, was performed, and an entity was
deemed part of a topic by thresholding the resulting row-normalised term-topic matrix
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Table 2. Comparison to other methods. We compare the best sets of topics produced by different methods
according to three criteria. The best values are marked in bold. TTI stands for the TaxoGen implementation of
Topic Taxonomy Induction, and TM for topic modelling.

Optimized for:
Enrichment with small

Wikidata categories
Many classes enriched

with Wikidata categories
Max. p-value of enrichments

to Wikidata categories

Method our TTI TM our TTI TM our TTI TM

Number of candidate classes 7 5 36 14 17 12 26 19 10
Average candidate class size 15.7 10.0 88.0 16.4 10.0 390.5 80.8 10.0 461.2

Prop. enriched with small
Wikidata categories (HIB)

0.86 1.0 0.75 0.71 0.76 0.0 0.27 0.74 0.0

Prop. significantly enriched (HIB) 1.0 1.0 0.83 1.0 1.0 1.0 1.0 1.0 1.0

Max. p-value of enrichment (LIB) 4.5e-4 5.5e-4 1.9e-3 3.7e-4 8.7e-5 2.9e-16 9.9e-9 2.9e-5 5.4e-18

with thresholds 0.01, 0.1, 0.2, and 0.5. In both cases, each document in the corpus was
represented as a list of entities (as per the annotations), and the number of topics (clusters,
in TTI) was varied from 5 to 50 in increments of two. For each criteria, the best decom-
position by each method was selected, and basic statistics on topic size were computed
(see Table 2). Comparison was done only for the English language corpus.

The results of the comparison (Table 2) show that TM tends to generate very large
topics, which makes it an unfavorable choice when trying to find collections of entities
with very specific similarities. Therefore, our method outperforms TM in finding groups
of entities matching small Wikidata categories, while TM yields very good p-values for
enrichment. In contrast, both our method and TaxoGen lead to smaller classes (clusters),
which are also very good matches to Wikidata categories. Our method achieves results
comparable to the state-of-the-art, while neither requiring specific re-training of embed-
dings, nor assuming the corpus to be partitioned into documents.

Our method more often produces more classes that are better populated with entities
than the results of TaxoGen. In the second column of Table 2, though our method outputs
only 14 candidate classes as opposed to 17 by TaxoGen, the coverage of original entities
is 35% higher than by TaxoGen because our candidate classes on average have 64% more
entities. In other columns the difference is even larger. Therefore, the method presented
here covers the given entities better and produces a more complete classification. This
feature is specifically important when working with small corpora or with corpora with
little annotations.

5. Conclusions

We present a method to automatically induce classes from an entity-annotated corpus.
Our method exploits the ability of modern language models to predict lexical substitutes
for a target in a given context, to tackle potential polysemy of the annotated entities
to induce senses of the annotations on the fly. The generated entity senses are grouped
into coherent classes with human-interpretable class descriptors. Importantly, our method
requires no additional supervision, can work with annotations coming from different
kinds of tools, and does not require the partitioning of input corpus into documents.

With different parameter combinations, this method allows for classes to represent
differently grained classifications of entities. This allows, for example, recognizing par-
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ticular entities as belonging to the coarse topic of persons and, with a different combi-
nation of parameters, as belonging to more fine-grained subclasses of people, such as
Presidents of the United States, or 19th century painters. Generalizations of our method
are capable of extracting hierarchies of classes.

We evaluate our method on large general-purpose corpora in two languages. Quan-
titative and qualitative evaluations show our method’s ability to induce a set of classes
that is in agreement with external classification schemes in Wikidata. The quality of the
results from our method is comparable to one of the state of the art methods (TaxoGen),
however our method covers the original annotations better and yields more a complete
classification of the original entities.

Our method is also applicable to small domain-specific corpora, since the usage of
pre-trained language models on short contexts (as opposed to documents for other meth-
ods) allows for capturing the contextual semantics of previously unseen domain-specific
words. Additionally a good coverage of the original entities in the output classification
makes efficient use of smaller quantities of input data.
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