
Undefined 0 (0) 1 1
IOS Press

ClioPatria: A SWI-Prolog Infrastructure for
the Semantic Web
Editor(s): Axel Polleres, Vienna University of Economics and Business, Austria
Solicited review(s): Christoph Redl, Vienna TU, Austria; Alessandra Mileo, DERI, Ireland

Jan Wielemaker a Wouter Beek a Michiel Hildebrand b Jacco van Ossenbruggen b

a VU University Amsterdam, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands,
e-mail: {J.Wielemaker,W.G.J.Beek}@vu.nl
b CWI, Science Park 123, 1098 XG Amsterdam, The Netherlands,
e-mail: {M.Hildebrand,Jacco.van.Ossenbruggen}@cwi.nl

Abstract. ClioPatria is a comprehensive semantic web development framework based on SWI-Prolog. SWI-Prolog provides an
efficient C-based main-memory RDF store that is designed to cooperate naturally and efficiently with Prolog, realizing a flexible
RDF-based environment for rule based programming. ClioPatria extends this core with a SPARQL and LOD server, an extensible
web frontend to manage the server, browse the data, query the data using SPARQL and Prolog and a Git-based plugin manager.
The ability to query RDF using Prolog provides query composition and smooth integration with application logic. ClioPatria is
primarily positioned as a prototyping platform for exploring novel ways of reasoning with RDF data. It has been used in several
research projects in order to perform tasks such as data integration and enrichment and semantic search.

Keywords: Triple Store, Logic Programming, Semantic Web Framework

1. Introduction

Many Semantic Web applications converge to a
three-tier architecture1 —storage, application logic,
presentation— that is popular in the relational
database world, were SQL is replaced by SPARQL.
SPARQL servers provide a varying and some-
times configurable level of entailment reasoning
to support applications in data integration (e.g.,
owl:sameAs, rdfs:subPropertyOf) and hierar-
chical reasoning (e.g., rdfs:subPropertyOf and
rdfs:subClassOf). The application logic is gener-
ally expressed in an (object-oriented) general purpose
programming language.

Although we acknowledge there is a need for such
architectures, because of their proven robustness, scal-
ability and familiarity for the software industry, we

1https://msdn.microsoft.com/en-us/library/
ee658109.aspx

claim that these architectures are not suitable to ex-
plore the full potential of the ideas behind the Seman-
tic Web for two reasons. Firstly, the separation be-
tween storage (SPARQL) and application logic (gen-
eral purpose language) often causes a single compu-
tation to be expressed in a mixture of these two lan-
guages. This mixture harms readability as well as per-
formance. Secondly, most languages used for the logic
tier do not support higher level rule-based reasoning
easily and suffer from the object-relational impedance
mismatch [14], which makes expressing the applica-
tion logic cumbersome.

We have developed ClioPatria to explore applica-
tions of the Semantic Web that are not well supported
by the three-tier architecture. Its first application [25,
42] became the winner of the ISWC-2006 Semantic
Web challenge. This application provides search over
multiple museum collections while clustering the re-
sults based on their relation to the search term. The
core of the application is an RDF path finding heuristic

0000-0000/0-1900/$00.00 © 0 – IOS Press and the authors. All rights reserved

https://msdn.microsoft.com/en-us/library/ee658109.aspx
https://msdn.microsoft.com/en-us/library/ee658109.aspx

2

and an algorithm for clustering paths based on the class
and property hierarchies. Such techniques could not
be expressed in SPARQL 1.0. Although SPARQL 1.1
primitives such as path-expressions allow for pushing
a little more of the application logic to the query lan-
guage, SPARQL-based solutions remain a mixture of
SPARQL queries and client code that is hard to main-
tain and performs poorly due to the large number of
SPARQL queries required to perform the search.

ClioPatria is a Prolog-based RDF framework that
aims primarily at prototyping. It particularly facilitates
prototyping due to the following features:

– A dedicated RDF store that is implemented in
the C-language and designed to interface to Pro-
log naturally, providing a stable and efficient core
storage and rule engine.

– Libraries that support all standard RDF inter-
change formats, the SPARQL 1.1 query language
and LOD services, allowing to interface to other
tools from the Linked Data community,

– The Prolog language provides a stable rule for-
malism and facilitates prototyping through live
recompilation of the program under development,
strong reflective and meta-programming support
and the ability to ‘retry’ (go back to a previous
point in the execution after undoing all assign-
ments and execute the same code again) goals in
the debugger that did not produce the expected re-
sult and thus inspect the execution at a more de-
tailed level. [44]

– An integrated web development framework al-
lows for serving an entire RDF-based web appli-
cation from a single executable.

In this article, ClioPatria refers to both the ClioPatria
application and the underlying SWI-Prolog libraries,
notably the semweb, RDF, pengines and http packages.
ClioPatria and these libraries have been developed to-
gether, where stable and general code typically became
part of the SWI-Prolog libraries, while ClioPatria com-
bines the libraries into a coherent and comprehensive
application framework.

We would like to position ClioPatria primarily as
an RDF library that is tightly connected to a program-
ming language (Prolog). This positions it relatively
close to Java-based systems such as Sesame, Jena, the
Python-based rdflib and the Common Lisp-based Al-
legroGraph (see Section 3). It is positioned at a much
greater distance from (often) disk-based SPARQL en-
gines such as 4store and Virtuoso.

This document is organised as follows: before get-
ting to related work in Section 3 we make the reader
familiar with ClioPatria’s concepts, features and de-
sign in Section 2. Application areas are described in
Section 4, where we show ClioPatria’s impact. In Sec-
tion 5 we discuss the current limitations and our plans
for the future. Section 6 concludes.

2. Introducing ClioPatria

2.1. Prolog and RDF

The central feature of ClioPatria is to use Prolog as
rule and ‘glue’ language. RDF triples are naturally ex-
pressed in Prolog by the relation rdf(Subject, Pred-
icate, Object), where URIs are represented by Prolog
atoms (interned strings) and literals are represented by
a Prolog term that expresses the lexical form and the
datatype or language tag. First, we give some examples
of triples represented in Prolog taken from the RDF 1.1
primer document:2

rdf('http://example.org/bob#me',
'http://...rdf-syntax-ns#type',
'http://xmlns.com/foaf/0.1/Person').

rdf('http://example.org/bob#me',
'http://xmlns.com/foaf/0.1/knows',
'http://example.org/alice#me').

rdf('http://example.org/bob#me',
'http://schema.org/birthDate',
literal(type('http://...#date',

'1990-07-04'))).

Like SPARQL and Turtle, the Prolog RDF layer al-
lows for prefix notation. Prefixes are declared using
rdf_register_prefix(Prefix, URI), after which
URIs can be written as prefix:localname. We will use
this notation in the remainder of this article, using the
conventional prefixes as defined on http://prefix.
cc/.

Given an RDF database, Prolog allows us to write
graph patterns as they appear in e.g., SPARQL as a
conjunction of rdf/3 relations. For example to get
the birth dates of people somebody knows we can
write:

2http://www.w3.org/TR/2014/
NOTE-rdf11-primer-20140624/
#section-n-triples

http://prefix.cc/
http://prefix.cc/
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/#section-n-triples
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/#section-n-triples
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/#section-n-triples

3

known_with_birthdate(Me,He,Date):-
rdf(Me, foaf:knows, He),
rdf(He, schema:birthDate, Date).

The above code corresponds to the following
SPARQL query:

SELECT ?me ?he ?date WHERE
{ ?me foaf:knows ?he .

?he schema:birthDate ?date
}

We claim, however, that the
known_with_birthdate/3 version in Prolog
has many advantages over the SPARQL version,
which we will explain below.

First, because the Prolog version has an explicit
name, it is easy to reuse it in other queries. This al-
lows developers to incrementally build more sophis-
ticated functionality on top of existing, proven and
tested building blocks. This is an effective way to avoid
the large and complex SPARQL queries often found in
other Semantic Web applications.

A second advantage is that the three arguments to
known_with_birthdate/3 can be used both to
query and to filter. For readers that are not familiar
with Prolog: identifiers that start with a capital letter
are variables, while identifiers that start with a lower
case letter or appear within single quotes are constants,
called atoms in Prolog.

The interactive session below illustrates the use of
known_with_birthdate/3 to query the triple
store. Note that the predicate generates all solutions
one by one (the semicolon (;) is typed by the user to
ask for the next solution).

?- known_with_birthdate(Me, He, Date).
Me = 'http://example.org/bob#me'
He = 'http://example.org/alice#me'
Date = literal(type(xsd:date,

'1990-07-04') ;
Me = 'http://example.org/bob#me'
He = 'http://example.org/john#me'
Date = literal(type(xsd:date,

'1992-09-06') ;
...

Instead of passing variables, we can also pass con-
crete values as arguments to the predicate. This is
logically equivalent to filtering all results to those
where the argument has the specified value. Calling

known_with_birthdate(’http://.../bob#me’, He,
BirthDate) results in the first call to rdf/3 using the
combined subject-predicate index instead of just the
predicate index, producing the reduced solution set
efficiently. Calling known_with_birthdate/3
with only a given BirthDate also produces the correct
results, but inefficiently. This is discussed below.

Combined with operations on literals and Pro-
log’s aggregation primitives, the above apparatus
allows any SPARQL query to be expressed nat-
urally. And, it can do more. Firstly, the above
known_with_birthdate/3 rule can be used as
an abstraction of the two rdf/3 statements and can be
embedded in more complex graph patterns. This abil-
ity to compose queries facilitates exploring RDF data
by assembling a library of simple graph patterns that
can be named, documented and shared. Secondly, ex-
ternal sources such as relational databases or arbitrary
Prolog relations can naturally be mixed with the RDF
query. Thirdly, more powerful control structures can
deal with recursion, constraint satisfaction, etc.

Prolog’s SLD resolution, basically depth-first traver-
sal of the search space, solves the stated queries
under the provision that the user takes measures
to avoid unbounded recursion.3 The performance
of the SLD resolution strategy is very sensitive to
proper ordering of the graph patterns. Prolog’s re-
flective capabilities that allow Prolog to inspect and
rewrite Prolog programs can solve this. The predicate
rdf_optimise(PaternIn, PatternOut) rearranges a
graph pattern based on statistics maintained by the core
triple store [38].

2.1.1. Mapping more SPARQL concepts
Above, we described plain triple matching and

simple conjunctions. Other SPARQL constructs are
typically mapped to Prolog control primitives or
higher-order (meta-)predicates. For example, UNION
maps to Prolog disjunction (QueryA ; QueryB)
and OPTIONAL maps the the control structure
(Query *->true ; true). Aggregation, ordering and
limiting the number of solutions are provided by
the ISO Prolog aggregation predicates bagof/3,
setof/3 and findall/3, the de-facto stan-
dard library aggregate which provides count,
sum, average, etc. and the SWI-Prolog library
solution_sequences which provides distinct,

3Some Prolog systems, such as XSB and YAP, can detect and
avoid unbounded recursion automatically using a technique called
tabling [29].

4

limit, order_by, etc. The latter library was developed
specifically to allow for a straightforward translation
of many SPARQL queries to Prolog.

Below we give an example from the Talk of Eu-
rope project, which translated the European par-
liament debates to linked data that is accessible
through ClioPatria.4 The query returns the first 10
tuples {Lang, Count} from the relation represent-
ing the number of speeches spoken in language
Lang, ordered decreasingly by Count. The predicate
speech_language/2 defines a binary relation be-
tween a speech and the language in which it was spo-
ken.

?- limit(10,
order_by([desc(Count)],

aggregate(count,Speech,
speech_language(Speech,Lang),
Count))).

The current library does not support SPARQL prop-
erty paths explicitly. Support could be added by means
of Prolog’s macro expansion facility implemented by
goal_expansion/2. The code below provides a
simplified partial implementation that illustrates the
approach.

goal_expansion(rdf(S,P1/P2,O),
(rdf(S,P1,X),
rdf(X,P2,O))).

2.1.2. Expressiveness
Due to various restrictions, standardized query lan-

guages for SW data have limited expressivity. In prac-
tice, this requires the combination of server-side query
execution and client-side post-processing of the re-
sults. There are several ways in which ClioPatria pro-
vides a more expressive programming environment.

Literal search in SPARQL is limited to the use
of regular expressions and (numerical) conditions.
ClioPatria couples its full-text literal index (Sec-
tion 2.2) to Prolog’s strong background in Natural Lan-
guage Processing (NLP) [41]. This allows more com-
plicated operations such as stemming, phonetic match-
ing, string distance calculation, and NLP parsing to be
performed on literals. The alternative approach of us-
ing a general text indexing engine besides a triple store
results in increased memory requirements and access
times, and is difficult to synchronize under dynamic
RDF triple assertions and retractions.

4http://www.talkofeurope.eu

Even though SPARQL 1.1 is more powerful than
version 1.0, there are still realistic queries that cannot
be expressed in it [17]. For example, “which property
paths connect a search string on literals to resources
of type Painting”. For a fixed length, this can be ex-
pressed as follows in SPARQL (searching for query at
distance 2):

SELECT ?l ?p1 ?r1 ?p2 ?r WHERE
{ ?r rdf:type art:Painting .
?r ?p1 ?r2 .
?r2 ?p2 ?l .
FILTER regex(l, "query")

}

SPARQL does not provide the primitives to gener-
alize this query for arbitrary path lengths, while this is
easily expressed in Prolog:

literal_path_to_painting(Q,R,[L-P0|P]):-
rdf(R0,P0,literal(substring(Q),L)),
path_to_painting(R0,R,P,[]).

path_to_painting(R,R,[],_):-
rdf(R, rdf:type, art:'Painting').

path_to_painting(R0,R,[R0-P|Path],V):-
rdf(R0,P,R1),
\+ memberchk(R1,V),
path_to_painting(R1,R,Path,[R1|V]).

The above algorithm implements naive depth-first
search. In the previously mentioned ISWC challenge
application we implemented a best-first algorithm
where the distance was based on predicate semantics
(e.g., owl:sameAs does not change the distance) and
predicate statistics (a predicate that links to more re-
sources increments the distance more). It should be
clear that SPARQL is not of much value for such prob-
lems.

2.1.3. Reasoning
Entailment reasoning can be implemented in

several ways. ClioPatria provides a library that
provides RDFS entailment primitives such as
rdfs_individual_of(?Resource, ?Class). This
is the same as {?resource rdf:type ?class} after com-
puting all triples entailed by the RDFS semantics. In
addition, ClioPatria provides entailment modules. An
entailment module is a Prolog module that extends
the relation rdf/3 which initially expresses only
the plain triples. For example, the transitive seman-
tics of rdfs:subClassOf can be expressed in an
entailment module with the rule below, exploiting

http://www.talkofeurope.eu

5

the transitive closure built-in rdf_reachable/3.
The goal rdf_reachable(S, rdfs:subClassOf,
O) implements the SPARQL expression
{?S rdf:type/rdfs:subClassOf* ?O}
using breath-first search.

rdf(S, rdfs:subClassOf, O):-
rdf_reachable(S, rdfs:subClassOf, O).

Besides entailment models for standardized entail-
ment regimes such as RDFS and OWL, it is just as easy
to write an entailment module with custom, domain-
specific rules. This provides similar functionality as
functional properties in Jena, but where Jena restricts
functional properties to compute a single object for a
given subject and predicate,5 entailment rules can add
zero or more virtual triples based on {S,P,O} pattern.
According to the following example, persons younger
than 18 are children:

rdf(Person, rdf:type, dbo:'Child'):-
rdf(Person, dbo:age, Age),
xsd_smaller(Age, 18).

Both forward and backward reasoning can be nat-
urally expressed in Prolog. In many scenarios back-
ward reasoning is to be prefered, because it reduces
the memory footprint, avoids the problem of keep-
ing inferred triples consistent after database modifi-
cations, and allows a single application to use differ-
ent entailment definitions. Some deductions, however,
are expensive to implement using backward reasoning.
For example, finding all rdf:type triples that are en-
tailed by RDFS domain and range restrictions requires
a considerable amount of search. In such cases one
can opt for forward chaining instead. Forward chain-
ing must be coded explicitly. The fragment below adds
derived type triples to the graph rdfs. The predicate
rdf_generation/1 can be used to verify whether
the fixed point has been reached.

forall((rdf(_,P,O),
rdf(P,rdfs:domain,T)

),
rdf_assert(O,rdf:type,T,rdfs)).

5https://jena.apache.org/documentation/
javadoc/jena/com/hp/hpl/jena/ontology/
FunctionalProperty.html

2.2. The triple store

Although triples could be expressed simply using
a Prolog dynamic predicate, we have choosen for a
low-level C implementation. This allows us to ex-
ploit the restricted form of this relation (no rule body,
URIs as subject and predicate and only restricted
ground terms as object) to reduce memory require-
ments and improve indexing. The underlying store is a
memory-based quad-store that provides 9 hash-based
indexes (s=subject, p=predicate, o=object, g=graph):
s, p, o, sp, po, spo, g, sg and pg. These indexes are
created and resized lazily. In addition, a closure of
the rdfs:subPropertyOf relation is maintained to
speed up queries that rely on subproperty entailment.
The entailment of rdfs:subPropertyOf is treated
special because we consider this property the key prop-
erty for data alignment on the web of data and the
space requirements are modest due to the typically rel-
atively low number of properties in a dataset. These
implementation choices have been motivated in [43].
An ordered index of all RDF literals is maintained to
facilitate prefix or literal range queries. Optionally, the
store can maintain a full-text index of all literals that
provides fast search for literals that contain specified
tokens, optionally extended with stemming and metha-
phone (‘sounds-as’).

The triple store has strong support for dynamic
changes. Dynamic changes fit well with Prolog’s bias
towards backward chained reasoning (Section 2.1.3).
Modifications to RDF data follow the Prolog logical
update view, which implies that the results of queries
are not affected by changes to the triple store that are
made during query execution [40]. The triple store is
designed to cooperate with the multi-threaded Prolog
core. Read operations are implemented using lock-free
techniques. Write operations use (short held) locks.
Multiple updates may be combined into atomic trans-
actions that can be nested. Prolog failure or a Prolog
exception causes the transaction to be discarded. The
same technology supports snapshots, which allows a
Prolog goal to make isolated and temporary changes to
the RDF store (Section 4.6.2).

The triple store optionally provides reliable persis-
tency based on a journal file and fast save/load based
on an optimized binary representation for RDF data.

Table 1 gives some core metrics of the RDF store.
The store has been used with up to 200 million triples.
Additional information can be found in [39].

https://jena.apache.org/documentation/javadoc/jena/com/hp/hpl/jena/ontology/FunctionalProperty.html
https://jena.apache.org/documentation/javadoc/jena/com/hp/hpl/jena/ontology/FunctionalProperty.html
https://jena.apache.org/documentation/javadoc/jena/com/hp/hpl/jena/ontology/FunctionalProperty.html

6

Table 1

Core metrics of the SWI-Prolog RDF store. The values are based
on the 64-bit version running Ubuntu 14.04 on an Intel i7-
2600K@3.40Ghz CPU.

Metric Value Explanation

Memory 300 bytes/triple Rough approximation of the storage needed per triple, including indexing. The value de-
pends on the number of distinct URIs and literals as well as the length of URIs and literals.

Add triple (I) 3.5 µs Add a triple with a URI object that is computed in Prolog, where the URI is already interned
as a Prolog atom.

Add triple (II) 7.5 µs Add a triple with a literal object that is computed in Prolog. This includes the time needed
to intern the literal into the ordered literal store of the RDF database.

First triple 1.4 µs Get the first triple from an rdf/3 query. This is almost independent from the number of
triples in the store and whether the arguments are known.

Next Triple 0.6 µs Get the next triple from a rdf/3 query.

2.3. Semantic web standards

The primary asset of the RDF initiative is a common
data model and languages to operate on this model.
ClioPatria contains modules for reading/writing the
most standard RDF serialization formats (i.e., N-
Quads, N-Triples, RDFa, RDF/XML, TriG and Tur-
tle). The parsers and generators have been stress-tested
extensively within the LOD Laundromat project (Sec-
tion 4.3).

ClioPatria supports SPARQL 1.1. SPARQL queries
are compiled into Prolog control structures. The re-
sulting structure is optimized (Section 2.1) before ex-
ecution. All SPARQL functions are implemented in a
SPARQL runtime support library. The current imple-
mentation applies almost all these functions after per-
forming the (optimised) graph pattern query, e.g. ig-
noring opportunities to map regular expression prefix
searches to its ordered literal index. Interactive explo-
ration is supported by the YASGUI query editor [24].

Support for Linked Data is available as a config-
urable option. Based on content negotiation, ClioPatria
dereferences resources with machine-readable RDF or
a human-readable HTML page. ClioPatria can serve
URIs directly but also supports handling of URI redi-
rection, e.g., through using http://purl.org. By
default, the machine-readable dereference of a re-
source is the concise bounded graph of that resource.
Alternatives can be selected or programmed as Prolog
rules. It is possible to install custom HTML rendering
of a resource, for example to define the page layout,
supress properties, include the rendering of related re-
sources or render images.

2.4. Plugins & community extensions

A CPACK (or ClioPatria package) extends ClioPa-
tria by providing additional Prolog libraries and/or
web services. Packs are available from the ClioPatria
site6 and can be installed from the Prolog shell. A
CPACK consists of a directory hierarchy that provides
Prolog libraries, configuration files and web resources
such as CSS and JavaScript files. It is acompanied with
RDF meta data that explains the type, purpose and au-
thors of the package. In addition, the RDF descrip-
tion may specify dependencies. The CPACK is made
available as a Git repository. If a CPACK is submitted,
its Prolog code is analysed for dependencies on and
conflicts with known CPACKs. Installing a CPACK
installs all dependencies, adds the new directories to
ClioPatria’s file search paths and optionally loads them
into the system based on the default configuration in-
formation provided. Due to the strong dependency on
code analysis before accepting a package, packages
typically coexist flawlessly without human interven-
tion. The drawback is that a package must follow quite
strict guidelines with respect to code quality and or-
ganization.7 For example, where (SWI-)Prolog loads
and runs incomplete programs, the package analyzer
demands that all referenced files and predicates exists,
either in the plain Prolog system, plain ClioPatria or
one of the other packages.

6http://cliopatria.swi-prolog.org
7http://cliopatria.swi-prolog.org/help/

http://purl.org
http://cliopatria.swi-prolog.org
http://cliopatria.swi-prolog.org/help/

7

2.5. Application development

Initially, ClioPatria applications are either devel-
oped as CPACKs (Section 2.4) or as independent
Prolog source files that are loaded into ClioPa-
tria. Recent versions provide a web-based alterna-
tive based on Pengines, or Prolog Engines [15].8

The Pengine infrastructure allows for embedding a
Prolog program in a web page using a <script

type="text/x-prolog"> element and pose queries
to this program from within JavaScript. If a query
is submitted, both the query and program from the
<script> elements are sent to the server using an
HTTP POST request. The server loads the code into a
sandboxed temporary Prolog module and executes the
query. The client receives the results as JSON objects.
Similar to the Prolog toplevel, the client can ask for
additional solutions until it is satisfied.

This architecture allows web applications to be writ-
ten without loading server extensions into ClioPatria,
while the user can still profit from the advantages de-
scribed in Section 2.1 such as query composition, data
integration and the expressivity of the full Prolog lan-
guage.

RDF data may be explored and suitable query frag-
ments may be assembled using the Pengines-based
web application called SWISH. SWISH is an acronym
that stands for “SWI-Prolog for SHaring” or “SWI-
Prolog SHell”. It provides a web-based code editor
with code highlighting and template-based comple-
tion, a query editor with the same features and a re-
sult area. Programs can be saved, tagged and searched
for to facilitate community-based management of code
fragments.

3. Related work

Triples stores with reasoning capabilities bear some
similarity to deductive databases such as XSB [28].
Even though Datalog systems are not directly appli-
cable to SW data, [1] uses Datalog to extend the
SPARQL 1.1 language with more powerful naviga-
tional patterns. Despite strong theoretical similarities,
only few Logic Programming systems exist that spe-
cialize in storing and querying SW data. One such
a system is GiaBATA [13] which allows queries to
be performed against named graphs and under par-

8Pengines are online at http://pengines.swi-prolog.
org

tial RDFS and OWL entailment. It facilitates the im-
plementation of custom reasoning capabilities through
the specification of rules. Its implementation consists
of a rewriting of SPARQL queries into Datalog pro-
grams. Instead of Prolog, it uses Answer Set Program-
ming (ASP) as the embedded programming language.
Where GiaBATA aims first of all at reasoning, con-
centrating on SPARQL, ClioPatria aims at providing a
comprehensive semantic web platform where Prolog is
the primary query language which can also be accessed
through the Pengines API (see section 2.5). A simi-
lar approach is taken in the Smart-M3 platform [18],
which is also based on ASP.

Euler [22] is an inference engine that uses hybrid
reasoning and Euler path detection to avoid loops. As
such, it is not intended to be used as a large-scale triple
store, although it may use a triple store for input. Even
though Euler runs on YAP and SWI-Prolog it is in-
tended to be programmed in terms of Notation3 rules.
Euler provides advanced reasoning paradigms such as
abduction and induction besides deduction.

Several Semantic Web programming frameworks
exist. Most frameworks are within the imperative
and/or object-oriented paradigm, e.g., Jena [10] and
Sesame [4] that are both based on Java and rdflib9 is
based on Python. Querying in these libraries typically
consists of creating an iterator from either a SPARQL
query or a simple triple pattern. For example, rdflib de-
fines triples(). This interator can be used to find all
people someone knowns at distance two as follows:

for s,p,o in \
g.triples((me,FOAF.knows,None)):

for x,y,z in \
g.triples((o,FOAF.knows,None)):

In Prolog, non-determinism avoids the need for
explicit interators and thus the fragment below suf-
fices. Also note that this Prolog fragment is a non-
deterministic goal and can thus be combined with other
goals in a conjunction or disjunction. The Python loop
above is not an iterator that can be reused ‘as is’.

rdf(X, foaf:knows, Y),
rdf(Y, foaf:knows, Z),

AllegroGraph10 is a commercial high-performance,
persistent graph database. It combines in-memory with

9https://github.com/RDFLib/rdflib
10http://franz.com/agraph/allegrograph/

http://pengines.swi-prolog.org
http://pengines.swi-prolog.org
https://github.com/RDFLib/rdflib
http://franz.com/agraph/allegrograph/

8

disk-based storage, which allows it to be very scal-
able (billions of quadruples). AllegroGraph supports
SPARQL, RDFS++ and Prolog reasoning. The DB-
engines page on AllegroGraph11 describes Allegro-
Graph first of all as an integration framework. The
stress on integration is similar to ClioPatria. An obvi-
ous difference is that AllegroGraph’s principal ‘glue’
language is Common Lisp and the Prolog system
(thus) uses Lisp syntax rather than Prolog syntax. We
consider their inclusion of “Prolog reasoning for client
applications” a strong support for ClioPatria’s archi-
tecture. Both based on a high-level declarative pro-
gramming language, neither of the systems is specif-
ically focussed on a particular application domain. A
side-by-side comparison of features is hard to carry out
and considered outside the scope of this document.

4. Application areas

In this section we briefly describe a number of ap-
plications based on ClioPatria or SWI-Prolog’s triple
store. The applications are collected from our aca-
demic network, the mailinglist, literature research and
searches on GitHub. We organised the applications in
application areas, based on the way they (primarily)
use ClioPatria’s features. The section may be read both
as a proof of impact and as a list of examples of how
ClioPatria can be deployed.

All mentioned projects are academic projects and,
as we often depend on publications to become aware
of a project, most projects are finished. Some applica-
tions survived after project completion as a CPACK,
e.g., XMLRDF and Amalgame. Some are maintained
as online services, e.g., Europeana Thought Lab. The
KnowRob knowledge base is at the heart of an ac-
tive research group on robotics. The LOD Laundromat
project is an example of new research where ClioPatria
plays a significant role.

4.1. Semantic search & faceted navigation

The semantic search application mentioned in Sec-
tion 1 started the development of ClioPatria. This
search engine is reused and extended in several
projects, e.g., CHIP and Europeana Thought Lab. The
core of the semantic search application is a graph
search algorithm. ClioPatria’s tight integration of the

11http://db-engines.com/en/system/
AllegroGraph

RDF library with the program language allowed for an
intuitive way to implement the best-first search algo-
rithm.

/facet is another early project using ClioPatria [12].
The application provides faceted navigation on arbi-
trary RDF datasets. It was used to explore collections
of art objects [12], music (DBtune, [23]) and news im-
ages [31]. For an RDF dataset, /facet precomputes per
rdfs:Class the facets that are available for it’s in-
stances. It also detects abstract facets that can be de-
rived using the rdfs:subPropertyOf relations in
the data. For example, in the news domain the detailed
properties of the NewsML ontology were defined as
subProperties of the who, what, where and when ab-
stract properties [11]. In the user interface these ab-
stract facets provide a convenient and understandable
view over the data collection at the start of a browsing
session. If needed, the facets corresponding to the spe-
cific properties can be activated to construct more fine-
grained queries. In a similar fashion the application
detects if the values within a single facet are hierar-
chically organized, e.g., by the rdfs:subClassOf
or skos:broader relations, and precomputes the
spanning tree of the values in this facets. In the inter-
face, the user can then use the top level concepts of
these hierarchies to navigate the collection. The facet
detection and abstraction technique as well as com-
puting the results for facetted queries are implemented
as Prolog rules in ClioPatria. With the introduction
of property paths in SPARQL 1.1 it has become fea-
sible to express most of the computations neatly in
SPARQL.

In [32], ClioPatria is used to develop a mobile cul-
tural heritage guide that combines information from
the LOD cloud and cultural heritage institutes in order
to display information about points of interest on a mo-
bile phone. In this project ClioPatria serves multiple
purposes. Firstly, as a triple store with common SW
functionality such as graph search, semantic crawl-
ing and reasoning. Secondly, domain-specific reason-
ing capabilities, in this case spatial reasoning, are inte-
grated on top of the generic SW reasoning capabilities.
Thirdly, since mobile devices may have limited con-
nectivity and processing power, ClioPatria performs
the computationally heavy task of facet classification
on the server side. In this way only the relevant infor-
mation needs to be transmitted to the client applica-
tion.

In [6,5] ClioPatria is used to allow scholars to search
for cultural heritage resources in the Digital Archives

http://db-engines.com/en/system/AllegroGraph
http://db-engines.com/en/system/AllegroGraph

9

of Italian psychology12 in terms of the CIDOC-CRM13

ontology.

4.2. Web application generator & platform

ClioPatria provides an integrated comprehensive web
application platform, capable of dealing with all three
tiers: storage, application logic and presentation. Most
of the search applications from Section 4.1 are com-
pletely coded in ClioPatria.

As another example, Amalgame [36] provides a
web-based interface for interactive vocabulary align-
ment. It is distributed as a ClioPatria CPACK (Sec-
tion 2.4) and uses the triple store backend to store
the RDF representations of the vocabularies that are
aligned. It also stores an RDF representation of the
alignment strategy that the user incrementally builds
while interacting with the tool as well as the RDF
representations of the alignment results. By using the
triple store’s persistency features, Amalgame exploits
the advantages of a fast in-memory store with the
possibility to continue tasks after server reboots or
timed-out sessions. Amalgame has a flexible plugin-
infrastructure that allows new or modified alignment
algorithms to be inserted without restarting the web
server or triple store. This is important in a research
prototyping environment, where such changes happen
frequently, and reloading large vocabularies after each
change is too time consuming. Finally, Amalgame re-
lies on the NLP extensions of the triple store to per-
form fast string matching between RDF literals (Sec-
tion 2.1.2), for example using the built-in Porter stem-
mer and the isub [27] string distance matcher. The pre-
fix index on literals is used to provide efficient auto-
completion services. Such support is crucial as it al-
lows the user to lookup terms interactively in order to
correct alignment mistakes that were made by the sys-
tem.

4.3. Web crawling & robustness

LOD Laundromat14 [3] is a system that performs a
large, LOD cloud-scale data cleaning operation. It
searches for files and endpoints that might contain
RDF triples starting from seed points. First, possi-
ble compression and archiving (e.g., ZIP) is analysed

12Archivi Storici della Psicologia Italiana (ASPI), http://
www.aspi.unimib.it

13http://www.cidoc-crm.org/
14http://lodlaundromat.org/

based on the SWI-Prolog binding to libarchive.15 Next,
for each individual file, heuristics are used to detect
whether the data contains RDF and —if so— using
what serialization format. Finally, the data is parsed
by the applicable RDF parser from ClioPatria while
keeping statistics about errors and warnings. LOD
Laundromat has processed hundreds of thousands of
data documents, parsing tens of billions of triples. All
data is disseminated into a canonical and standards-
compliant format. This project shows that ClioPatria
has sufficient robustness to support large-scale pro-
cessing.

4.4. Data integration & enrichment

ClioPatria, due to its underlying triple store that
supports fast changes to the RDF data and backward
chaining based reasoning that does not suffer from
maintaining derived entailed information compatible
with changes to the triple set, has proven to be a suit-
able platform for combining RDF data with external
data, as well as for generating and restructuring RDF
data. In such data integration scenarios, Prolog is used
as the rule language and ‘glue’ towards other data
sources such as relational databases.

SWI-Prolog’s RDF infrastructure has been used
to convert WordNet to RDF [33]. The XMLRDF
toolkit,16 written on top of ClioPatria, converts XML
datadumps into RDF using a generic mapping, after
which the RDF can be transformed into the desired
shape by using rules that are translated into Prolog.
XMLRDF has been used in the Europeana Digital Li-
brary project as well as for the conversion and enrich-
ment of many Dutch cultural heritage datasets and the-
sauri [9,8].

The Blipkit [20] system is a comprehensive system
for querying and transforming data in bioinformatics.
Blipkit’s RDF support in terms of performance and
expressiveness was evaluated by Lampa [16]. Lampa
stresses the enhanced maintainability of Prolog queries
due to reuse of query fragments represented as predi-
cates (Figure 18 in [16]).

4.5. Wiki systems

PlWiki [21] is a semantic wiki implemented on top
of ClioPatria. The authors claim that a crucial reason
for using a Prolog based solution is the transparent in-

15http://www.libarchive.org/
16http://semanticweb.cs.vu.nl/xmlrdf/

http://www.aspi.unimib.it
http://www.aspi.unimib.it
http://www.cidoc-crm.org/
http://lodlaundromat.org/
http://www.libarchive.org/
http://semanticweb.cs.vu.nl/xmlrdf/

10

tegration of various rule formalisms such as SWRL
and XTT.

4.6. Reasoning

We collected some projects related to reasoning on
top of the Prolog RDF store. Many projects about rea-
soning do not require the higher level ClioPatria fea-
tures.

4.6.1. Robotics
The openEASE17 uses the SWI-Prolog RDF infras-

tructure for the KnowRob [30] knowledge base, which
represents ontological knowledge in OWL using the
SWI-Prolog RDF store. Dedicated reasoning compo-
nents that perform for example spatial reasoning or
visibility computations are linked to the OWL rep-
resentation is procedural attachments. These attach-
ments can both extend the OWL model with inferred
information as well as pose additional constraints on
the OWL descriptions. This example illustrates the
value of a tight integration between the RDF descrip-
tion and a programming language that naturally ex-
tends the RDF relational model.

4.6.2. Counterfactual reasoning
Actual-Causation18 is a research project in which

causal models can be created and simulated. Accord-
ing to a popular definition in analytic philosophy, cau-
sation is defined in terms of counterfactuals, i.e. condi-
tions that would apply if the course of events had been
different. Implementation-wise, causal models are col-
lections of RDF statements that reside in a ClioPa-
tria triple store. The snapshot feature of ClioPatria
is used to make isolated and short-living copies of
the database, one for each counterfactual. Within each
snapshot specific facts are added/retracted/altered in
order to express the respective counterfactuals. Back-
ward chaining is used to validate whether certain
causal effects still follow under those different circum-
stances. In a triple store that does not support snap-
shots, this would have been implemented less ele-
gantly, e.g., by inefficiently copying data between an
extensive number of named graphs.

4.6.3. Spatial reasoning
In the Poseidon project [34] ClioPatria is used to

reason about ship trajectories. The library that allows

17http://www.open-ease.org/getting-started/
18http://wouterbeek.github.io/

Actual-Causation

for combining Linked Data with spatial reasoning has
been made available as a SWI-Prolog package [35] and
is an example of integrating domain-specific knowl-
edge with SW reasoning facilities into a single clean
paradigm.

4.6.4. Qualitative reasoning
WebQR [2] is another SW-based domain-specific

knowledge system that allows physical systems to
be qualitatively simulated. In WebQR a user creates
a model whose components are SW resources. A
ClioPatria-based caching infrastructure is used to re-
trieve knowledge statements about those components
from the web. Traditional RDF(S) entailment, in com-
bination with domain-specific reasoning rules, is used
in order to automate modeling steps that would other-
wise be performed by human modelers. For example,
WebQR can decide whether a modeled resource can
vary over time (=quantity) or not (=entity). Whether a
derivation is possible depends on whether specific in-
formation has yet been cached, using ClioPatria’s dy-
namic triple storage capabilities.

5. Future work

ClioPatria is being actively developed and its fea-
tures are continuously expanded to satisfy project re-
quirements. Below we give a list of recognised limita-
tions.

1. The current system has limited scalability of its
RDF store because it is purely memory based.
The strong dynamic RDF support of the plat-
form allows the local store to be used as a cache
which relies on large external stores for back-
ground knowledge. We plan to provide an in-
terface to linked data fragments [37]. Using the
LOD Laundromat linked data fragments endpoint
and appropriate caching techniques will provide
web-scale querying.

2. Reasoning that requires recursion often puts the
onus on the user to explicitly avoid cycles. This
can be avoided by using tabling, a technique that
is available in the Prolog systems such as XSB
and YAP, but not yet in SWI-Prolog.

3. Standardized SW reasoning in ClioPatria is cur-
rently limited to RDFS++. For example, full-
scale OWL-DL reasoning is not yet supported, al-
though this should be relatively easy given the un-
derlying architecture.

http://www.open-ease.org/getting-started/
http://wouterbeek.github.io/Actual-Causation
http://wouterbeek.github.io/Actual-Causation

11

4. ClioPatria implements SPARQL 1.1 query and
update requests, but not yet SPARQL federation.

5. The RDF store currently represents literals as a
tuple of type or language and lexical representa-
tion represented as a Prolog atom. For example,
the literal representing the latitude of a resource is
a term type(Type,Atom), where Type is a float
or decimal XML schema type and Atom contains
the lexical representation of the number. A Prolog
program dealing with this property requires a Pro-
log floating point number. This implies that the
Prolog programmer needs to include an explicit
conversion step. This step makes the code less
readable and unnecessarily slow. We plan to pro-
vide smooth querying through the value space.
The new API for this will include the Turtle based
String@lang and Value^^Type syntax.

6. While Lampa [16] claims that queries written
in Prolog often outperform competing SPARQL
endpoints, poor integration of SPARQL literal op-
erations into the execution plan does not yet ex-
pose this performance to the SPARQL endpoint
of ClioPatria.

The current development concentrates on the
web-based shared Prolog development environment
SWISH (see section 2.5). SWISH offers collaborative
development and maintenance of queries that resem-
ble a wiki. This context gives priority to issues one and
five mentioned above. We also plan to offer a SPARQL
compliant result format for the Prolog query API. Syn-
chronizing the result format simplifies reuse of exist-
ing client software as well as migrating applications
between SPARQL and Prolog endpoints.

6. Conclusion

In this paper we have presented the ClioPatria Se-
mantic Web toolkit. ClioPatria is based on SWI-Prolog
and is tightly connected to an efficient main-memory
RDF quad store. We have shown that the use of ClioPa-
tria and its Logic Programming (LP) paradigm has sev-
eral benefits as a prototyping environment for SW pro-
gramming. Accessing RDF data using LP does not suf-
fer from the object-relational impedance mismatch and
LP allows expressions to be built from small reusable
components. By providing a general purpose language
closely connected to the triple store we can formulate
more expressive queries in graphs as well as on literals.
An emphasis on backward chaining makes LP suitable

for reasoning with dynamic RDF. This feature is re-
flected in the database by supporting transactions and
isolated modifications in snapshots.

The toolkit is completed by standard SW function-
ality such as a SPARQL 1.1 endpoint, parsers and se-
rializers for most RDF formats, a plugin infrastructure
and a web frontend. The most important application
areas for ClioPatria are currently data integration and
enrichment and semantic search.

The recent introduction of Pengines (Prolog En-
gines) and SWISH (SWI-Prolog SHaring/SHell) al-
lows the use of flexible Prolog rule-based reasoning
without changing the software on the server. Pengines
allow for remote execution of Prolog programs and can
be accessed both from JavaScript to realise web appli-
cations and from Prolog to realise distributed comput-
ing.

Acknowledgements
The development of ClioPatria has been initiated

under the Dutch MultimediaN project. Further devel-
opment has taken place in the context of many different
projects. This publication was supported by the Dutch
national program COMMIT/

References

[1] Marcelo Arenas, Georg Gottlob, and Andreas Pieris. Expres-
sive languages for querying the semantic web. In Georg Got-
tlob and Jorge Pérez, editors, Proceedings of the 8th Alberto
Mendelzon Workshop on Foundations of Data Management,
Cartagena de Indias, Colombia, June 4-6, 2014., volume 1189
of CEUR Workshop Proceedings. CEUR-WS.org, 2014.

[2] Wouter Beek, Sander Latour, and Stefan Schlobach. We-
bqr: Building a knowledge representation application on the
semantic web. In Ruben Verborgh and Erik Mannens, edi-
tors, Proceedings of the ISWC Developers Workshop 2014, co-
located with the 13th International Semantic Web Conference
(ISWC 2014), Riva del Garda, Italy, October 19, 2014., vol-
ume 1268 of CEUR Workshop Proceedings, pages 102–107.
CEUR-WS.org, 2014.

[3] Wouter Beek, Laurens Rietveld, Hamid R. Bazoobandi, Jan
Wielemaker, and Stefan Schlobach. LOD laundromat: A uni-
form way of publishing other people’s dirty data. In Mika et al.
[19], pages 213–228.

[4] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen.
Sesame: A generic architecture for storing and querying RDF
and RDF schema. In Ian Horrocks and James A. Hendler, ed-
itors, The Semantic Web - ISWC 2002, First International Se-
mantic Web Conference, Sardinia, Italy, June 9-12, 2002, Pro-
ceedings, volume 2342 of Lecture Notes in Computer Science,
pages 54–68. Springer, 2002.

[5] Claudio Cortese. Semantic search and browsing nell’ambito
dei beni culturali. Master’s thesis, Bollettino del CILEA, 2011.

12

[6] Claudio Cortese and Glauco Mantegari. Extending the dig-
ital archives of italian psychology with semantic data. In
Livia Predoiu, Steffen Hennicke, Andreas Nürnberger, Annett
Mitschick, and Seamus Ross, editors, Proceedings of the 1st
International Workshop on Semantic Digital Archives, Berlin,
Germany, September 29, 2011, volume 801 of CEUR Work-
shop Proceedings, pages 60–71. CEUR-WS.org, 2011.

[7] Isabel F. Cruz, Stefan Decker, Dean Allemang, Chris Preist,
Daniel Schwabe, Peter Mika, Michael Uschold, and Lora
Aroyo, editors. The Semantic Web - ISWC 2006, 5th Inter-
national Semantic Web Conference, ISWC 2006, Athens, GA,
USA, November 5-9, 2006, Proceedings, volume 4273 of Lec-
ture Notes in Computer Science. Springer, 2006.

[8] Victor de Boer, Matthias van Rossum, Jurjen Leinenga, and
Rik Hoekstra. Dutch ships and sailors linked data. In Mika
et al. [19], pages 229–244.

[9] Viktor de Boer, Jan Wielemaker, Judith van Gent, Michiel
Hildebrand, Antoine Isaac, Jacco van Ossenbruggen, and Guus
Schreiber. Supporting linked data production for cultural her-
itage institutes: The amsterdam museum case study. In Elena
Simperl, Philipp Cimiano, Axel Polleres, Óscar Corcho, and
Valentina Presutti, editors, The Semantic Web: Research and
Applications - 9th Extended Semantic Web Conference, ESWC
2012, Heraklion, Crete, Greece, May 27-31, 2012. Proceed-
ings, volume 7295 of Lecture Notes in Computer Science,
pages 733–747. Springer, 2012.

[10] Michael Grobe. Rdf, jena, sparql and the ’semantic web’.
In Gail Farally-Semerad, Karen J. McRitchie, and Elizabeth
Rugg, editors, Proceedings of the ACM SIGUCCS Fall Confer-
ence on User Services 2009, St. Louis, Missouri, USA, October
11-14, 2009, pages 131–138. ACM, 2009.

[11] M. Hildebrand and J. R. van Ossenbruggen. Configuring se-
mantic web interfaces by data mapping. In Proceedings of the
VISSW 2009 Workshop: Visual Interfaces to the Social and the
Semantic Web, Proceedings of the VISSW Workshop: Visual
Interfaces to the Social and the Semantic Web, February 2009.

[12] Michiel Hildebrand, Jacco van Ossenbruggen, and Lynda
Hardman. /facet: A browser for heterogeneous semantic web
repositories. In Cruz et al. [7], pages 272–285.

[13] Giovambattista Ianni, Thomas Krennwallner, Alessandra
Martello, and Axel Polleres. A rule system for query-
ing persistent RDFS data. In Lora Aroyo, Paolo Traverso,
Fabio Ciravegna, Philipp Cimiano, Tom Heath, Eero Hyvö-
nen, Riichiro Mizoguchi, Eyal Oren, Marta Sabou, and Elena
Paslaru Bontas Simperl, editors, The Semantic Web: Research
and Applications, 6th European Semantic Web Conference,
ESWC 2009, Heraklion, Crete, Greece, May 31-June 4, 2009,
Proceedings, volume 5554 of Lecture Notes in Computer Sci-
ence, pages 857–862. Springer, 2009.

[14] Christopher Ireland, David Bowers, Michael Newton, and
Kevin Waugh. A classification of object-relational impedance
mismatch. In Proceedings of the 2009 First International Con-
ference on Advances in Databases, Knowledge, and Data Ap-
plications, DBKDA ’09, pages 36–43, Washington, DC, USA,
2009. IEEE Computer Society.

[15] Torbjörn Lager and Jan Wielemaker. Pengines: Web logic pro-
gramming made easy. TPLP, 14(4-5):539–552, 2014.

[16] Samuel Lampa. SWI-Prolog as a Semantic Web tool for
semantic querying in Bioclipse: Integration and performance
benchmarking. Master’s thesis, Uppsala University, 2010.

[17] Leonid Libkin, Juan L. Reutter, and Domagoj Vrgoc. Trial
for RDF: adapting graph query languages for RDF data. In
Richard Hull and Wenfei Fan, editors, Proceedings of the 32nd
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS 2013, New York, NY, USA - June 22
- 27, 2013, pages 201–212. ACM, 2013.

[18] Vesa Luukkala and Ilkka Niemelä. Enhancing a smart space
with answer set programming. In Mike Dean, John Hall, An-
tonino Rotolo, and Said Tabet, editors, Semantic Web Rules
- International Symposium, RuleML 2010, Washington, DC,
USA, October 21-23, 2010. Proceedings, volume 6403 of Lec-
ture Notes in Computer Science, pages 89–103. Springer, 2010.

[19] Peter Mika, Tania Tudorache, Abraham Bernstein, Chris
Welty, Craig A. Knoblock, Denny Vrandecic, Paul T. Groth,
Natasha F. Noy, Krzysztof Janowicz, and Carole A. Goble, ed-
itors. The Semantic Web - ISWC 2014 - 13th International Se-
mantic Web Conference, Riva del Garda, Italy, October 19-23,
2014. Proceedings, Part I, volume 8796 of Lecture Notes in
Computer Science. Springer, 2014.

[20] Chris Mungall. Experiences using logic programming in
bioinformatics. In Patricia M. Hill and David Scott War-
ren, editors, Logic Programming, 25th International Confer-
ence, ICLP 2009, Pasadena, CA, USA, July 14-17, 2009. Pro-
ceedings, volume 5649 of Lecture Notes in Computer Science,
pages 1–21. Springer, 2009.

[21] Grzegorz J. Nalepa. Plwiki - A generic semantic wiki architec-
ture. In Ngoc Thanh Nguyen, Ryszard Kowalczyk, and Shyi-
Ming Chen, editors, Computational Collective Intelligence. Se-
mantic Web, Social Networks and Multiagent Systems, First In-
ternational Conference, ICCCI 2009, Wroclaw, Poland, Octo-
ber 5-7, 2009. Proceedings, volume 5796 of Lecture Notes in
Computer Science, pages 345–356. Springer, 2009.

[22] Pieterjan De Potter, Hans Cools, Kristof Depraetere, Giovanni
Mels, Pedro Debevere, Jos De Roo, Csaba Huszka, Dirk Co-
laert, Erik Mannens, and Rik Van de Walle. Semantic patient
information aggregation and medicinal decision support. Com-
puter Methods and Programs in Biomedicine, 108(2):724–735,
2012.

[23] Yves Raimond and Mark B. Sandler. A web of musical infor-
mation. In Juan Pablo Bello, Elaine Chew, and Douglas Turn-
bull, editors, ISMIR 2008, 9th International Conference on Mu-
sic Information Retrieval, Drexel University, Philadelphia, PA,
USA, September 14-18, 2008, pages 263–268, 2008.

[24] Laurens Rietveld and Rinke Hoekstra. YASGUI: not just an-
other SPARQL client. In Philipp Cimiano, Miriam Fernández,
Vanessa Lopez, Stefan Schlobach, and Johanna Völker, editors,
The Semantic Web: ESWC 2013 Satellite Events - ESWC 2013
Satellite Events, Montpellier, France, May 26-30, 2013, Re-
vised Selected Papers, volume 7955 of Lecture Notes in Com-
puter Science, pages 78–86. Springer, 2013.

[25] Guus Schreiber, Alia K. Amin, Mark van Assem, Viktor
de Boer, Lynda Hardman, Michiel Hildebrand, Laura Hollink,
Zhisheng Huang, Janneke van Kersen, Marco de Niet, Bo-
rys Omelayenko, Jacco van Ossenbruggen, Ronny Siebes, Jos
Taekema, Jan Wielemaker, and Bob J. Wielinga. Multimedian
e-culture demonstrator. In Cruz et al. [7], pages 951–958.

[26] Amit P. Sheth, Steffen Staab, Mike Dean, Massimo Paolucci,
Diana Maynard, Timothy W. Finin, and Krishnaprasad
Thirunarayan, editors. The Semantic Web - ISWC 2008, 7th In-
ternational Semantic Web Conference, ISWC 2008, Karlsruhe,
Germany, October 26-30, 2008. Proceedings, volume 5318 of

13

Lecture Notes in Computer Science. Springer, 2008.
[27] Giorgos Stoilos, Giorgos B. Stamou, and Stefanos D. Kollias.

A string metric for ontology alignment. In Yolanda Gil, En-
rico Motta, V. Richard Benjamins, and Mark A. Musen, ed-
itors, The Semantic Web - ISWC 2005, 4th International Se-
mantic Web Conference, ISWC 2005, Galway, Ireland, Novem-
ber 6-10, 2005, Proceedings, volume 3729 of Lecture Notes in
Computer Science, pages 624–637. Springer, 2005.

[28] Terrance Swift and David S. Warren. XSB: Extending Prolog
with tabled logic programming. Theory and Practice of Logic
Programming, 12:157–187, 1 2012.

[29] Terrance Swift and David Scott Warren. XSB: extending pro-
log with tabled logic programming. TPLP, 12(1-2):157–187,
2012.

[30] Moritz Tenorth and Michael Beetz. KnowRob – A Knowledge
Processing Infrastructure for Cognition-enabled Robots. In-
ternational Journal of Robotics Research (IJRR), 32(5):566 –
590, April 2013.

[31] Raphaël Troncy. Bringing the IPTC news architecture into the
semantic web. In Sheth et al. [26], pages 483–498.

[32] Chris J. van Aart, Bob J. Wielinga, and Willem Robert van
Hage. Mobile cultural heritage guide: Location-aware seman-
tic search. In Philipp Cimiano and Helena Sofia Pinto, editors,
Knowledge Engineering and Management by the Masses - 17th
International Conference, EKAW 2010, Lisbon, Portugal, Oc-
tober 11-15, 2010. Proceedings, volume 6317 of Lecture Notes
in Computer Science, pages 257–271. Springer, 2010.

[33] Mark Van Assem, Aldo Gangemi, and Guus Schreiber. Con-
version of WordNet to a standard RDF/OWL representation.
In Proceedings of the Fifth International Conference on Lan-
guage Resources and Evaluation, pages 237–242, 2006.

[34] Willem Robert van Hage, Véronique Malaisé, Gerben de Vries,
Guus Schreiber, and Maarten van Someren. Abstracting and
reasoning over ship trajectories and web data with the Simple
Event Model (SEM). Multimedia Tools Appl., 57(1):175–197,
2012.

[35] Willem Robert van Hage, Jan Wielemaker, and Guus Schreiber.
The space package: Tight integration between space and se-
mantics. T. GIS, 14(2):131–146, 2010.

[36] Jacco van Ossenbruggen, Michiel Hildebrand, and Viktor
de Boer. Interactive vocabulary alignment. In Stefan Grad-
mann, Francesca Borri, Carlo Meghini, and Heiko Schuldt, ed-
itors, Research and Advanced Technology for Digital Libraries

- International Conference on Theory and Practice of Digi-
tal Libraries, TPDL 2011, Berlin, Germany, September 26-28,
2011. Proceedings, volume 6966 of Lecture Notes in Computer
Science, pages 296–307. Springer, 2011.

[37] Ruben Verborgh, Miel Vander Sande, Pieter Colpaert, Sam
Coppens, Erik Mannens, and Rik Van de Walle. Web-scale
querying through linked data fragments. In Christian Bizer,
Tom Heath, Sören Auer, and Tim Berners-Lee, editors, Pro-
ceedings of the Workshop on Linked Data on the Web co-
located with the 23rd International World Wide Web Confer-
ence (WWW 2014), Seoul, Korea, April 8, 2014., volume 1184
of CEUR Workshop Proceedings. CEUR-WS.org, 2014.

[38] Jan Wielemaker. An optimised semantic web query language
implementation in prolog. In Maurizio Gabbrielli and Gopal
Gupta, editors, Logic Programming, 21st International Con-
ference, ICLP 2005, Sitges, Spain, October 2-5, 2005, Pro-
ceedings, volume 3668 of Lecture Notes in Computer Science,
pages 128–142. Springer, 2005.

[39] Jan Wielemaker. Logic programming for knowledge-intensive
interactive applications. PhD thesis, University of Amsterdam,
2009. http://dare.uva.nl/en/record/300739.

[40] Jan Wielemaker. Extending the logical update view with trans-
action support. CoRR, abs/1301.7669, 2013.

[41] Jan Wielemaker, Michiel Hildebrand, and Jacco van Ossen-
bruggen. Prolog as the fundament for applications on the se-
mantic web. In Axel Polleres, David Pearce, Stijn Heymans,
and Edna Ruckhaus, editors, Proceedings of the ICLP’07
Workshop on Applications of Logic Programming to the Web,
Semantic Web and Semantic Web Services, ALPSWS 2007,
Porto, Portugal, September 13th, 2007, volume 287 of CEUR
Workshop Proceedings. CEUR-WS.org, 2007.

[42] Jan Wielemaker, Michiel Hildebrand, Jacco van Ossen-
bruggen, and Guus Schreiber. Thesaurus-based search in large
heterogeneous collections. In Sheth et al. [26], pages 695–708.

[43] Jan Wielemaker, Guus Schreiber, and Bob Wielinga. Prolog-
based infrastructure for RDF: performance and scalability. In
D. Fensel, K. Sycara, and J. Mylopoulos, editors, The Se-
mantic Web - Proceedings ISWC’03, Sanibel Island, Florida,
pages 644–658, Berlin, Germany, october 2003. Springer Ver-
lag. LNCS 2870.

[44] Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn
Lager. Swi-prolog. TPLP, 12(1-2):67–96, 2012.

