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Abstract

Using a pay-as-you-go strategy, we allow for a community of users to validate
or invalidate mappings obtained by an automatic ontology matching system using
consensus for each mapping. The ultimate objectives are effectiveness—improving
the quality of the obtained alignment (set of mappings) measured in terms of F-
measure as a function of the number of user interactions—and robustness—making
the system as much as possible impervious to user validation errors. Our strategy
consists of two major steps: candidate mapping selection, which ranks mappings
based on their perceived quality so that users are presented first with those map-
pings with lowest quality, and feedback propagation, which seeks to validate or
invalidate those mappings that are perceived to be similar to the mappings already
presented to the users for validation. The purpose of these two strategies is twofold:
achieve greater improvements earlier and minimize overall user interaction. There
are three important features of our approach: the use of a dynamic ranking mecha-
nism to adapt to the new conditions after each user interaction, the presentation of
each mapping for validation more than once—revalidation—because of possible
user errors, and the immediate propagation of the user input on a mapping without
first achieving consensus for that mapping. We study extensively the effectiveness
and robustness of our approach as several of these parameters change, namely the
error and revalidation rates, as a function of the number of iterations, to provide
conclusive guidelines for the design and implementation of multi-user feedback
ontology matching systems.
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1 Introduction

The ontology matching problem consists of mapping concepts in a source ontology to
semantically related concepts in a target ontology. The resulting set of mappings is
called an alignment [10], which is a subset of the set of all possible mappings, which
we call the mapping space. As ontologies increase in size, automatic matching meth-
ods, which we call matchers, become necessary. The matching process also requires
feedback provided by users: in real-world scenarios, and even in the systematic on-
tology matching tracks of the Ontology Alignment Evaluation Initiative (OAEI), the
alignments obtained by automatic algorithms are neither correct nor exhaustive when
compared against a gold standard, also called reference alignment. An important ad-
ditional consideration is that domain experts such as those with whom we collaborated
in the geospatial domain [7], require the ability to verify the correctness of a subset of
the mappings. In this paper we propose a semi-automatic ontology matching approach
that supports feedback provided by multiple domain experts. Our approach first com-
putes an alignment using automatic matching methods and then allows for the domain

experts, called henceforth users, to validate them.
When users requests a mapping to validate, a feedback loop is triggered, which

starts with a candidate selection strategy, followed by the labeling of the selected map-
ping as correct or incorrect. A feedback propagation method updates the similarity of
that mapping and of all the mappings that are deemed similar. The matching process
continues iteratively by selecting new candidate mappings, presenting them to users for
validation followed by propagation, with the alignment being updated at each iteration.

When different users are allowed to take part in the interactive matching process,
they may disagree upon the label to assign to a mapping [1]. Our approach assumes
that mappings labeled as correct (resp. incorrect) by a user majority are correct (resp.
incorrect).

The main purpose of the candidate selection strategy and of the feedback propaga-
tion method is to reduce the number of times that users validate mappings, for a given
quality of the alignment. To this end, we define a model to dynamically estimate the
quality of the alignment at each iteration, which consists of five different measures.
These measures, which consider the mapping similarity and the feedback collected in
previous iterations, are combined into two candidate selection strategies of the map-
pings that are estimated to have lower quality first.

Because of the possibility of labeling errors, a proportion of the mappings that have
already been validated is selected again to be presented for validation. This propor-
tion, called revalidation rate, can be configured to tune the robustness of the approach
against user errors. We define robustness as the ratio between the quality of the align-
ment for a given error rate and the quality of the alignment when no errors are made.

Our approach is devised to run in a pay-as-you-go fashion, where we may stop the
iterative process at any stage because we generate a new alignment at the end of each
iteration. In particular, our propagation strategy is in opposition to first collecting a
pre-determined number of n validations for each mapping, considering the majority
vote after that, and only then propagating the user-provided feedback. During those
n iterations, we would only be progressing on a single mapping. Instead, during n
iterations we make progress on as many as n mappings and propagate the user-provided



feedback at each iteration.

Several previous approaches to ontology matching assume that feedback is given
by individual users [9, 21, 6, 11, 16, 22, 12]. Only one of these approaches considers
the possibility of user validation errors, yet it does not propose a method to overcome
those errors [11].

To evaluate our approach we simulate user feedback considering different error
rates. We conduct experiments with the OAEI Benchmarks Track to evaluate the gain
in quality (measured in terms of F-measure) and in robustness as a function of the
number of validations for different error and revalidation rates. Our results highlight
complex trade-offs and point to the benefits of adjusting the revalidation rate.

In Section 2, we describe the architecture of the multi-user feedback ontology
matching system and give an overview of the combined automatic and manual pro-
cesses. In Section 3, we describe the key elements of the proposed approach: a model
for the evaluation of the quality of the mappings, the ranking functions used for candi-
date mapping selection, and the method used for feedback propagation. In Section 4,
we present the results of our experiments conducted on the OAEI Benchmarks Track.
In Section 5, we compare our work with related work. Finally, in Section 6, we draw
some conclusions and describe future work.

2 Approach Overview

The validation of a mapping m by a user assigns a label [ to that mapping. We define the
homonymous function label, such that label(m) has value 1 or 0 depending on whether
the user considers that m is correct or incorrect, respectively. When more than one user
is involved, we use a consensus-based approach to decide whether a mapping belongs
to an alignment. In this paper we use a consensus model based on simple majority vote,
where V is an odd number of validations considered sufficient to decide by majority
(we do not require that all the users vote on each mapping); thus, minimum consensus,
= [(V/2) + 1], is the minimum number of similar labels that is needed to make a
correct decision on a mapping. For example, if V = 5 is the number of validations
considered sufficient to decide by majority, a correct decision on a mapping can be
taken when p = 3 similar labels are assigned to a mapping by the users.

The architecture of our multi-user ontology matching strategy can be built around
any ontology matching system. In our case, we use AgreementMaker [4, 5]. We list
the steps of the feedback loop workflow:

Step 1: Initial Matching.

During the first iteration, before feedback is provided, all data structures are cre-
ated. In the beginning of this process, a set of & matchers is run. Each matcher evalu-
ates the similarity between every concept in the source ontology and every concept in
the target ontology. Similarity may be evaluated using well-known measures, such as
Levenshtein distance or cosine similarity, or a combination of measures. For example,
one of the matchers we use computes the weighted average of different string-based
similarity values, each one dedicated to a pair of concept features [4]. The output of
each matcher is a similarity matrix, where each element (i, j) is the similarity score
computed between element 7 of the source ontology and element j of the target on-
tology, a value in the interval [0, 1]. Similarity matrices (see, e.g., the matrix depicted



in Table 1) are not symmetric and reflexive because row and column indices represent
elements of two different sets. Because we have k individual matchers we can define
a signature vector with the k similarity scores computed for each pair (¢, 7) [6]. The
results of the individual matchers are combined into a global similarity matrix, using
some aggregate function that also returns values in the interval [0, 1], such as a linear
weighted combination function [5].

Step 2: Validation Request. A user asks for a mapping to validate, triggering the
feedback loop.

Step 3: Candidate Selection. For each user who requests a mapping to validate,
a mapping is chosen using two different candidate selection strategies combined by
one meta-strategy (explained in detail in Section 3.2). The first strategy ranks the
mappings that have not been validated by any user in previous iterations, while the
second strategy ranks the mappings that have been previously validated at least once.
Each strategy uses quality criteria to rank the mappings. The highest ranked mappings
are those mappings estimated to have lowest quality, the expectation being that they are
the more likely to be incorrect. Our approach is based on active learning [20], in that
we are trying to identify those mappings whose correction will lead to better results
faster. Our hypothesis is that those mappings are exactly those with lowest quality.
This hypothesis will be confirmed by our findings. The quality of the mappings is
assessed at each iteration.

Step 4: User Validation. At this step, a user can label the previously selected mapping
as correct or incorrect but can also skip that particular mapping when unsure of the label
to assign to the mapping.

Step 5: Feedback Aggregation. A feedback aggregation matrix keeps track of the
feedback collected for each mapping and of the users who provided that feedback. The
data in this matrix are used to compute mapping quality measures in the candidate
selection and feedback propagation steps.

Step 6: Feedback Propagation. This method updates the global similarity matrix by
changing the similarity score for the validated mapping and for the mappings whose
signature vector is close to the signature vector of the mapping that was just validated,
according to a distance measure.

Step 7: Alignment Selection. An optimization algorithm [5] used in Step 1, is run on
the updated similarity matrix as input, and a refined alignment is selected. At the end
of this step, we loop through the previous steps, starting from Step 2.

This feedback loop implements a pay-as-you-go approach to ontology matching
mainly because an initial alignment computed with automatic methods is refined every
time that an individual mapping is validated by one user without waiting for consensus.
Even if we consider possible errors in validating mappings, thus causing inconsistency
among users, we assume consistency for the same user, thus we do not present the same
mapping more than once to each user. In addition, mappings for which consensus
has been reached in previous iterations are removed from the list of mappings to be
validated.

The candidate selection and feedback propagation steps are designed for equiva-
lence mappings and for one-to-one mappings. However, our approach does not depend
on the cardinality of the alignment, because the desired cardinality can be set at the end
of the feedback loop.



3 Quality-Based Multi-User Feedback

In this section we describe the Candidate Selection and Feedback Propagation steps,
which play a major role in our model. First, we explain the Mapping Quality Model,
which is used by both steps.

3.1 Mapping Quality Model

We use a mapping quality model to estimate the quality of the candidate mappings,
which uses five different mapping quality measures. The quality of a mapping esti-
mated by a measure is represented by a score, which is higher for the mappings that are
considered of higher quality. The score assigned to the mappings is always normalized
in the interval [0, 1], which has two advantages. First, for every quality measure @,
we can define a measure ()~ in the same interval [0, 1], where the score for a mapping
m is obtained by subtracting the quality score Q(m) from 1. While a quality measure
@ is used to rank mappings in increasing order of quality, a measure @~ is used to
rank mappings in decreasing order of quality. Rankings defined with a measure )~
are inverted compared to rankings defined with a quality measure (). Second, scores
estimated with different measures can be easily combined with aggregate functions,
e.g., maximum or average.

Automatic Matcher Agreement (AMA). The agreement of the similarity scores
assigned to a mapping by different automatic matchers is called Automatic Matcher
Agreement (AMA) and is defined as AMA(m) = 1 — DIS(m), where DIS(m) is the Dis-
agreement associated with mapping m. It is defined as the variance of the similarity
scores in the signature vector and is normalized to the range [0, 1] [6]. Since Disagree-
ment plays an important role in our approach, we will use the notation DIS instead of
the superscript notation that we use for other measures.

As an example, given a mapping m with a signature vector (1, 1,0, 0), where each
value represents a similarity score returned by one automatic matcher, AMA(m) = 0
(or, equivalently, DIS(m) = 1) indicates that there is no agreement among the automatic
matchers.

Cross Sum Quality (CSQ). Given a source ontology with n concepts, a target
ontology with p concepts, and a matrix of the similarity scores between the two ontolo-
gies, for each mapping m; ; the cross sum quality sums all the similarity scores o; ; in
the same ith row and jth column of the matrix. The sum is normalized by the maxi-
mum sum of the scores per column and row in the whole matrix, respectively denoted
by max i and mazc, as defined in Equation 1.
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This measure assigns a higher quality score to a mapping that has less conflict with
other mappings, a conflict occurring when there exists another mapping for the same
source or target concept. This measure takes into account the similarity score of the
mappings, assigning a lower quality to mappings that conflict with mappings of higher
similarity.



Table 1: An example of a similarity matrix. Empty cells have value 0.

: I 0 1 2 3 4 5
0 0.45 0.70
1 0.30
2 0.60
3 0.50 0.90
4 0.80
5 0.40 0.10 0.90

Table 2: Examples for the Consensus (CON) and Feedback Stability (SF) quality mea-
sures with 1 = 3.

Mapping | T' | ' | CON | SF
m 1|1 000 | 0.00
m/ 1|0 033033
m” 2111033 05

For the matrix of Table 1, the values of CSQ(ms3 4) and CSQ(my ») are:

1.2+14

e
C5Q(ms.4) Tat116 013
0.6 +0.7
C50(m2,2) 14116 007

Mapping mo 2 has higher quality than 3 4 because ms o has only one conflict with
ms,2 while ms 4 has two conflicts with m; 4 and m3 ;. Also, the conflicting map-
ping ms 2 has lower similarity than the conflicting mappings m; 4 and ms 1, further
contributing to the difference in quality between m3 4 and my .

Similarity Score Definiteness (SSD). This measure evaluates how close the sim-
ilarity o,, associated with a mapping m is to the similarity scores’ upper and lower
bounds (respectively 1 and 0) using Equation 2.

SSD(m) = |0y, — 0.5] % 2 2)

SSD will assign higher quality to the mappings considered more definite in their simi-
larity score. The least definite similarity score is 0.5.
For the matrix of Table 1, the values of SSD(my o) and SSD(mg 4) are:

SSD(mg,0) =10.45 — 0.5/ %2 =0.1
SSD(m3 4) =10.9 —0.5| 2 =0.8
Consensus (CON). In the multi-user ontology matching scenario, a candidate map-

ping may be labeled as correct by some users and as incorrect by others. In our ap-
proach we assume that the majority of users are able to make the correct decision.



The consensus (CON) quality measure uses the concept of minimum consensus (i, as
defined in Section 2, to capture the user consensus gathered on a mapping at a given
iteration. Let T},, and F},, denote respectively the number of times that a mapping has
been labeled respectively as correct or incorrect. Given a mapping m, CON(m) is max-
imum when the mapping is labeled at least  times as correct, as defined in Equation 3.

1 if T, >por Fpy, > 1

CON = 3
(m) {T’"#Fm otherwise )

Three examples of the CON quality evaluation are shown in Table 2. According to
the consensus gathered among the users, the quality of mappings m’ and m'’ is higher
than the quality of mapping m.

Feedback Stability (FS). Given the current set of user validations received by the
system at some iteration, F'S estimates the impact of future user validations on the
similarity evaluation in the Feedback Propagation step of the loop. Using the concept
of minimum consensus (i), FS tries to identify the mappings that are more stable in
the system. Intuitively, mappings are more stable when minimum consensus has been
reached, or when they have been assigned one label (correct or incorrect) a higher
number of times than the other. In addition, the number of similar labels assigned
to a mapping tells us how close the system is to reaching minimum consensus on that
mapping. Instead, the more unstable mappings are the ones that have been assigned the
label correct and the label incorrect an equal number of times. For these mappings, a
new validation will bring more information into the system. By breaking a “tie” in user
validations, the system comes closer to making a decision. Defining AT, = u — T,
and AF,,, = p — F,,,, then:

FS(m) {1 woiar apy om = por Fn = p @
~ (AT ATL) otherwise

The fraction in Equation 4 measures the instability of a mapping, defined as the
ratio between the minimum and the maximum distances from minimum consensus of
the number of similar labels assigned to a mapping. For AT,,, = AF,, this fraction is
always equal to 1, meaning that a mapping m will be assigned a quality FS(m) = 0.
We also observe that FS is always defined in the interval [0, 1], and that when minimum
consensus on a mapping m has not been reached, FS™ (m) = %.

Considering the examples in Table 2, mapping m has the lowest SF' score because
we are in a tie situation and new feedback on that mapping is required. Mapping m’
has a high SF score because the number of times it was labeled as correct is close to .
Mapping m' has medium SF because, despite T,,,r — iy = Ty — Fyrr the number of
times that m’ has been validated as correct is more distant from z. As can be seen from
the example in Table 2, the intuition captured by SF is slightly different from the one
captured by CON. While CON (m') = CON(m'") = 1/3, m’ and m'" have different
SF scores.

3.2 Quality-Based Candidate Selection

We combine the proposed quality measures using well-known aggregation functions
to define two different candidate selection strategies: Disagreement and Indefiniteness



Average (DIA), which is used to select unlabeled mappings (mappings that have not
been validated by any user in previous iterations) and Revalidation (REV), which is
used to select already labeled mappings (mappings that have been validated in previous
iterations). Both strategies use quality scores that change over time and rank mappings
at each iteration.

The DIA strategy uses the function:

DIA(m) = AVG(DIS(m), SSD~ (m)) (5)

It favors mappings that are at the same time the most disagreed upon by the auto-
matic matchers and have the most indefinite similarity values. The two measures CON
and SF cannot be used to rank unlabeled mappings because they consider previous vali-
dations. After an experimental evaluation of different combinations of the other quality
measures, discussed in detail in Section 4.2, we found that the combination of DIS and
SSD (without CSQ) is the best combination of measures to find those mappings that
were misclassified by the automatic matchers.

The second strategy, Revalidation (REV), ranks mappings using the function:

REV(m) = AVG(CSQ™ (m), CON™ (m), SF~ (m)) (6)

This strategy favors mappings with lower consensus and such that previous val-
idations could have changed significantly, and harmfully, the quality of the current
alignment. The analysis of the users’ activity, which is explicitly captured by CON and
SF, is crucial to this strategy. In addition, since several mappings may have similar
CON and SF in the first iterations, REV favors also mappings with potential conflicts
with other mappings leveraging the CSQ measure. In this strategy, CSQ is preferred to
DIS and DSS because: i) to rank already labeled mappings, disagreement among users,
measured with CON and SF, is more informative than disagreement among automatic
matchers, measured by DIS, ii) labeled mappings will have very definite similarity
scores, and, therefore, very similar DSS scores, and iii) more potential conflicts, mea-
sured by CSQ, can emerge as more feedback is collected.

The mapping that is presented to the user is selected by a parametric meta-strategy,
which picks the top mapping from one of the DIA or REV rankings. This meta-strategy
uses two probabilities, pp4 and pggy, such that ppjs + prev = 1, which are associated
respectively with the DIA and REV strategies. The parameter pggy is called revalida-
tion rate and is used to specify the proportion of mappings presented to the users for
validation that have been already validated in previous iterations. We consider a con-
stant revalidation rate, because we do not have empirical data that shows whether the
users make more (or fewer) errors as the matching process unfolds. If such evidence
is found, the revalidation rate can be changed accordingly. The meta-strategy verifies
also that the same mapping (chosen from the REV list) is not presented for validation
to the same user more than once.

To support a pay-as-you-go approach to interactive ontology matching, we use a
combination of DIA and REV. The former (DIA) is associated with earlier validation of
those mappings that are more likely to be misclassified based on the automatic match-
ing methods. In this way the alignment can be quickly improved in the first iterations.
The latter (REV) is associated with validation of mappings that have already been val-
idated, especially those for which previous validations have been less conclusive.



For example, if we consider two mappings m and m/’ that have been validated only
once each with low FS and CON scores, they are more likely to be presented to users
for a second validation. If both mappings are validated a second time and the two
validations agree for m but not for m’ then F'S and CON increase significantly for m
(because now m has greater consensus and higher feedback stability) but not for m/'.
As a consequence, m is less likely to be revalidated anytime soon (in the meantime,
more mappings validated only once and with low FS and CON scores will be added to
the REV list). Instead, m’ is more likely to be revalidated soon because of its (still very
low) F'S and CON scores. CSQ also contributes to REV by pushing the mappings that
have more conflict with other mappings higher in the ranked list. For example, when
both m and m’ were validated only once and had equal FS and CON, a higher CSQ
score may determine their relative position in the REV list.

3.3 Quality-Based Feedback Propagation

When the selected mapping is validated by a user, the feedback is propagated by up-
dating a subset of the Similarity Matrix. We experimentally evaluated several feedback
propagation methods, including a method used in our previous work [6], a method
based on learning similarity scores with a multiple linear regression model, and a
method based on our quality measures. For our experiments, we use this last method,
which we call Quality Agreement (QA) Propagation, because it achieves the best trade-
off between speed and robustness.

The method we used in our previous work assigns the label (0 or 1) to all the map-
pings in the cluster of mappings whose signature vectors are equal to the vector of the
mapping validated by the user (with a O or 1, respectively). This method has the disad-
vantage of propagating the user feedback on a very limited number of mappings. The
method based on the multiple linear regression model learns the dependency between
the values in the signature vectors of the mappings and the similarity values in the
global similarity matrix. We found that this method has the disadvantage of requiring
many user inputs before producing meaningful predictions.

In QA Propagation, the similarity of the validated mapping is set to 1 or O depending
on the label assigned by the user. To propagate the similarity to other mappings, we
compute the Euclidean distance between the signature vector of the validated mapping,
denoted by v, and the signature vectors of all the mappings for which consensus has
not been reached. A distance threshold 6 is used to identify the class of mappings
most similar to the mapping labeled by the user. The mappings in this class have
their similarity increased if the validated mapping is labeled as correct, and decreased
otherwise. The change is proportional to: 1) the quality of the labeled mapping v and of
the mappings m in the similarity class, measured respectively by two quality measures
Q and Q’, and 2) a propagation gain defined by a constant g such that 0 < g < 1, which
regulates the magnitude of the update. This constant will determine how much the
quality of the labeled mapping will affect the quality of the mappings in the similarity
class. Let § = Q(v) x Q'(m) * g be this change factor. After the propagation of a
validation label(v), the similarity o%, of a mapping m in the similarity class of v at an
iteration ¢ is defined by:
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: {oﬁn_l—}—min (6,1—0;5;1) if label(v) =1
ot =

me oil —min (6, Jf{l) if label(v) = 0

We adopt a conservative approach to propagation to make the system more robust to
erroneous feedback. We define Q(v) = CON(v) and Q'(m) = AVG(AMA(m), SSD(m)).
Thus, the similarity of the mappings in this class is increased/decreased proportionally
to: 1) the consensus on the labeled mapping, and ii) the quality of the mappings in the
similarity class. For example, for CON(m,) = 0, the similarity of other mappings in
the class is not updated. In addition, when g = 0, the propagation function changes
the similarity of the validated mapping but not the similarity of other mappings in the
class.

4 Experiments

Table 3: Results after the initial matching step.

Matching Task | # Correct Mappings | # False Positives | # False Negatives | F-Measure
101-301 50 6 2 92.31
101-302 36 5 5 86.11
101-303 40 23 4 72.73
101-304 74 9 2 92.90

We conduct several experiments to evaluate our multi-user feedback loop model. In
a first set of experiments we evaluate the performance of the proposed pay-as-you-go
method by analyzing the performance of different system configurations under various
error rates and comparing it to the performance of a baseline approach. In a second set
of experiments, we compare the performance of our mapping quality measures to the
performance of other quality measures proposed in related work.

4.1 Performance under Different Error Rates
4.1.1 Experimental Setup

Our experiments are conducted using four matching tasks in the Benchmarks track of
OAEI 2010, which consist of real-world bibliographic reference ontologies that include
BibTeX/MIT, BibTeX/UMBC, Karlsruhe and INRIA, and their reference alignments.
We chose these ontologies because they have been used in related studies [9, 21, 6, 19].
In the evaluation we use two measures based on F-Measure:
Gain at iteration t, AF-Measure(t), is the difference between the F-Measure at itera-
tion ¢ as evaluated after the Alignment Selection Step and the F-Measure at the Initial
Matching Step (see Section 2).
Robustness at iteration t, Robustness(t), is the ratio at iteration ¢ of the F-Measure
obtained under error rate er, FMgg—.,(t), and the F-Measure obtained with zero error
rate, FMggr—q(t), for the same configuration. A robustness of 1 means that the system
is impervious to error.
The above measures characterize the behavior of the system in time. We need to
consider two additional measures to represent this behavior with a single aggregate
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Figure 1: Each chart presents AF-Measure(t) obtained for ontologies 101-303 with a
different error rate (ER): (a) ER = 0.0; (b) ER = 0.05; (¢c) ER =0.1; (d) ER = 0.15; (e)
ER =0.2; (f) ER = 0.25. The dashed lines represent a propagation gain equal to zero.
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value, so as to ease the comparison among different configurations. The Area Under
the Curve (AUC) can be used to describe a variable measured at different points in
time, e.g., gain at iteration ¢, with an aggregate value. This value is defined by the area
of the curve obtained by plotting the variable over time. The two aggregate measures
based on AUC used in our experiments are defined as follows.

Area Under the Gain Curve (AUGC), is a measure that provides an aggregate represen-
tation of the gain in F-Measure until a fixed iteration n:

AUGC = " AF-Measure(t) (8)

t=1

This measure is similar to Area Under the Learning Curve (AULC), which has been
recently proposed to evaluate interactive ontology matching systems [18]. In AULC,
absolute F-Measure is used instead of gain in F-Measure and the iteration axis uses a
logarithmic scale to reward a quicker increase of F-Measure. We use gain in F-Measure
to better emphasize the difference from the initial F-Measure. We also do not adopt a
logarithmic scale because this would not adequately penalize a decrease in F-Measure
after a certain number of iterations, which can happen when user errors are considered.
Area Under the Robustness Curve (AURC), is a measure that provides an aggregate
representation of the Robustness until iteration n:

AURC = ZRobustness(t) ©))
t=1

We conduct our experiments by simulating the feedback provided by the users.
Our focus is on the evaluation of the methods proposed to minimize the users’ over-
all effort and make the system robust against user errors. This kind of simulation is
needed to comparatively assess the effectiveness of different candidate selection and
propagation methods before performing experiments with real users, where presenta-
tion issues play a major role. We consider a community of 10 users, and simulate
their validation at each iteration using the reference alignment. We note that we have
made two assumptions that can be revised as they do not alter the substance of the
method. The first reflects the fact that we do not distinguish among users as mentioned
in Section 2 and therefore consider a constant error rate for each sequence of validated
mappings. A constant error rate has been applied to other interactive ontology match-
ing approaches [11]. The study of a community of users might uncover an appropriate
probability distribution function for the error (e.g., Gaussian). The second assumption
is related to the choice of the number of validations V' considered sufficient to decide
by majority, which we set to 5, and therefore ;x = 3. Studying the users could lead
to setting V' so as to guarantee a desired upper bound for the error rate. Without this
knowledge, we considered several error rates while keeping V' constant.

In the Initial Matching Step we use a configuration of AgreementMaker that runs
five lexical matchers in parallel. The LWC matcher [5] is used to combine the results
of five lexical matchers, and two structural matchers are used to propagate the similar-
ity scores. The similarity scores returned by these matchers are used to compute the
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signature vectors. In our experiments we compute the gain and robustness at every iter-
ation t from 1 to 100, with six different error rates (ER) (0.05, 0.1, 0.15, 0.2, 0.25) and
twelve different system configurations. The configurations stem from the six different
revalidation rates (RR) (0.0, 0.1, 0.2, 0.3, 0.4, 0.5) used in candidate selection strategy,
and two different feedback propagation gains, ¢ = 0 and g = 0.5. When g = 0, the
propagation step affects only the mapping validated by the user, that is, it does not
change the similarity of other mappings. We set the threshold used for cluster selection
6 = 0.03. This value is half the average Euclidean distance between the signature vec-
tors of the first 100 validated mappings and the remaining mappings with a non-zero
signature vector. Remarkably, this value is approximately the same for all matching
tasks, thus being a good choice. In the Alignment Selection Step we set the cardinality
of the alignment to 1:1. The evaluation randomly simulates the labels assigned by the
users according to different error rates. Every experiment is therefore repeated twenty
times to eliminate the bias intrinsic in the randomization of error generation. In the
analysis of the results we will report the average of the values obtained in each run of
the experiments.

Table 4: AUGC for ontologies 101-303.

ER 00 ]005]01]015]027]025
RR=0.0 | NoGain || 66 | 56 [45] 39 [ 28] 16
| RR=0.0 [ Gain [ 68 60 | 49| 43 [29 | 2.1 |
RR=0.1 | NoGain || 6.0 [ 53 [ 44 [ 3.6 [3.0] 25

RR=0.1 Gain 62| 57 |47 ] 40 [ 34| 24
RR=0.2 | NoGain || 55 | 5.1 | 43| 36 | 33| 25

| RR=02 [ Gain [ 57 ] 50 | 47| 38 [29] 29 |
RR=0.3 | NoGain || 52| 49 [44] 42 [38 | 34

| RR=03 | Gain [ 53] 47 | 46| 41 [39] 3.0 |
RR=0.4 | NoGain || 46 | 43 [ 41| 38 [35] 33

| RR=04 | Gain [ 47 ] 44 | 42| 38 [ 37| 3.0 |
RR=0.5 | NoGain || 41 [ 39 [37 ] 36 |36 | 32

RR=0.5 | Gain 4171 41| 37| 36 | 35| 34 |

We also want to compare the results obtained with our model, which propagates the
user feedback at each iteration in a pay-as-you-go fashion, with a model that adopts an
Optimally Robust Feedback Loop (ORFL) workflow, inspired by CrowdMap, a crowd-
sourcing approach to ontology matching [19]. In their approach, similarity is updated
only when consensus is reached on a mapping, which happens after five iterations when
V = 5. To simulate their approach we modify our feedback loop in such a way that a
correct validation is generated every five iterations (it is our assumption that the major-
ity decision is correct). CrowdMap does not use a candidate selection strategy because
all the mappings are sent in parallel to the users. We therefore use our candidate selec-
tion strategy with RR = 0 to define the priority with which mappings are validated and
do not propagate the similarity to other mappings.
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Figure 2: Parallel coordinates of AUGC for ontologies 101-303.

4.1.2 Result Analysis

We ran our first experiment on two of the OAEI Benchmarks ontologies, 101 and
303. We chose these ontologies because their matching produces the lowest initial
F-Measure (0.73) when compared with the results for the other matching tasks 101-
301 (0.92), 101-302 (0.86) and 101-304 (0.93). Thus we expect to see a higher gain for
101-303 than for the others. Table 3 shows for each matching task the number of cor-
rect mappings, false positives, false negatives, and F-Measure after the initial matching
step.

Figure 1 shows the gain in F-Measure after several iterations using different config-
urations of our model and the ORFL approach. Each chart presents results for a specific
error rate (ER). Solid lines represent configurations with propagation gain g = 0.5,
while dashed lines represent configurations with zero propagation gain. Different col-
ors are associated with different revalidation rates (RR). The dotted line represents the
results obtained with the ORFL approach. In the charts, the steeper a curve segment
between two iterations, the faster the F-measure gain between those iterations. It can
be observed that our approach is capable of improving the quality of the alignment
over time. However, it is also the case that as time increases the quality can decrease
especially for higher error rates, that is, primarily for charts (d), (e), (f) of Figure 1.
We can see that lower revalidation rates obtain better AF-Measure(t) with lower error
rates. However, as error rate increases, e.g., for ER=0.2 and ER=0.25, better results
are obtained with higher revalidation rates. Therefore, we infer that our REV strategy
is effective in counteracting high error rates. Moreover, our approach is performing
better than ORFL in all situations except the one with highest error rate and lowest
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Figure 3: Each chart presents Robustness(t) obtained for ontologies 101-303 with a
different error rate (ER): (a) ER = 0.0; (b) ER = 0.05; (¢c) ER = 0.1; (d) ER = 0.15; (e)
ER =0.2; (f) ER = 0.25. Dashed lines represent a propagation gain equal to zero.

revalidation rate.

Table 4 shows AUGC for the charts presented in Figure 1. AUGC is also plotted
using parallel coordinates in Figure 2, where each parallel line represents a different
error rate. It is evident from Table 4 that propagation gain always helps to obtain the
maximum AUGC for every error rate. However, for some revalidation rates and some
error rates, AUGC is higher when the feedback is not propagated to other mappings
(i.e., g = 0), remarkably for RR=0.2 and ER=0.2, RR=0.3 and ER=0.25, RR=0.4 and
ER=0.25. Propagation is more frequently effective for lower error rates, e.g., for an
error rate up to 0.1, which can be explained by the higher probability of error propa-
gation when the error rate increases. Finally, it can be seen from Figure 1 that AUGC
decreases monotonically for every configuration as the error rate increases, but this
decrease is less prominent for higher revalidation rates (represented by gentler AUGC
curves). This observation indicates that our REV strategy helps to make the feedback
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loop more tolerant to user errors.

Table 5: AURC for ontologies 101-303.

ER 0.0 | 0.05 0.1 0.15 0.2 | 0.25
RR=0.0 | NoGain || 50.0 | 48.8 | 474 | 46.8 | 454 | 443
| RR=0.0 | Gain || 50.0 | 49.0 | 47.7 | 469 | 455 | 44.7 |
RR=0.1 | NoGain 50.0 | 48.9 | 479 | 47.1 | 463 | 459
| RR=0.1 | Gain || 50.0 | 49.1 | 482 [ 473 | 46.6 | 455 |
RR=0.2 | NoGain || 50.0 | 49.3 | 484 | 47.8 | 474 | 464
| RR=0.2 | Gain || 50.0 | 489 | 48.6 | 47.7 | 46.7 | 46.7 |
RR=0.3 | NoGain || 50.0 | 494 | 49.0 | 48.5 | 48.3 | 47.7
| RR=0.3 | Gain || 50.0 | 493 | 48.9 | 485 | 48.1 | 47.1 |
RR=0.4 | NoGain || 50.0 | 49.5 | 49.1 | 48,9 | 484 | 484
| RR=0.4 | Gain || 50.0 | 49.6 | 49.1 [ 49.0 | 48.7 | 48.0 |
RR=0.5 | NoGain || 50.0 | 49.5 | 49.5 | 494 | 49.3 | 48.8
| RR=0.5 | Gain || 50.0 | 49.6 | 49.5 | 492 | 49.2 | 48.8 |
50
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Figure 4: Parallel coordinates of AURC for ontologies 101-303.

Figure 3 shows the robustness of different configurations evaluated at different iter-
ations, varying both the error and the revalidation rates. Each chart presents results for
a specific error rate (ER). Solid lines represent configurations with propagation gain
g = 0.5, while dashed lines represent configurations with zero propagation gain. Dif-
ferent colors represent results obtained with different revalidation rates. Robustness
decreases as time increases and revalidation rate decreases, more noticeably for high
error rates. However, robustness decreases at a much lower rate with high revalidation

rate, as shown by the gentler curves in Figure 3.

Table 5 shows AURC for the charts presented in Figure 3. AURC is also plotted
using parallel coordinates in Figure 4. As error rates increase, we see a sharp mono-
tonic decrease in robustness. However, as the revalidation rates increase, robustness
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always increases, except in one case for RR=0.2 and ER=0.05. This observation in-
dicates that with high revalidation rates the system becomes less sensitive to the error
rate. Moreover, it can be seen from Table 5 that configurations with propagation gain
greater than zero are more robust than configurations with zero propagation gain for
low revalidation and error rates. When error rate increases and a high revalidation rate
is used, configurations with zero propagation gain are more robust than configurations
with propagation gain greater than zero.

Table 6: AF-Measure(t) for the matching tasks with higher initial F-Measure.

ER RR CONF 101-301(0.92) 101-302(0.86) 101-304(0.92)
@10 @25 @50 @100 @10 @25 @50 @100 @10 @25 @50 @100
0.0 0.2 NoGain 0.03 0.05 0.05 0.05 0.03 0.05 0.06 0.08 0.0 0.05 0.05 0.05
0.0 0.2 Gain 0.03 0.04 0.04 0.05 0.03 0.06 0.06 0.08 0.0 0.05 0.05 0.05
0.0 0.3 NoGain 0.02 0.05 0.05 0.05 0.03 0.05 0.06 0.08 0.0 0.04 0.05 0.05
0.0 0.3 Gain 0.02 0.04 0.04 0.05 0.03 0.05 0.06 0.08 0.0 0.03 0.05 0.05
0.1 0.2 NoGain 0.03 0.04 0.01 -0.01 0.02 0.01 0.0 -0.02 0.0 0.03 0.03 0.00
0.1 0.2 Gain 0.03 0.03 0.01 0.0 0.02 0.03 0.01 0.01 0.0 0.03 0.03 0.00
0.1 03 NoGain 0.02 0.04 0.02 0.0 0.03 0.02 0.00 0.01 0.0 0.03 0.04 0.02
0.1 0.3 Gain 0.02 0.03 0.01 0.0 0.03 0.03 0.01 0.01 0.0 0.03 0.04 0.01
- 0.0 ORFL 0.0 0.02 0.04 0.05 0.01 0.03 0.05 0.05 0.0 0.0 0.0 0.05

We ran further experiments with three other matching tasks of the OAEI 2010
Benchmarks track. Table 6 contains the results for the three other tasks (101-301,
101-302, 101-304) and shows AF-Measure(t) at different iterations under two differ-
ent error rates (0.0 and 0.1), two different revalidation rates (0.2 and 0.3), in different
configurations with or without gain (Gain or NoGain), for our pay-as-you-go work-
flow, together with a comparison with ORFL. We discuss the results for an error rate
up to 0.1 because the initial F-Measure in these matching tasks is high (0.92, 0.86, and
0.93, respectively), therefore we do not expect that users will make more errors than
automatic matchers. In the absence of error, our model always improves the quality of
the alignment for the three tasks faster than ORFL (except for iteration 100 of 101-304
where both methods have the same gain of 0.05). For an error rate of 0.1, our model
performs better than ORFL for ¢ = 10 for every matching task, and for ¢ = 25 in two
of them. For ¢ = 50 it performs worse than ORFL for two of the tasks and better for
one of the tasks. For ¢ = 100, ORFL always performs better.

4.2 Comparison with Quality Measures Proposed in Related Work

We establish a comparison between our mapping quality model and the measures used
in the candidate selection of the single user approach of Shi et al. [21]. We want to
determine which quality model performs better in our feedback loop workflow. The
candidate selection strategy used by Shi et al. uses three measures, Contention Point,
Multi-Matcher Confidence, and Similarity Distance, whose intent is close to that of our
quality measures CSQ, DIS, and SSD.

We ran an experiment with all the four matching tasks of the OAEI 2010 Bench-
marks track (101-301, 101-302, 101-303, 101-304), in an error-free setting (like the
one considered by Shi et al.) with no propagation gain. We consider the measures
of our model that are meaningful in an error-free setting, i.e., CSQ~, DIS, and SSD~.
We compare DIA (see Equation 5) with several selection strategies defined using indi-
vidual measures and significant combinations of them, i.e., maximum, minimum and
average. For the evaluation we look at the list of top-100 ranked mappings returned by
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each strategy and we measure: the number of false positives and false negatives found
in the list, AF-Measure(t) obtained after validating the mappings in the list, and the
Normalized Discounted Cumulative Gain (NDCG) of the ranked list.

NDCG is a well known measure used to evaluate the quality of a ranked list of
results [13]. Discounted Cumulative Gain measures the gain of an item in a list based
on its relevance and position. The gain is accumulated from the top of a result list of n
elements to the bottom, with the gain of each result discounted at lower ranks:

DCG = rely + Z lgzl Z (10)
2

NDCG is defined by normalizing the cumulated gain by the gain of an ideal ranking:

DCG
NDCG = - - (11)

In a list of mappings to present to the user for validation, a mapping will be validated
at iteration ¢ when it holds the position ¢ in the list. A mapping is considered relevant
if it is misclassified by the system, i.e., if it is either a false positive or a false negative.
The ideal ranking for a candidate selection is the ranking in which all the misclassified
mappings are ranked on top of the mapping list. A candidate selection strategy has
higher quality measured by NDCG when it ranks a high number of misclassified map-
pings in the first positions. Higher NDCG means that the candidate selection strategy
improves the quality of the alignment faster because a larger number of misclassified
mappings get corrected at earlier iterations.

Table 7: Comparison of different quality measures and their combinations showing
retrieved false positives, retrieved false negatives, AF-Measure(t) and NDCG at iter-
ation 100.

301 302 303 304
#FP | #FN | AFM | NDCG | #FP | #FN | AFM | NDCG | #FP | #FN AFM | NDCG | #FP | #N | AFM | NDCG

Contention Point 6 0 0.05 0.19 4 1 0.08 0.39 9 0 0.07 0.19 1 1 0.01 0.05
Multi Matcher Confidence 2 0 0.01 0.09 T T 0.04 0.06 5 0 0.03 0.11 0 0 0.00 0.0
Similarity Distance 0 0 0.00 0.00 0 0 0.00 0.00 0 0 0.00 0.00 0 0 0.00 0.00
MAX(SLTXL) 0 0 0.00 0.00 0 0 0.00 0.00 0 0 0.00 0.00 0 0 0.00 0.00
MIN(SLTXL) 0 0 0.00 0.00 0 0 0.00 0.00 1 0 0.007 0.02 0 0 0.00 0.00
AVG(SLTXL) 7 0 0.03 0.14 3 1 0.06 0.29 7 0 0.05 0.18 0 0 0.00 0.00
CcsQ— 6 1 0.05 0.46 5 1 0.08 0.56 20 3 0.20 0.79 9 1 0.06 053
DIS 6 1 0.05 0.18 1 2 0.06 0.27 18 3 0.20 0.65 8 1 0.05 0.79
SSD— 6 0 0.05 0.49 4 0 0.05 025 17 0 0.13 0.60 3 0 0.01 0.12
AVG(CSQ~ ,DIS,SSD ) 6 1 0.05 045 4 0 0.03 031 20 1 0.18 0.65 8 0 0.04 038
MAX(CSQ — ,DIS,SSD —) 2 0 0.01 0.16 3 0 0.02 0.75 3 0 0.02 0.58 2 0 0.01 021
MIN(CSQ ~ ,DIS,SSD ™) 0 0 0.00 0.00 0 0 0.00 0.00 1 0 0.007 0.02 0 0 0 0.00
DIA 6 T 0.06 0.69 5 3 0.11 0.60 23 3 0.26 0.80 9 1 0.06 045

Table 7 shows the result of our experiments on four matching tasks (101-301, 101-
302, 101-303, 101-304). We refer to the set of measures in Shi et al. as SLTXL, using
the first letters of the names of each author. For each candidate selection strategy,
Table 7 shows the number of misclassified mappings (#FP and #FN), AF-Measure(t)
and NDCG. The values of AF-Measure(t) and NDCG for candidate selection strategies
based on our mapping quality measures significantly outperform the strategies based
on the Shi et al.’s measures. All the quality measures are more effective in finding false
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positives than false negatives, but a limited number of false negatives are found by our
measures in every matching task. DIA is the strategy that performs on average better,
with an average AF-Measure(t) equal to 0.11.

4.3 Conclusions

From our experiments with four different matching tasks characterized by different
initial F-Measure values, we draw the following conclusions:

1. When users do not make errors, our method improves the quality of the align-
ment much faster in every matching task than an optimally robust feedback loop
(ORFL) method that labels a mapping only after having collected from the users
every validation needed to reach consensus.

2. An increasing error rate can be counteracted by an increasing revalidation rate,
still obtaining very good results for an error rate as high as 0.25 and a revalidation
rate of 0.5.

3. In the presence of errors, our approach is particularly effective when the initial
alignment has lower quality and includes a higher number of false positives (see
Table 3). In the matching task with lower initial F-Measure, every configuration
of our method improves the quality of the alignment much faster than the opti-
mally robust feedback loop method, even when error rates are as high as 0.25.
Propagating the feedback to mappings other than the mapping labeled by the
user at the current iteration shows a higher gain in F-Measure in several of the
experiments.

4. In the presence of errors, the F-Measure gain decreases after a certain number of
iterations, unless a high revalidation rate is used. The number of iterations after
which the gain in F-Measure decreases, which is clearly correlated with the error
rate, appears to also be correlated with the quality of the initial alignment and, in
particular, with the number of false positives (see Table 3). For example, using
a revalidation rate of 0.3 and an error rate of 0.1, the F-Measure gain starts to
decrease after 25 iterations in matching tasks with at most six false positives in
the initial alignment (101-301, 101-302), and does not decrease before the 50th
iteration in matching tasks where the initial alignment contains at least nine false
positives (101-303, 101-304).

5. When the error rate is unknown, a revalidation rate equal to 0.3 achieves a good
trade-off between F-measure gain and robustness because of the “stability” of the
results as displayed in the (d) charts of Figures 1 and 3. We note that propagation
gain leads to better results for the F-measure gain than for robustness.

6. Propagation gain leads to better results (F-measure gain) in the absence of user
errors. Thus, propagation gain would be clearly effective if applied after consen-
sus is gathered on a mapping. However, when we consider user errors, propaga-
tion gain leads to better results (F-measure and Robustness) in some settings, i.e.,
with different revalidation and error rates, but worse results in other settings. The
most notorious example of worse results obtained with propagation gain in Ta-
ble 4 can be seen for ER=0.2 and RR=0.2. In this case, it appears that errors get
propagated, without being sufficiently counteracted by revalidation. When reval-
idation rate increases to RR=0.3 then the results with propagation gain greater
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than zero wins. Another example is when we have ER=0.25 and RR=0.3 in Ta-
ble 5. The result with zero propagation gain is much better than with propagation
gain. However, when the revalidation rate increases, the results become better
with propagation gain.

7. To minimize the loss in robustness, we have to use high revalidation rates in-
dependently from the error rate, as shown in Figure 4. For example, when we
use RR=0.5 we obtain the most robust system configuration for every error rate.
However, we should consider the error rate when we want to configure the sys-
tem to avoid a loss in F-Measure gain. Figure 2 indicates that lower revalidation
rates provide better results with lower error rates and higher revalidation rates
provide better results with higher error rates.

8. According to our results, the revalidation rate should be changed over time, start-
ing with a lower revalidation rate and then switching to a higher revalidation rate.
The higher the error rate, the sooner the switch should occur.

5 Related Work

Leveraging the contribution of multiple users has been recognized as a fundamental
step in making user feedback a first class-citizen in data integration systems, such as
those for schema and ontology matching [1, 19]. Ontology matching approaches re-
lying on the feedback provided by a single user are a precursor to multi-user systems.
They include the work of Shi et al. [21], Duan et al. [9], Cruz et al. [6], Noy et al. [16],
To et al. [22], Jirkovsky et al. [12] and Jiménez-Ruiz et al. [11]. We describe first
single-user approaches in two groups based on the type of candidate selection method
they adopt, namely static vs. dynamic, and describe the multi-user approaches.

5.1 Single User Feedback with Static Candidate Selection

The first group of single user approaches includes those systems that have a static can-
didate selection strategy. The ranked list of candidate mappings does not get updated,
after it is generated.

Duan et al. use a supervised method to learn an optimal combination of differ-
ent similarity measures and to determine the right number of iterations for a similarity
propagation algorithm. Mappings submitted to the users for validation are chosen ran-
domly, and potential user errors are not considered [9].

Shi et al. use an active learning approach [21]. User feedback is propagated by
learning an optimal threshold for mapping selection and interactively propagating the
similarity using a graph-based structural propagation algorithm. The mappings pre-
sented to the users for validation are selected using three different measures. Since
the approach is designed for a single user scenario, consensus obtained around the
mappings in previous iterations and user errors are not considered. We compare the
performance of their approach with ours in Section 4.2.

Cruz et al. use signature vectors that identify the mappings for which the system
is less confident and propagate user feedback based on the similarity among signature
vectors. They include a visual analytics panel that supports users in the interactive
matching task [6]. In comparison, we now refine both the measures adopted in the
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candidate selection step and the feedback propagation function. In the current multi-
user scenario, we consider user errors and make decisions by consensus.

LogMap 2 is an interactive ontology matching system proposed by Jiménez-Ruiz
et al. [11]. They identify reliable and non-reliable mappings using lexical, structural,
and reasoning-based techniques. They discard reliable mappings and most of the non-
reliable mappings, and request feedback for the remaining mappings, which are pre-
sented to the users sorted by similarity. The user feedback is propagated by using log-
ical inference to detect conflicts with previously found mappings, which are rejected.
LogMap?2 has been evaluated considering several error rates for the user feedback, but
does not implement strategies specifically designed to counteract user errors.

5.2 Single User Feedback with Dynamic Candidate Selection

The second group of single user approaches includes those systems that have a dynamic
candidate selection. They update the list of candidate mappings at each iteration. How-
ever, none of these approaches considers user errors.

Noy et al. use an interactive component in the PROMPT suite for ontology merging
and matching [16]. They ask users for feedback based on some heuristics and analysis
of the structure of two ontologies. Their candidate selection method is different from
ours in that we rank candidate mappings based on the combination of quality measures,
each with a particular emphasis, and they use heuristics associated with the structure
of the two ontologies. PROMPT determines inconsistencies and potential problems
after user feedback is received and updates the list of candidate mappings, which is,
however, not ranked.

To et al. propose an adaptive machine learning framework for ontology match-
ing using user feedback [22]. They use two kinds of user feedback in their approach:
pre-alignment, which is used at the beginning of the mapping process to train a Naive
Bayes classifier, and relevance feedback, which is used in a semi-supervised method to
iteratively improve the learner. The user feedback is propagated in the sense that the
classification model is updated each time that the user feedback is collected. Jirkovsky
and Ichise propose MAPSOM, an interactive ontology matching approach [12] also
based on the classification of mappings, which uses a neural network. The neural net-
work learns an optimal combination of the basic similarity measures, using the user
provided feedback. The mappings presented to the user for validation are the ones
considered uncertain by the classifier, i.e., the closest mappings to the boundary es-
tablished by the classifier between correct and incorrect mappings. In our approach,
candidate mappings are selected using several quality measures and the user feedback
loop starts after the combination of initial matchers. Another important difference be-
tween our approach and the last two approaches (besides the single vs. multiple user
provided feedback) is that feedback is propagated by updating the similarity matrices
instead of tuning a classifier. One advantage of our approach is that we can set a de-
sired alignment cardinality and run an optimization algorithm on top of the feedback
propagation step.

5.3 Multi-User Feedback

In multi-user scenarios, several opportunities arise, such as the possibility of gathering
consensus on mappings, as well as challenges, such as the need to deal with noisy
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feedback [1, 19]. Multi-user scenarios include CrowdMap [19] for ontology matching,
ZenCrowd [8] for entity linking, and Zhang et al. [23] for database schema matching,
which use crowdsourcing on a web platform.

Both CrowdMap and ZenCrowd engage multiple users (named workers) to solve
a semantic-based matching task and collect several user inputs for individual candi-
date mappings. However, CrowdMap does not integrate automatic matching methods
with user feedback and does not investigate methods for candidate mapping selection
nor feedback propagation. CrowdMap is comparable to an optimally robust feedback
loop in the sense that consensus is obtained on the mappings before they are included
in the alignment. Instead we propose a pay-as-you-go approach in which the align-
ment is refined after each iteration. ZenCrowd proposes a probabilistic approach to
combine user feedback from a crowdsourcing platform with automatic entity matching
algorithms. However, ZenCrowd does not reach consensus on a mapping. Instead, it
performs probabilistic inference. Links are correct if they have a posterior probability
that is greater than a threshold.

The recent crowdsourcing approach of Zhang et al. [23] for database schema match-
ing considers alignments (sets of mappings) at a time instead of individual mappings. It
aims to reduce the uncertainty of an alignment. The best alignments have highest cer-
tainty and lowest cost. User reliability is considered and consensus is obtained using a
probabilistic approach.

Workers may not have specific skills nor a specific interest in the task that they per-
form other than the monetary reward that they get. Therefore, strategies are needed to
assess their performance. For example, McCann et al. [14] classify workers as trusted
or untrusted. Another example is provided by Osorno-Gutierrez et al. [17], who investi-
gate the use of crowdsourcing for mapping database tuples. They address the reliability
of the workers by identifying those workers whose answers may contradict their own or
those of others. Because our users are experts and have a vested interest in the quality
of the results, our approach does not take into account the reliability of the workers. If
we were to deploy our approach to (non expert) workers in a crowdsourcing platform,
our model would have to consider these same reliability issues.

Like us, Meilicke et al. [15] also consider domain experts. However, they reduce
the effort of manual evaluation by computing the implications of the decisions that
those experts make to decide if other mappings are correct or incorrect.

Finally, this paper extends our previous conference paper [3] as follows. First,
we use new measures to evaluate the results, including AUGC (Area Under the Gain
Curve) and AURC (Area Under the Robustness Curve). We also provide a detailed
comparison between the mapping quality measures of our model and the measures
used by Shi et al. in their active learning approach [21]. There are two other remarkable
differences. In this paper we compare the performance of our approach using different
revalidation rates for each of the six possible error rates. In each plot we can see the
impact of different revalidation rates, which is a configuration parameter, for a given
error rate, which is a characteristic of a specific matching scenario. In our previous
paper we used a different plot for each revalidation rate, which, in our opinion, is less
effective in showing how different system configurations would behave in equivalent
settings. Furthermore, we improved the explanation and the formulas used to define
the mapping quality measures. In particular, the Feedback Stability score is equivalent
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to subtracting the previously defined score computed by Propagation Impact from 1,
with the advantage that higher Feedback Stability now indicates higher quality. This
is similar behavior to the other measures we define where higher scores correspond to
higher quality.

6 Conclusions and Future Work

A multi-user approach needs to manage inconsistent user validations dynamically and
continuously throughout the matching task, while aiming to reduce the number of map-
ping validations so as to minimize user effort. In this paper, we presented a mapping
model that uses quality measures in the two main steps of the system: the Candidate
Mapping Selection and the Feedback Propagation. In the first step, a dynamic mech-
anism ranks the candidate mappings according to those quality measures so that the
mappings with lower quality are the first to be presented for validation, thus acceler-
ating the gain in quality. In the second step, the similarity among mappings is used
to validate mappings automatically without direct user feedback, so as to cover the
mapping space faster.

Our experiments brought clarity on the trade-offs among error and revalidation
rates required to minimize time and maximize robustness and F-measure. Our strate-
gies show under which circumstances we can afford to be “aggressive” by propagating
results from the very first iterations, instead of waiting for a consensus to be built.

Future work may consider user profiling, so that there is a weight associated with
the validations and how they are propagated, depending on the quality of the feedback.
In addition, one may consider feedback reconciliation models more sophisticated than
majority or weighted majority voting, for example, tournament solutions [2]. Chang-
ing the feedback reconciliation model poses several challenges like adapting the qual-
ity measures used in revalidation strategies or designing new methods to distribute the
mappings among users. In this paper, we tested different constant error rates to model a
variety of user behaviors as an aggregate. New models may take into account the possi-
bility that the engagement of users may decrease along time due to the repetitiveness of
the validation task, thus leading to an increasing error rate, or that in certain situations
users learn with experience and make fewer errors, thus leading to a decreasing error
rate.

Our overall strategy could also be modified to present one mapping together with
several mapping alternatives. In this case, the visualization of the context for those
alternatives could prove beneficial. This visualization can be included in a visual ana-
Iytics strategy for ontology matching [6] modified for multiple users.

Acknowledgments

This work was supported in part by NSF Awards CCF-1331800, IIS-1213013, IIS-
1143926, and I1S-0812258, by a UIC-IPCE Civic Engagement Research Fund Award,
and by the EU FP7-ICT-611358 COMSODE Project.

References

[1] Khalid Belhajjame, Norman W. Paton, Alvaro A. A. Fernandes, Cornelia Hedeler,
and Suzanne M. Embury. User Feedback as a First Class Citizen in Information

23



(2]

(3]

(4]

[6]

(7]

Integration Systems. In CIDR Conference on Innovative Data Systems Research,
pages 175-183, 2011.

Julien Bourdaillet, Shourya Roy, Gueyoung Jung, and Yu-An Sun. Crowdsourc-
ing Translation by Leveraging Tournament Selection and Lattice-Based String
Alignment. In AAAI Conference on Human Computation and Crowdsourcing
(HCOMP), volume WS-13-18. AAALI, 2013.

Isabel F. Cruz, Francesco Loprete, Matteo Palmonari, Cosmin Stroe, and Ay-
naz Taheri. Pay-As-You-Go Multi-User Feedback Model for Ontology Match-
ing. In Krzysztof Janowicz, Stefan Schlobach, Patrick Lambrix, and Eero Hyvo-
nen, editors, International Conference on Knowledge Engineering and Knowl-
edge Management (EKAW), pages 80-96. Springer, 2014. doi:10.1007/
978-3-319-13704-9.

Isabel F. Cruz, Flavio Palandri Antonelli, and Cosmin Stroe. AgreementMaker:
Efficient Matching for Large Real-World Schemas and Ontologies. PVLDB,
2(2):1586-1589, 2009.

Isabel F. Cruz, Flavio Palandri Antonelli, and Cosmin Stroe. Efficient Selection
of Mappings and Automatic Quality-driven Combination of Matching Methods.
In Pavel Shvaiko, Jérdme Euzenat, Fausto Giunchiglia, Heiner Stuckenschmidt,
Natalya Fridman Noy, and Arnon Rosenthal, editors, ISWC International Work-
shop on Ontology Matching (OM), volume 551 of CEUR Workshop Proceedings,
pages 49-60, 2009.

Isabel F. Cruz, Cosmin Stroe, and Matteo Palmonari. Interactive User Feedback
in Ontology Matching Using Signature Vectors. In Anastasios Kementsietsidis
and Marcos Antonio Vaz Salles, editors, IEEE International Conference on Data
Engineering (ICDE), pages 1321-1324, 2012. doi:10.1109/ICDE.2012.
137.

Isabel F. Cruz and William Sunna. Structural Alignment Methods with Applica-
tions to Geospatial Ontologies. Transactions in GIS, Special Issue on Semantic
Similarity Measurement and Geospatial Applications, 12(6):683-711, 2008.

Gianluca Demartini, Djellel Eddine Difallah, and Philippe Cudré-Mauroux. Zen-
Crowd: Leveraging Probabilistic Reasoning and Crowdsourcing Techniques for
Large-scale Entity Linking. In Alain Mille, Fabien L. Gandon, Jacques Mis-
selis, Michael Rabinovich, and Steffen Staab, editors, International World Wide
Web Conference (WWW), pages 469—478, New York, NY, USA, 2012. ACM.
doi:10.1145/2187836.2187900.

Songyun Duan, Achille Fokoue, and Kavitha Srinivas. One Size Does Not Fit
All: Customizing Ontology Alignment Using User Feedback. In Peter F. Patel-
Schneider, Yue Pan, Pascal Hitzler, Peter Mika, Lei Zhang, Jeff Z. Pan, lan Hor-
rocks, and Birte Glimm, editors, International Semantic Web Conference (ISWC),
volume 6496 of Lecture Notes in Computer Science, pages 177-192. Springer,
2010. doi:10.1007/978-3-642-17746-0.

24


http://dx.doi.org/10.1007/978-3-319-13704-9
http://dx.doi.org/10.1007/978-3-319-13704-9
http://dx.doi.org/10.1109/ICDE.2012.137
http://dx.doi.org/10.1109/ICDE.2012.137
http://dx.doi.org/10.1145/2187836.2187900
http://dx.doi.org/10.1007/978-3-642-17746-0

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

Jérdme Euzenat and Pavel Shvaiko. Ontology Matching. Springer-Verlag, Hei-
delberg (DE), 2007.

Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Yujiao Zhou, and Ian Horrocks.
Large-scale Interactive Ontology Matching: Algorithms and Implementation.
In Luc De Raedt, Christian Bessiere, Didier Dubois, Patrick Doherty, Paolo
Frasconi, Fredrik Heintz, and Peter J. F. Lucas, editors, European Conference
on Artificial Intelligence (ECAI), volume 242, pages 444-449, 2012. doi:
10.3233/978-1-61499-098-7-444,

Viclav Jirkovsky and Ryutaro Ichise. MAPSOM: User Involvement in Ontol-
ogy Matching. In Thepchai Supnithi, Takahira Yamaguchi, Jeff Z. Pan, Vilas
Wuwongse, and Marut Buranarach, editors, Joint International Semantic Tech-
nology conference (JIST), pages 348-363. Springer, 2014. doi:10.1007/
978-3-319-15615-6_12.

Christopher D Manning, Prabhakar Raghavan, and Hinrich Schiitze. Introduc-
tion to Information Retrieval, volume 1. Cambridge university press Cambridge,
2008.

Robert McCann, Warren Shen, and AnHai Doan. Matching Schemas in On-
line Communities: A Web 2.0 Approach. In Gustavo Alonso, José A. Blakeley,
and Arbee L. P. Chen, editors, IEEE International Conference on Data Engi-
neering (ICDE), pages 110-119. IEEE, 2008. doi:10.1109/ICDE.2008.
4497419.

Christian Meilicke, Heiner Stuckenschmidt, and Andrei Tamilin. Supporting
Manual Mapping Revision Using Logical Reasoning. In Dieter Fox and Carla P.
Gomes, editors, National Conference on Artificial Intelligence, pages 1213-1218.
AAAI Press, 2008.

Natalya F. Noy and Mark A. Musen. The PROMPT Suite: Interactive tools for
ontology merging and mapping. International Journal of Human-Computer Stud-
ies, 59:983-1024, 2003.

Fernando Osorno-Gutierrez, Norman W. Paton, and Alvaro A. A. Fernandes.
Crowdsourcing Feedback for Pay-As-You-Go Data Integration. In Reynold
Cheng, Anish Das Sarma, Silviu Maniu, and Pierre Senellart, editors, VLDB
Workshop on Databases and Crowdsourcing (DBCrowd), volume 1025, pages
32-37,2013.

Heiko Paulheim, Sven Hertling, and Dominique Ritze. Towards Evaluating In-
teractive Ontology Matching Tools. In Philipp Cimiano, Oscar Corcho, Valentina
Presutti, Laura Hollink, and Sebastian Rudolph, editors, European Semantic
Web Conference (ESWC), pages 31-45. Springer, 2013. doi:10.1007/
978-3-642-38288-8_3.

Cristina Sarasua, Elena Simperl, and Natalya Fridman Noy. CrowdMap: Crowd-
sourcing Ontology Alignment with Microtasks. In Philippe Cudré-Mauroux,

25


http://dx.doi.org/10.3233/978-1-61499-098-7-444
http://dx.doi.org/10.3233/978-1-61499-098-7-444
http://dx.doi.org/10.1007/978-3-319-15615-6_12
http://dx.doi.org/10.1007/978-3-319-15615-6_12
http://dx.doi.org/10.1109/ICDE.2008.4497419
http://dx.doi.org/10.1109/ICDE.2008.4497419
http://dx.doi.org/10.1007/978-3-642-38288-8_3
http://dx.doi.org/10.1007/978-3-642-38288-8_3

(20]

(21]

(22]

(23]

Jeff Heflin, Evren Sirin, Tania Tudorache, Jérdme Euzenat, Manfred Hauswirth,
Josiane Xavier Parreira, Jim Hendler, Guus Schreiber, Abraham Bernstein, and
Eva Blomgqvist, editors, International Semantic Web Conference (ISWC), vol-
ume 7649 of Lecture Notes in Computer Science, pages 525-541. Springer, 2012.
doi:10.1007/978-3-642-35176-1_33.

Burr Settles. Active Learning Literature Survey. Technical report, University of
Wisconsin, Madison, 2009.

Feng Shi, Juanzi Li, Jie Tang, Guotong Xie, and Hanyu Li. Actively Learn-
ing Ontology Matching via User Interaction. In Abraham Bernstein, David R.
Karger, Tom Heath, Lee Feigenbaum, Diana Maynard, Enrico Motta, and Krish-
naprasad Thirunarayan, editors, International Semantic Web Conference (ISWC),
volume 5823 of Lecture Notes in Computer Science, pages 585-600. Springer,
2009. doi:10.1007/978-3-642-04930-9_37.

Hoai-Viet To, Ryutaro Ichise, and Hoai-Bac Le. An Adaptive Machine Learning
Framework with User Interaction for Ontology Matching. In IJCAI Workshop on
Information Integration on the Web, pages 35-40, 2009.

Chen Jason Zhang, Lei Chen, H. V. Jagadish, and Chen Caleb Cao. Reducing
Uncertainty of Schema Matching via Crowdsourcing. PVLDB, 6(9):757-768,
2013.

26


http://dx.doi.org/10.1007/978-3-642-35176-1_33
http://dx.doi.org/10.1007/978-3-642-04930-9_37

	Introduction
	Approach Overview
	Quality-Based Multi-User Feedback
	Mapping Quality Model
	Quality-Based Candidate Selection
	Quality-Based Feedback Propagation

	Experiments
	Performance under Different Error Rates
	Experimental Setup
	Result Analysis

	Comparison with Quality Measures Proposed in Related Work
	Conclusions

	Related Work
	Single User Feedback with Static Candidate Selection
	Single User Feedback with Dynamic Candidate Selection
	Multi-User Feedback

	Conclusions and Future Work

