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Abstract. Quantum computing is currently experiencing rapid progress.
Due to the complexity and continuous growth of knowledge in this field,
it is essential to store information in a way that allows an easy access,
analysis and navigation over reliable resources. Knowledge graphs (KGs)
with machine-readable semantics offer a structural information repre-
sentation and can enhance the capabilities of knowledge processing and
information retrieval. In this paper, we extend the platform and ecosys-
tem for quantum applications (PlanQK) for a KG. Specifically, we de-
scribe how the quantum computing knowledge, which is submitted on
the platform by researchers and industry actors, is incorporated into the
graph. Moreover, we outline the semantic search over the PlanQK KG.
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1. Introduction

Quantum computing has experienced notable growth in recent years leading to a
corresponding increase of knowledge in this field. Access to a wide spectrum of sci-
entific and business information, including publications, programming code, soft-
ware, and hardware documentations is without doubt highly beneficial for further
research and development of new technologies. However, it also means that find-
ing relevant knowledge in quantum computing related sources has become an in-
creasingly tedious and time-consuming task even when employing search engines.
Knowledge graphs (KGs) have grasped significant potential for enhancing capa-
bilities of search systems, facilitating more efficient information retrieval (IR) [1].
Representing data as a graph allows to define formal semantics and improves
flexibility for integrating data from heterogeneous sources [1], [2].

In this paper, we introduce an approach for organizing and curating the in-
formation available on PlanQK1 - a collaborative platform and an ecosystem cen-
tered on quantum-enhanced applications - in form of a knowledge graph. The
mission of PlanQK is to make the research and industrial knowledge about quan-

1https://platform.planqk.de/
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Figure 1. Core knowledge artifacts of the PlanQK ontology.

tum software and solutions easily accessible as well as to offer the capability to
deploy, host, execute and monetize quantum services. We present a pipeline for a
continuous semantification of the data submitted by user. Furthermore, we out-
line native semantic search and faceted semantic search, which leverage indexed
parts of the PlanQK KG to improve the retrieval of relevant information.

This paper is structured as follows. In Section 2, we briefly introduce the
PlanQK KG along with the underlying ontology and provide an overview of the
semantification process of the platform data, i.e., its integration into the graph. In
Section 3, we describe the realization of KG-based semantic search and semantic
faceted search. We give an outlook on future work and a conclusion in Section 4.

2. PlanQK Knowledge Graph

PlanQK KG provides a structured machine-interpretable representation of the
platform knowledge by organizing information into named nodes and directed
edges that represent specific relations between these nodes2. Following the Re-
source Description Framework (RDF)3 standard, each node and property is iden-
tified by a Uniform Resource Identifier (URI). To query the graph, we utilize
SPARQL [3] query language, which is widely used in Semantic Web applications.

The PlanQK Ontology [4] serves as a formal schema of the PlanQK KG by
defining selected computing concepts and relations between them in the context
of the PlanQK platform. The ontology is publicly accessible to the research com-
munity including documentation and usage examples4. During the creation of the
PlanQK ontology, we reviewed existing vocabularies that already encompass def-
initions of relevant concepts and reused certain ontologies, e.g., ML Schema [5],
Subject Resource Application ontology (SRAO) [6], and Software Package Data

2Note that the term “knowledge graph” encompasses various definitions in the literature. For
an overview and a comprehensive introduction of KGs we refer to [2]. In this paper, we denote
a knowledge graph as an ontology, which defines domain knowledge along with application data
integrated into the ontology, i.e., incorporated with machine-readable semantics.

3https://www.w3.org/TR/rdf12-concepts/
4https://github.com/PlanQK/semantic-services
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Figure 2. Overview of the platform data integration into the knowledge graph.

Exchange (SPDX) License List [7]. Figure 1 shows the core concepts of the
PlanQK ontology, i.e., algorithms, implementations, use cases, data pools and
services. Still the primary focus of the semantic annotations in PlanQK lies in
describing quantum-related information, it nevertheless encompasses also knowl-
edge related to the classical computing. The reason for this is twofold: Firstly,
quantum concepts are often related to classical, e.g., quantum algorithms can be
inspired by the idea of their classical counterparts, and, secondly, due to sev-
eral limitations of the quantum devices in the Noisy Intermediate-Scale Quantum
(NISQ) [8] era, quantum-enhanced applications are currently mostly developed
in a hybrid manner, i.e., contains both quantum and classical parts [9], [10].

The semantification process of the PlanQK platform is depicted on Figure 2.
The frontend of the platform allows users to create, modify and delete knowledge.
For example, an user can create a new entry that describes an algorithm with a
specific name and computation design, i.e., quantum, classical, or hybrid. The user
can further modify the entry by filling various textual attributes, e.g., acronym,
intent, and solution, and select annotations from the controlled vocabulary, e.g.,
problem class and application area. Once the data is submitted, the backend
of the platform manages the information insertion into the relational database5

and triggers a request to a cloud messaging service, which publishes the message
regarding the data changes to the particular channel. To receive notifications
from the channel, the knowledge service requires an active subscription. If this
is the case, the service obtains a message in the JSON format. The conversion
of new data from JSON into RDF is facilitated by Karma [11] integration tool.
Karma provides a semi-automatic approach to define a mapping model between

5In the context of the PlanQK platform, the decision to use both a relational database and
a knowledge graph for data storage is driven by considerations of security and component
decoupling. In addition to the explicit content of the platform, the relational database contains
the information about user rights. The decoupling of data storage is beneficial to facilitate the
future expansion of the knowledge service for an ecosystem of similar platforms.
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structured sources and KGs. Given a mapping model, an entity or a collection
of similar entities stored in JSON can be dynamically transformed into RDF.
However, this mapping is limited to the explicit information conveyed in the
received data, i.e., the required inferences must be incorporated into the RDF code
prior to its usage for the KG extension. We utilize pre-defined axioms and rules
to derive implicit knowledge. An example of such inference is the assignment of a
specific type to an algorithm instance, e.g., if the user submits an algorithm and
specifies that it solves a classification problem, a relation rdf:type to the concept
“Classification Algorithm”, which is a subclass of “Machine Learning Algorithm”,
is attached. Finally, the generated RDF is used to update the instance level of the
KG. Additionally, the data is indexed and inserted into a search cluster, which is
queried during the content search.

We use PostgreSQL6 as relational database and Google Cloud Pub/Sub7 as
messaging infrastructure. The knowledge service is an extension of the Terminol-
ogy Service8 (TS) [12], which was originally created for accessing, developing and
reasoning of vocabularies withing the biological and environmental domains. We
adjusted and extended the TS implementation to tackle PlanQK requirements,
e.g., handling of instance data. The component is developed using Java and Spring
Boot framework9. The KG is stored in Virtuoso Triple Store10 and can be queried
directly both over a SPARQL endpoint and the REST API of the knowledge
service. To store the search index, we use the Elasticsearch (ES) engine11.

3. Semantic Search

The user of the PlanQK platform has three options to retrieve the knowl-
edge: (i) simple page navigation, (ii) semantic search, and (iii) semantic faceted
search. In this section, we describe the last two alternatives.

Traditional keyword-based search approaches that solely relies on queries for
literal matching of keywords can not meet the demands of knowledge retrieval
since the meaning of the search term and the ambiguous nature of the natural
language are not taken into account [13], [14]. The semantic search uses the con-
text and the semantics of search terms for improved IR [15]. To generate relevant
search results on the PlanQK platform, we index labels and descriptions of in-
stances along with their synonyms, acronyms and broader terms extracted both
from the local information, i.e., data submitted by user, and the global informa-
tion, i.e., data stored in the KG including inferenced knowledge and annotations
from the entire PlanQK ontology. Additionally, we employ common techniques
for improving the IR such as spelling correction and stop words removal.

Initially, the user submits the search request using the platform frontend. The
search term is forwarded to the API of the knowledge service, which is responsible

6https://www.postgresql.org/
7https://cloud.google.com/pubsub/docs/overview
8https://terminologies.gfbio.org/
9https://spring.io/projects/spring-boot
10https://virtuoso.openlinksw.com/
11https://www.elastic.co/de/elasticsearch/
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for the retrieval of search results. The service automatically constructs a query
that is then performed on an ES cluster. Thereby, the ranking of results is a part
of the ES operations. Finally, the results are sent to the backend of the platform,
where they undergo filtering depending on user access rights, and are displayed
as snippets on the frontend. Note that the information stored in the ES cluster is
filled in during the data transformation mentioned in the previous section. This
is beneficial because the transformation and the search index in this scenario are
generated for individual instances instead of the entire platform data.

The faceted search is an intuitive method of IR, where users can explore
and refine search results by applying filters, or facets, along various dimen-
sions [16], [17]. In our application, we distinguish between two facet types based
on their functionality in querying and classifying data: (i) semantic type facets
and (ii) property facets. Semantic type facets filter instances based on its seman-
tic type. An example is the “problem type” facet for algorithms. The values of
the facet are organized as a hierarchical tree with leafs representing the concept
“Problem Type” and its subclasses, e.g., ’Machine Learning Problem’ and ’Opti-
mization Problem’, as well as their subsequent subclasses. If the user selects a fil-
ter value, e.g., “optimization”, all data nodes directly connected by the property
rdf:type with the concept ’Optimization Algorithm’ or indirectly related through
rdf:type with one of its subclasses, are retrieved. The successful retrieving of search
results for these facets requires prior unique definitions of the concepts involved,
e.g., the concept ’Optimization Algorithm’ should be defined as ’Optimization Al-
gorithm ≡ Algorithm � ∃ solves.Optimization Problem’. The advantage of these
facets is the ability to enhance IR with hierarchical dependencies. However, due
to requirements for automatic inferences and deep graph querying, they can be
time-consuming. To avoid deep queries by the extraction of broader terms, we re-
strict the query to the maximal depth d. To reduce the inference time, we deduce
implicit knowledge about the type of instances, e.g., whether a specific algorithm
is an optimization algorithm, during the data integration into the KG. Yet, this
approach does not guarantee discovering all potential inferences related to new
or modified instances. Hence, after n data insertions into the KG, we extract
the graph and employ the Hermit [18] reasoner to derive additional assertions
throughout the entire graph. Property facets rely on the range of specific relations.
These facets are useful when the values are structured as a flat tree. In contract to
semantic type facets, there is no need to define new concepts and corresponding
definitions. An example is the “software tool” facet with values, e.g., “Qiskit”,
or “Pennylane”. The results are retrieved by filtering out the instances that are
connected by the relation qco:depensOn with the selected facet value.

Faceted search on the PlanQK platform starts with opening the advanced
search interface for a specific core entity. This action triggers the generation of
the facets and their possible values. Figure 3 depicts this process. To enable
the construction of the SPARQL query for retrieving available facet values, we
read the search configuration for the selected entity. This configuration specifies
following attributes for each facet: (i) facet name, (ii) URI(s) of top node(s), and
(iii) facet type (semantic type vs. property facet). As the structure of the facets
depends on the underlying model, we query here the triple store directly. After
the tree of facets is displayed, the user starts choosing desired filters. As shown in
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Figure 4, we query the corresponding ES cluster to retrieve results, which holds
only indexed search related information. In the post-processing step, the results
from the faceted search (i) are merged with the result set from the semantic
search (if it was executed first), and (ii) filtered to match user access rights for
the content. Final results are displayed as snippets in the frontend.

4. Conclusion and Outlook

Curated KGs, which undergo a careful engineering and data integration, act as
useful resources for various applications such as IR, decision support and recom-
mendation systems. In this work, we presented the pipeline for an on-the-fly inte-
gration of the PlanQK platform data into a unified KG. The semantification pro-
cess can be further improved by extracting relevant concepts and relations from
textual attributes through machine learning enhanced techniques, e.g., named en-
tity recognition. To ease IR over the platform, we implemented the native seman-
tic search as well as the faceted semantic search. Further work is required to evalu-
ate the search functionality and refine the search capabilities. We plan to expose a
part of PlanQK KG as Linked Open Data and establish connections with related
external sources such as DBPedia [19], Wikidata [20] and graphs in the research
domain, e.g., Open Research Knowledge Graph (ORKG) [21]. As the knowledge
in the field of quantum computing is currently changing rapidly, the possibility
of the controlled graph curation by the community should be established.
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